To a Riemannian three-manifold equipped with a torsion spin^c structure one can naturally associate a b_1-dimensional family of twisted Dirac operators. Even though the topological properties of such family are explicitly described by the Atiyah-Singer index theorem in terms of the triple cup product, its geometric features are much less understood. In this talk, I will discuss how monopole Floer homology can be used to provide information on the latter for manifolds with a large spectral gap on coexact 1-forms, with a focus on concrete examples.
日時 : (Talk 2)2024年1月11日(木) 10時~11時
会場:後日 個別にお知らせいたします。
(状況により参加をお受けできない場合がございます)
要申込:参加希望者は下記URLの Googleフォームにて申込を行って下さい。
URL:https://forms.gle/q8PyQqJgBUip8yMs6
締切日:2024年1月4日(木)17時厳守