# The homotopy type of spaces of resultants and related topics

Date:

2016/06/22 Wed 16:30 - 17:30

Room:

Room 110, Building No.3

Speaker:

Kohhei Yamaguchi

Affiliation:

The University of Electro-Communications

Abstract:

For positive integers $d,m,n$ with $(m,n)\not= (1,1)$ let

$Poly^{d,m}_n$ denote the space of $m$-tuples

$(f_1(z),\cdots ,f_m(z))$ of complex monic polynomials of the same

degree $d$ such that they have no common root of multiplicity $\geq n$.

When $m=1$ or $n=1$, the homotopy type of it was already well studied.

In this talk we study its the homotopy type for $m>1$ and $n>1$

and try to consider the generalization of the results due to G. Segal

and V. Vassiliev.

This talk is based on the joint work with A. Kozlowski (University of

Warsaw).