Top Global Course Special Lectures by Prof. Zhenqing Chen (University of Washington) will take place as follows:
 Date & Time

Monday, March 25, 13:0015:00
Friday, March 29, 13:0015:00
Friday, April 5, 10:0012:00
Friday, April 12, 13:0015:00
Wednesday, April 17, 13:0015:00  Venue
 March 25  29: 110 Lecture room
April 5  17: 127 Conference room
Faculty of Science Bldg. #3, Kyoto University  Title
 Stochastic KomatuLoewner Evolutions
 Abstract
 Loewner equation is a differential equation for conformal mappings that can be used to describe evolution of a family of simply connected planar domains. It was introduced by C. Loewner in 1923 in his work on the Bieberbach conjecture. Oded Schramm observed and conjectured in 2000 that scaling limit of many twodimensional lattice models in statistical physics can be described by Loewner evolutions with Brownian motions as the driving function. Many of these conjectures are latter confirmed in a series of joint work by G. Lawler, O. Schramm and W. Werner and by S. Smirnov.
 On the other hand, Y. Komatu extended Loewner equation to circularly slit annuli in 1950 but in the left derivative sense. The aim of this series of lectures is to survey some recent progress in the study of KomatuLoewner evolutions and its stochastic counterpart in the canonical slit domains, with emphasis on probabilistic methods.

 Lecture 1: Conformal mapping and Brownian motion with darning
 Lecture 2: KomatuLoewner differential equations for multiply connected domains
 Lecture 3: Induced slit motions and KomatuLoewner evolution
 Lecture 4: Stochastic KomatuLoewner differential equation
 Lecture 5: SKLE and SLE
 Language
 English
 Note
 This series of lectures will be videorecorded and made available online.
Please note that anyone in the front rows of the room can be captured by a video camera.