スーパーグローバルコース数学特別講義6

Jongil Park  氏(ソウル大学・教授、韓国数学会会長 )によるスーパーグローバルコース数学特別講演会が下記の要領で開催されます。

開催日時:2024年2月9日(金) 10:00~11:00        
         2月14日(水)16:45~17:45(談話会共催)                           
           

開催場所: 2月9日(金)の会場は後日 個別にお知らせいたします。
     (状況により参加をお受けできない場合がございます)
      2月14日(水)は理学研究科3号館110室にて開催

※2/8訂正:2/9のタイトルとアブストラクトを変更いたしました。
February 9, 2024 10:00~11:00 
題目 : A study on 4-manifolds with Euler characteristic 3

概要:The geography problem on 4-manifolds with Euler characteris-
tic 3 has long been studied in algebraic geometry and topology, but
it is still mysterious so that there are many unsolved problems left.
In this talk, we introduce some open problems in this field which
might be solved and might not be solved in near future. In particu-
lar, we'd like to review the following two topics and to report some
recent progress.
1. Smooth/symplectic fake projective planes and the existence
 of exotic smooth structures on CP^2, S^2 × S^2 and CP^2 ♯ ¥bar{CP}^2.
2. Existence problem of minimal Lefschetz fibrations over T2 with 3 singular fibers.
3. (Algebraic) Montgomery-Yang problem.

February 14, 2024 (談話会共催・当日参加可)
題目 :Why is a rational blowdown surgery interesting in 4-manifolds?
概要:A rational blowdown surgery initially introduced by R. Fin-tushel and R. Stern and later generalized by J. Park is one of the simple but powerful techniques in study of 4-manifolds topology. Note that a rational blowdown surgery replaces a certain linear chain of embedded 2-spheres by a rational homology 4-ball. In par-ticular, a rational homology ball is a key ingredient in the con-struction of exotic smooth, symplectic 4-manifolds with small Eu-ler characteristic and complex surfaces of general type with pg = 0.
It also plays an important role in Q-Gorenstein smoothings and symplectic filings of the link of normal surface singularities.
In this talk, I review what we have obtained in study of 4-manifolds using a rational blowdown surgery in various levels. And then, I’d like to discuss some open problems in related topics.

要申込:参加希望者は下記URLの Googleフォームにて申込を行って下さい。
URL:https://forms.gle/8fzHL1KRBHQz4xQq6
締切日:2月7日(水)16時厳守