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Abstract

In this paper, we discuss the Cauchy problem for Navier-Stokes equations in homoge-
neous weak Herz spaces WK̇α

p,q(Rn). More precisely, we construct the solution in the class

L∞(0, T ; WK̇α
p,q) with the initial data in WK̇α

p,q. Further, we consider the blow-up phenom-
ena of time-local solutions and the uniqueness of global solutions with large initial data in
WK̇α

p,q. Also, we give several embeddings of weak Herz spaces into homogeneous Besov spaces

Ḃ−α
p,∞(Rn), (α > 0), or bmo−1(Rn).

1 Introduction

In this paper, we consider the Cauchy problem for the incompressible homogeneous Navier-Stokes
equations on whole space Rn,

(N-S)


∂tu − ∆u + (u · ∇)u + ∇p = 0,

div u = 0,

u(0) = u0

with the initial data u0 in homogeneous weak Herz space WK̇α
p,q. Here u = (u1, · · · , un) is the

unknown velocity vector field, p is the unknown pressure scalar field and u0 = (u1
0, · · · , un

0 ) is the
given initial velocity with div u0 = ∇ · u0 = 0. Solving the Cauchy problem (N-S) can be reduced
to finding a divergence free solution u of the integral equation

(I.E.) u(t) = et∆u0 −
∫ t

0

e(t−s)∆P(u · ∇)u(s)ds

= et∆u0 −
∫ t

0

∇e(t−s)∆P(u ⊗ u)(s)ds

=: et∆u0 − B(u, u)(t),

where u ⊗ v := (uivj)1≤i,j≤n is a matrix valued function whose (i, j) component is uivj , et∆ is
the heat semigroup and P = {Pi,j := δi,j + RiRj}1≤i,j≤n denotes the Leray-Hopf operator or the
Weyl-Helmholtz projection which is the orthogonal projection on solenoidal vector field, where
Rj = (−∆)−1/2∂j is the jth Riesz transform. Of course, the operator et∆ is defined by the
convolution

et∆f(x) := f ∗ G√
t(x),
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where G is the Gaussian G(x) :=
1

(4π)n/2
e−|x|2/4 and Gt(x) := t−nG(x/t). Formally, if u is a

divergence free solution of (I.E.) and

p : = (−∆)−1
n∑

j,k=1

∂j∂k(ujuk)

=
n∑

j,k=1

RjRk(ujuk)

then (u, p) solves (N-S). We call the solution of (I.E.) the mild solution of (N-S). There are many
papers which studied Navier-Stokes equations on several function spaces, for example, [2], [17], [9],
[13], [14], [21], [23], [24], [27], [30], [33], [32], [38], [40], [44], [45] etc... In the present paper, we
construct local and global mild solutions of (N-S) with the initial velocity u0 belonging to the weak
Herz space. We also discuss the uniqueness of our solutions and blow-up phenomena of our local
solutions. Moreover, we investigate embeddings of weak Herz spaces into Besov spaces or bmo−1.

Here we recall a remark of Cannone [7] to make clear advantages of using the dyadic decom-
position of a function in x-space and ξ-space, respectively. In [7], he proved that if the initial data
u0 ∈ L3(R3) is small in the sense of Ḃ

−1+3/p
p,∞ where 3 < p ≤ 6, then there exists a global mild

solution of (N-S) in C([0,∞), L3). Also , he remarked that for any f ∈ Ln(Rn),

lim
|k|→∞

‖ωkf ; Ḃ−1+n/p
p,∞ ‖ = 0

where ωk(x) := eikx and n < p < ∞. In other words, for the initial data u0 ∈ Ln, if u0 sufficiently
oscillates, then there exists a global mild solution u ∈ C((0,∞); Ln) to (N-S) with u0, even if
‖u0 ; Ln‖ is large. On the other hand, roughly speaking, Theorem 1.3 below allows us to deal with
the following function f as the initial data;

f(x) :=
∑
k∈Z

1
|x − xk|

χk(x)

where xk := (
3
2
2k−1, 0, · · · , 0) ∈ Rn and χk is the characteristic function of {2k−1 ≤ |x| < 2k}. It

is not hard to see that f ∈ WK̇0
n,∞ and f 6∈ ∪n<p<∞Ḃ

−1+n/p
p,∞ . For the latter, see Theorem 1.7.

In other words, the theorem says that even if the initial data u0 has infinitely singular points, if
‖u0 ; WK̇0

n,∞‖ is sufficiently small, then there exists a global mild solution u ∈ C((0,∞); WK̇0
n,∞)

to (N-S) with u0. It is well known that Ln,∞ ↪→ Ḃ
−1+n/p
p,∞ ↪→ BMO−1 when n < p < ∞ and the

existence of global mild solution u ∈ L∞(0,∞; BMO−1) to (N-S) with u0 when ‖u0 ; BMO−1‖
is sufficiently small, see [24]. Since we disprove Ḃ

−1+n/p
p,∞ ↪→ WK̇0

n,∞ and Prof. Akihiko Miyachi
proved the inclusion WK̇0

n,∞ ↪→ BMO−1 recently, our result are independent from Cannone’s
result and we have;

Ln ↪→ Ln,∞ ↪→ Ḃ−1+n/p
p,∞ ↪→ BMO−1.

↪→ WK̇0
n,∞ ↪→.

Then, our initial data in Theorem 1.3 below were dealt by Koch-Tataru in [24].
In [26], they introduced the Fourier-Besov spaces ˙FB

α

p,q which are defined by

‖f ; ˙FB
α

p,q‖ := ‖f̂ ; K̇α
p,q‖,

where f̂ is the Fourier transform of f , see Definition 1.1 below for the definition of the norm
‖· ; K̇α

p,q‖.
In the present paper, we use the symbol K̇α

p,q, instead of K̇α,p
q , because the parameter p was

adopted as the one describing local regularity of functions in many papers studying Navier-Stokes
equations. See the below for the precise definition of K̇α

p,q.
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We explain about the Herz spaces. Nonhomogeneous Herz spaces K
n(1−1/p)
p,1 with 1 < p < ∞

are now called Beurling algebras which were introduced by Beurling [4]. Feichtinger [16] gave the
different norms of Beurling algebras, which is equivalent to that in [4]. The space K̇α

p,q for all p, q
and α was introduced by Herz [20] but his definition differs from our definition. In [8], the Hardy
spaces associated to the Beurling algebras were introduced, and then these spaces are generalized,
are now called Herz-type Hardy spaces. The theories of the Herz space and the Herz-type Hardy
space were developed by, for example, [10], [11], [34], [35], [36], [37], [41] etc.... These spaces are
useful in the analysis of mapping properties of important operators. For example, Baernstein II
and Sawyer [1] showed some multiplier theorems on Hardy space Hp(Rn) by using a norm of the
Herz space. Also, see [48] and the references there for applications of Herz spaces.

Firstly we recall the definitions of Herz spaces and weak Herz spaces.

Definition 1.1. Let 0 < p, q ≤ ∞ and α ∈ R. One defines the homogeneous Herz space K̇α
p,q(Rn)

as
K̇α

p,q(Rn) := {f ∈ Lp
loc(R

n\{0}) ; ‖f ; K̇α
p,q‖ < ∞}

where

‖f ; K̇α
p,q‖ :=

( ∑
k∈Z

2kαq‖f ;Lp(Ak)‖q
)1/q

,

with the usual modification in the case q = ∞ and Ak := {x ∈ Rn; 2k−1 ≤ |x| < 2k}.

Definition 1.2. With same exponents as above, one defines the weak Herz spaces WK̇α
p,q(Rn) by

the space of measurable functions f such that

‖f ;WK̇α
p,q‖ :=

(∑
k∈Z

2kαq‖f ; Lp,∞(Ak)‖q
)1/q

< ∞,

with the usual modification in the case q = ∞, where

‖f ;Lp,∞(Ak)‖ := sup
λ>0

λ|{x ∈ Ak; |f(x)| > λ}|1/p

for p < ∞ and L∞,∞(Ak) = L∞(Ak).

A typecal example of WK̇α
p,∞ is

∑
k∈Z

2−kα

|x − xk|n/p
χk(x),

where xk := (
3
2
2k−1, 0, · · · , 0) ∈ Rn and χk is the characteristic function of Ak. These functions

are used in the proof of Theorem 1.7 below.

Here we remark that there is another type of the weak Herz spaces, [25], which is defined by

‖f ; ˙K α
(p,∞),q‖ := sup

λ>0
λ
(∑

k∈Z

2kαq|{x ∈ Ak; |f(x)| > λ}|p/q
)1/q

.

It is obvious ‖f ; ˙K α
(p,∞).q‖ ≤ ‖f ; WK̇α

p,q‖, i.e. WK̇α
p,q ↪→ ˙K α

(p,∞),q.

Moreover, to state our theorems, we introduce the ”smooth” weak Herz spaces;

W K̇α
p,∞ := {f ∈ WK̇α

p,∞; et∆f → f in WK̇α
p,∞ as t ↘ 0}.

Now we state our theorems. The first one concerns the local existence of mild solution for large
data;
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Theorem 1.1 (local existence for large data). Let n ≥ 2, n < p < ∞ and 0 ≤ α < 1 − n/p.
Then for every u0 ∈ WK̇α

p,∞ with div u0 = 0, there exist a positive constant T > 0 and a solution
u ∈ XT ∩ C((0, T );WK̇α

p,∞) of (I.E.)with u0 so that

sup
0<t≤T

t(α+n/p)/2‖u(t) ;L∞‖ < ∞, (1)

u(t) ∈ W K̇α
p,∞ for t > 0, (2)

u(t) → u0 in the weak ∗ topology as t ↘ 0, (3)

u(·) − e·∆u0 ∈ L∞(0, T ; K̇α
p,∞), (4)

and
u(·) − e·∆u0 is right continuous in K̇α

p,∞ on (0, T ), (5)

where XT = {u ∈ L∞(0, T ;WK̇α
p,∞); ‖u ; XT ‖ < ∞, div u = 0},

‖u ; XT ‖ : = sup
0<t≤T

‖u(t) ;WK̇α
p,∞‖ + sup

0<t≤T
t1/2‖∇u(t) ; WK̇α

p,∞‖

=: ‖u ; XT,1‖ + ‖u ; XT,2‖.

Moreover, if u0 ∈ W K̇α
p,∞, then we can prove u(t) → u0 in WK̇α

p,∞ as t ↘ 0. As for uniqueness,
u is the only solution of (I.E.) in the class L∞(0, T ;WK̇α

p,∞).

Remark 1.1. 1. The local solution above is in ∩0<T1<T2<T L∞(Rn × (T1, T2)). Hence, thanks to
the proof of Proposition 15.1 in [31], we obtain the smoothness u ∈ C∞(Rn × (0, T )).

2. The life span T of the solution u in Theorem 1.1 is characterized by

T =
C

‖u0 ; WK̇α
p,∞‖

2
1−n/p−α

,

with a constant C depends on the exponents p, α and n only.
3. Because we show the inclusion

WK̇α
p,∞ ↪→ bmo−1

for n < p ≤ ∞ and 0 ≤ α < 1 − n/p, see Theorem 1.6, our initial data u0 was dealt by Koch and
Tataru [24], where bmo−1 = F−1

∞,2 is defined by

‖f ; bmo−1‖ := sup
|Q|≤1

(∫
−

Q

∫ l(Q)2

0

|et∆f(x)|2dtdx
)1/2

,

where the supremum is taken over all cubes Q with the volume |Q| ≤ 1, l(Q) is the side length of Q

and the slashed integral
∫
−

Q

fdx denotes the average
1
|Q|

∫
Q

fdx. But Theorem 1.1 is not included

in [24], because they used the condition

sup
0<t≤T

t1/2‖u(t) ;L∞‖ < ∞

to prove the uniqueness of local solutions. We show the uniqueness of our local solutions without
such a condition.

4. In the case u0 ∈ K̇α
p,∞, we can show Theorem 1.1 in which WK̇α

p,∞ is replaced with K̇α
p,∞.

However we omit the details, this fact says that the assumption of Theorem 1.2 below is natural.
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Also, we are interested in whether the local solution in Theorem 1.1 blows up at t = T or
can be continued beyond t = T . Such a problem was considered by Beale, Kato and Majda [3],
Giga [12], Kozono and Taniuchi [29], Kozono, Ogawa and Taniuchi [27] and Kozono and Shimada
[28]. We can establish an extension criterion on our local-in-time mild solutions by using the new
function space K̇0

BMO,∞ which is strictly larger than BMO by applying our previous work [47].

Definition 1.3. We define the space K̇0
BMO,∞ as the space of locally integrable functions f on

Rn\{0} satisfying

‖f ; K̇0
BMO,∞‖ := sup

k∈Z
‖f ; BMO(Q∗

k)‖

:= sup
k∈Z

sup
Q⊂Q∗

k

inf
c∈C

∫
−

Q

|f − c|dy < ∞,

where Q∗
k := Qk−1 ∪ Qk ∪ Qk+1, Qk := (−2k, 2k)n\(−2k−1, 2k−1)n and the supremum sup

Q⊂Q∗
k

is

taken over all cubes Q contained in Q∗
k. Then, K̇0

BMO,∞/C is a Banach space under the above
norm ‖· ; K̇0

BMO,∞‖.

Our extension criterion theorem is the following. Theorems 1.1 and 1.2 are proved in Section
3.

Theorem 1.2 (continuation principle for local mild solutions). Let n ≥ 2, n < p < ∞, 0 ≤ α <
1− n/p and 0 < T ∗ < ∞. Let u0 ∈ K̇α

p,∞ with div u0 = 0 and u be a solution of (I.E.) in the class
L∞(0, T ; K̇α

p,∞) for all T ∈ (0, T ∗). Suppose that u satisfies the condition∫ T∗

0

‖∇u(t) ; K̇0
BMO,∞‖dt < ∞,

then there exists T̃ > T ∗ so that u can be extended to a solution of (I.E.) in the class
L∞(0, T̃ ; K̇α

p,∞).

Remark 1.2. Kozono and Shimada [28] showed that if∫ T∗

0

‖u(t) ; Ḟ−α
∞,∞‖γdt < ∞

for some 0 < α < 1 with γ = 2(1 − α), then the similar continuation principle of strong solutions
holds. Here Ḟ−α

∞,∞ is the homogeneous Triebel-Lizorkin space.

Although the Navier-Stokes equations are invariant with respect to the scaling

(u(x, t), p(x, t)) → (λu(λx, λ2t), λ2p(λx, λ2t)), (λ > 0)

the weak Herz spaces appeared in Theorem 1.1 are not invariant with respect to such a scaling.
Roughly speaking, it is well-known that if a function space X is invariant with respect to the
scaling, i.e., ‖f(λ·) ; X‖ ≈ λ−1‖f ; X‖, then the global existence of solutions for small data to
(I.E.) is expected. It is not hard to show that WK̇

1−n/p
p,q and K̇

1−n/p
p,q are so, see Lemma 2.5 in

Section 2. Then the global existence of mild solutions for small data is expected on these spaces.
Under the restriction n ≤ p ≤ ∞, since the largest space is WK̇0

n,∞ among K̇
1−n/p
p,q and WK̇

1−n/p
p,q ,

we state our global existence theorem for WK̇0
n,∞ only. More precisely, we have the following

theorem
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Theorem 1.3 (global existence for small data). Let n ≥ 2 and n < p < ∞. Then, there exists
δ > 0 such that for all u0 ∈ WK̇0

n,∞ with ‖u0 ; WK̇0
n,∞‖ ≤ δ and div u0 = 0 there exists a solution

u ∈ X ∩ C((0,∞);WK̇0
n,∞) of (I.E.) such that

u(t) ∈ W K̇0
n,∞ for t > 0, (6)

u(t) → u0 in weak ∗ topology as t ↘ 0, (7)

u(·) − e·∆u0 ∈ L∞(0,∞; K̇0
n,∞), (8)

and
u(·) − e·∆u0 is right continuous in K̇0

n,∞ on (0,∞), (9)

where X = {u ∈ L∞(0,∞; WK̇0
n,∞); ‖u ; X‖ < ∞, div u = 0},

‖u ; X‖ : = sup
t>0

‖u(t) ; WK̇0
n,∞‖ + sup

t>0
t(1−n/p)/2‖u(t) ; K̇0

p,∞‖

+ sup
t>0

t1/2‖u(t) ;L∞‖ + sup
t>0

t1/2‖∇u(t) ;WK̇0
n,∞‖

=: ‖u ; X1‖ + ‖u ; X2‖ + ‖u ;X3‖ + ‖u ; X4‖.

Moreover, if u0 ∈ W K̇0
n,∞, then we can show that

u(t) → u0 in WK̇0
n,∞ as t ↘ 0, and

lim
t↘0

t(1−n/p)/2‖u(t) ; K̇0
p,∞‖ = lim

t↘0
t1/2‖u(t) ;L∞‖ = 0.

Remark 1.3. 1. The solution above is in ∩0<T1<T2<T L∞(Rn × (T1, T2)) for every T ∈ (0,∞).
Hence, thanks to the proof of Proposition 15.1 in [31], we obtain the smoothness u ∈ C∞(Rn ×
(0,∞)).

2. We know the following inclusion relations from Theorem 1.6; for 2 ≤ n < p < σ < ∞

WK̇1−n/p
p,∞ ↪→ Ḃ−1+n/σ

σ,∞ ↪→ BMO−1,

and for q < ∞
WK̇0

n,q ↪→ Ḃ−1+n/σ
σ,∞ ↪→ BMO−1,

where BMO−1 = Ḟ−1
∞,2 is defined by

‖f ; BMO−1‖ := sup
Q

(∫
−

Q

∫ l(Q)2

0

|et∆f(x)|2dtdx
)1/2

,

where the supremum is taken over all cubes Q. Therefore if we replace WK̇0
n,∞ with WK̇

1−n/p
p,∞ or

WK̇0
n,q in Theorem 1.3 where p > n and q < ∞, then the initial data was dealt in [24]. On the

other hand, WK̇0
n,∞ is not included in ∪0<p<∞Ḃ−1+n/p

p,∞ , see Theorem 1.7.

As for uniqueness of global-in-time mild solution, in the case u0 ∈ L3(R3), it is well-known
that the solution is unique in the class C([0, T ); L3) even if initial data is large, see [18], [19] and
[39]. Nevertheless, the existence of global solutions for large data in L3(R3) is open problem. In
this connection, Cannone [7] showed the existence of global solution u ∈ C([0,∞); L3(R3)) when
an initial data u0 ∈ L3(R3) is sufficiently small in the scale of Ḃ

−1+3/p
p,∞ norm, where 3 < p ≤ 6.

We can prove an analogous result of the uniqueness for large data in the weak Herz space setting.
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Theorem 1.4 (uniqueness of global solution for large data). Let n ≥ 3. Let u0 ∈ W K̇0
n,∞ with

div u0 = 0. If u and v are divergence free mild solutions of (I.E.) with initial data u0 in the class
C([0,∞);WK̇0

n,∞) satisfying u(t), v(t) → u0 in WK̇0
n,∞ as t ↘ 0, then u = v on [0,∞).

Also, as a corollary of the boundedness of B, see Remark 4.1, we can show a stability result of
global solution for small data, see [22].

Theorem 1.5 (stability of global solution for small data). Let n ≥ 3 and u0, v0 ∈ WK̇0
n,∞. There

exists δ > 0 such that if ‖u0 ; WK̇0
n,∞‖, ‖v0 ;WK̇0

n,∞‖ < δ, and

lim
t↗∞

‖et∆(u0 − v0) ; WK̇0
n,∞‖ = 0,

then for the solutions u, v constructed in Theorem 1.3 with initial data u0, v0, respectively, we have

lim
t↗∞

‖u(t) − v(t) ;WK̇0
n,∞‖ = 0.

Theorems 1.3, 1.4 and 1.5 are proved in Section 4.
Furthermore, we discuss about embeddings of weak Herz spaces into Besov spaces or bmo−1. To

prove negative result, we use the characterization of homogeneous Besov space Ḃ−α
p,∞, (α > 0), in

terms of the heat semigroup et∆. The characterization we use is the following; for 1 ≤ σ ≤ ∞, α > 0
and f ∈ S ′;

sup
t>0

tα/2‖et∆f ;Lσ‖ ≈ ‖f ; Ḃ−α
σ,∞‖. (10)

See [7] or [46], for the details. Theorems 1.6 and 1.7 are proved in Section 5.

Theorem 1.6. (I) (The case σ < ∞.)
(i): For 1 < p < σ < ∞ and 0 < α < n(1 − 1/p), we have

WK̇α
p,∞ ↪→ Ḃ−(α+n(1/p−1/σ))

σ,∞ (11)

(ii): For 1 < p < ∞ and 0 < α < n(1 − 1/p), we have

K̇α
p,∞ ↪→ Ḃ−α

p,∞ (12)

(iii): For 1 < p < σ < ∞, one has

WK̇0
p,σ ↪→ Ḃ−n(1/p−1/σ)

σ,∞ . (13)

(II) (The case σ = ∞.)
(iv): For 1 < p < ∞ and 0 ≤ α < n(1 − 1/p), we have

WK̇α
p,∞ ↪→ Ḃ−(α+n/p)

∞,∞ (14)

(v): For 0 ≤ α < n, we have
K̇α

∞,∞ ↪→ Ḃ−α
∞,∞ (15)

(vi): For 1 < p ≤ ∞ and 0 ≤ α ≤ n(1 − 1/p), one has

WK̇α
p,1 ↪→ Ḃ−(α+n/p)

∞,∞ (16)

(vii): We have
L1 = K̇0

1,1 ↪→ Ḃ−n
∞,∞. (17)

(III)
(viii): For n < p ≤ ∞ and 0 ≤ α < 1 − n/p, one obtains

WK̇α
p,∞ ↪→ bmo−1. (18)
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In (11) and (14), lower bounds of α are sharp in the following sense.

Theorem 1.7. (i): (The case σ < ∞) For 1 < p < σ < ∞ and
−n(1/p − 1/σ) < α ≤ 0, an embedding

WK̇α
p,∞ ↪→ Ḃ−(α+n(1/p−1/σ))

σ,∞ (19)

dose not hold.
(ii): (The case σ = ∞) For 1 < p < ∞ and −n/p < α < 0, an embedding

WK̇α
p,∞ ↪→ Ḃ−(α+n/p)

∞,∞ (20)

dose not hold.

Remark 1.4. 1. We give some examples of bmo−1. For n < p < ∞, 0 ≤ α < 1 − n/p and
0 ≤ β < 1, ∑

k∈Z

2−kα

|x − xk|n/p
χk(x),

1
|x|β

∈
∪

n<p≤∞
0≤α<1−n/p

WK̇α
p,∞,

where xk := 3
22k−1e1 and e1 := (1, 0, · · · , 0). Then from (18), these functions belong to bmo−1.

2. A special case of Theorem 1.7 is

WK̇1−n/p
p,∞ 6↪→ Ḃ−1

∞,∞,

where 0 < p < n. We remark that Bourgain and Pavlović [5] proved the ill-posedness of the Navier-
Stokes equations in Ḃ−1

∞,∞. Recently, in [49] he showed the ill-posedness in Ḃ−1
∞,q for q ∈ (2,∞).

Many of our results above are consequences of the boundedness of convolution operators with
some good function on weak Herz spaces, see Propositions 2.1 and 2.2 in Section 2.

This paper is organized as follows. In Section 2 we recall the fundamental facts for Herz
spaces and weak Herz spaces, and establish several estimates on weak Herz spaces, that is, the
WK̇α

p,q − WK̇β
σ,δ estimates of the heat semigroup et∆, the boundedness of a class of operators

which contains the fractional integral operator Iα, and the critical estimates of the bilinear form
B. In Section 3, we construct the unique local-in-time solution in weak Herz spaces and we prove
the extension criterion Theorem 1.2. In Section 4, we prove the existence of global-in-time solution
on a scaling invariant space WK̇0

n,∞ for small data and the uniqueness of the solution in the class
C([0,∞);WK̇0

n,∞) for smooth large data. Finally, in Section 5, we give the proof of Theorems 1.6
and 1.7.

2 Preliminaries

Throughout this paper we use the following notations. S and S ′ denote the Schwartz spaces
of rapidly decreasing smooth functions and tempered ditributions, respectively. A . B means
A ≤ cB with a positive constant c. Also, A ≈ B means c1B ≤ A ≤ c2B with positive constants c1

and c2. In what follows, c denotes a constant that is independent of the functions involved, which
may differ from line to line.

In this section, we recall the fundamental facts on Herz and weak Herz spaces and also establish
some propositions, for example, the estimates of heat semigroup and the boundedness of some
operator on the weak Herz spaces. We begin with discussions for the relations between the Herz
spaces or the weak Herz spaces and other function spaces.

Lebesgue spaces with power weight are special cases of Herz spaces; in the case p < ∞

K̇α
p,p = Lp(|x|αpdx),
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and
‖f ; K̇α

∞,∞‖ ≈ ‖|x|αf ;L∞‖.

Further, Herz spaces K̇α
p,∞ include Morrey spaces Mp

q(Rn) and Lorentz spaces Lp,q(Rn); for 0 <
q < p < ∞,

Lp,∞ ↪→ Mp
q ↪→ K̇n(1/p−1/q)

q,∞ .

More precisely, we obtain the following;

Lemma 2.1. Let 0 < q ≤ p ≤ ∞. Then one has the embedding

Mp
q ↪→ K̇n(1/p−1/q)

q,∞ .

Here,
‖f ;Mp

q‖ := sup
Q

|Q|1/p−1/q‖f ; Lq(Q)‖,

where the supremum is taken over all cubes Q, and

‖f ;Lp,q‖ :=
(∫ ∞

0

tq/pf∗(t)q dt

t

)1/q

,

where f∗ is the decreasing rearrangement of f . The usual modifications in the definitions above
are made when q = ∞. The scaling invariant spaces K̇0

n,∞ are not included in Ln,∞. In fact, let
h(x) = 1 if 2k ≤ xi < 2k + 1 for some k ∈ N and all i, h(x) = 0 if else. Then, it is easy to see that
h 6∈ Ln,∞ and h ∈ K̇0

n,∞.
On the other hand, WK̇0

n,∞ is scaling invariant, also includes Ln,∞. A typical member of
WK̇0

n,∞ is

f(x) :=
∑
k∈Z

1
|x − xk|

χAk
(x).

Then, we see that f does not belong to ∪0<p<∞Ḃ−1+n/p
p,∞ , ∪n<p≤∞WK̇

1−n/p
p,∞ , K̇0

n,∞ and Ln,∞.

Remark that Ln,∞ ↪→ ∪n<p<∞Ḃ
−1+n/p
p,∞ . See Theorem 1.7 for the proof of f 6∈ Ḃ

−1+n/p
p,∞ . But the

author knows no inclusion relations between Herz space and Morrey spaces, or weak Herz spaces
and weak Morrey spaces which are scaling invariant, see [40] for the definition of weak Morrey
spaces.

The following four lemmas are fundamental facts of homogeneous Herz spaces and weak Herz
spaces. Because it is not hard to prove them, we omit the proofs.

Lemma 2.2. Let 1 ≤ p, q ≤ ∞ and α ∈ R.
(i): S ↪→ K̇α

p,q ↪→ WK̇α
p,q, provided that q < ∞ and −n/p < α < ∞ or q = ∞ and −n/p ≤ α < ∞.

(ii): K̇α
p,q ↪→ WK̇α

p,q ↪→ S ′
, provided that q = 1 and −∞ < α ≤ n(1 − 1/p) or 1 < q ≤ ∞ and

−∞ < α < n(1 − 1/p).

Lemma 2.3 ([41], Lemma 2.3). Let 0 < p, q ≤ ∞, α ∈ R and f ∈ WK̇α
p,q. Then, f ∈ Lr

loc(Rn)
for every r satisfying max(α, 0)/n + 1/p < 1/r < ∞.

Lemma 2.4. Let 0 < pi, qi ≤ ∞ and αi ∈ R, (i = 1, 2). Then, if

1
p

=
1
p1

+
1
p2

,
1
q

=
1
q1

+
1
q2

and α = α1 + α2

then
‖fg ; WK̇α

p,q‖ ≤ c‖f ; WK̇α1
p1,q1

‖ ‖g ; WK̇α2
p2,q2

‖.
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To construct the global solutions of (N-S), we need to know the parameters (p, q, α) for which
K̇α

p,q and WK̇α
p,q are scaling invariant. From lemma below, we see that the spaces K̇

1−n/p
p,q and

WK̇
1−n/p
p,q are so.

Lemma 2.5 ([41], Lemma 2.1). For 0 < p, q ≤ ∞, α ∈ R and 0 < λ < ∞,

‖f(λ·) ; K̇α
p,q‖ ≈ λ−(α+n/p)‖f ; K̇α

p,q‖

and
‖f(λ·) ;WK̇α

p,q‖ ≈ λ−(α+n/p)‖f ; WK̇α
p,q‖.

To establish the WK̇α
p,q − K̇β

σ,q or WK̇α
p,q − WK̇β

σ,q estimates of heat semigroup et∆, we apply
the following lemma to the Gaussian G, see Corollary 2.1 below.

Lemma 2.6. Let 1 < p ≤ σ ≤ ∞, k, j ∈ Z, 1 + 1/σ = 1/p + 1/r and φ ∈ Lr,1 ∩ L∞ with
|φ(x)| ≤ C∗|x|−m for some m ≥ 0 and x 6= 0.
(i): In the case p < σ ≤ ∞, we have

‖fj ∗ φ ; Lσ(Ak)‖ ≤ c‖fj ;Lp,∞‖

×


2kn/σ2jn(1−1/p)min (2−km, 1) =: R1, if j ≤ k − 2,

min (2kn/σ2jn(1−1/p), 1) =: R2, if k − 1 ≤ j ≤ k + 1,

2kn/σ2jn(1−1/p)min (2−jm, 1) =: R3, if k + 2 ≤ j,

where fj := fχAj and a constant c depends on n, p, σ, φ and C∗ only.
(ii): In the case p = σ ≤ ∞, we have the same estimate for ‖fj ∗ φ ; Lσ,∞(Ak)‖ as above (i).

Proof. (i): In the case j ≤ k − 2, for x ∈ Ak and y ∈ Aj , one has |x − y| & 2k. Then it is easy to
see that

‖fj ∗ φ ;Lσ(Ak)‖ . |Ak|1/σ min(2−km, 1)‖fj ; L1‖

Since supp fj ⊂ Aj , the inequality ‖fj ; L1‖ ≤ p/(p − 1)|Aj |1−1/p‖fj ; Lp,∞‖ holds. Therefore we
obtain the desired inequality in this case.

In the case k − 1 ≤ j ≤ k + 1, from the same argument as above, we have ‖fj ∗ φ ;Lσ(Ak)‖ .
2kn/σ2jn(1−1/p)‖fj ;Lp,∞‖. On the other hand, in the case σ < ∞, by using the stronger Young’s
inequality, see pp. 63 in [15], we have

‖fj ∗ φ ;Lσ(Ak)‖ ≤ ‖fj ∗ φ ; Lσ(Rn)‖
. ‖φ ; Lr‖‖fj ; Lp,∞‖.

In the case σ = ∞, from the inequality of Hardy and Littlewood for rearrangements, [1], and the
shift-invariance of Lr,1 norm, we have

‖fj ∗ φ ; L∞(Ak)‖ . ‖φ ; Lr,1‖‖fj ; Lp,∞‖.

The desired inequality in the case k + 2 ≤ j can be showed by the same argument as the first
case.

(ii): In this case, since the stronger Young’s inequality is not available, the left hand side is
replaced by Lσ,∞.

The following proposition is a consequence of Lemma 2.6 and yields the WK̇α
p,q − K̇α

p,q or
WK̇α

p,q − WK̇β
σ,q estimates of the heat semigroup et∆ and the operator ∇et∆P, see the below.
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Proposition 2.1. Let 1 < p ≤ σ ≤ ∞, 0 < q ≤ ∞ and m ≥ 0. Suppose that φ ∈ Lr,1 ∩ L∞,
with 1 + 1/σ = 1/p + 1/r, satisfies |φ(x)| ≤ C∗|x|−m for all x 6= 0. Then we obtain the following
estimates.
(i): In the case p < σ

‖f ∗ φ ; K̇β
σ,q‖ ≤ c‖f ; WK̇α

p,q‖, and

(ii): in the case p = σ
‖f ∗ φ ;WK̇β

p,q‖ ≤ c‖f ; WK̇α
p,q‖

provided that one of the following cases holds;
(1) 0 < q ≤ 1, −n/σ < β ≤ α ≤ n(1 − 1/p), n(1 − 1/p) − α + β + n/σ ≤ m and β + n/σ < m,
(2) 1 < q < ∞, −n/σ < β ≤ α < n(1 − 1/p) and n(1 − 1/p) − α + β + n/σ ≤ m,
(3) q = ∞, −n/σ ≤ β ≤ α < n(1− 1/p), n(1− 1/p)− α + β + n/σ ≤ m and n(1− 1/p)− α < m.

Proof. We prove the case (i) only. By usig Lemma 2.6, we decompose

‖f ∗ φ ; K̇β
σ,q‖ ≤ c(I + II + III),

where

I = (
∑
k∈Z

2kβq(
k−2∑

j=−∞
‖f ; Lp,∞(Aj)‖R1)q)1/q,

II = (
∑
k∈Z

2kβq(
k+1∑

j=k−1

‖f ; Lp,∞(Aj)‖R2)q)1/q,

III = (
∑
k∈Z

2kβq(
∞∑

j=k+2

‖f ; Lp,∞(Aj)‖R3)q)1/q.

We shall show the case (1). By the assumption n(1 − 1/p) − α + β + n/σ ≤ m and β ≤ α, II
can be estimated as follows;

II ≤ (
∑
k∈Z

2kβq
k+1∑

j=k−1

‖f ; Lp,∞(Aj)‖qRq
2)

1/q

≤ c(
∑
j∈Z

2jαq‖f ; Lp,∞(Aj)‖qmin (2j(n(1−1/p)−α+β+n/σ)q, 2j(β−α)q)1/q

≤ c‖f ; WK̇α
p,q‖.

To estimate I, we decompose again

I ≤ (
2∑

k=−∞

2kβq
k−2∑

j=−∞
‖f ; Lp,∞(Aj)‖qRq

1)
1/q

+ (
∞∑

k=3

2kβq
0∑

j=−∞
· · · )1/q + (

∞∑
k=3

2kβq
k−2∑
j=1

· · · )1/q.

Because −n/σ < β and α ≤ n(1 − 1/p), we have

1st term ≤ (
0∑

j=−∞
2jαq‖f ; Lp,∞(Aj)‖q2j(n(1−1/p)−α)q

2∑
k=−∞

2k(β+n/σ)q))

≤ c(
0∑

j=−∞
2jαq‖f ; Lp,∞(Aj)‖q2j(n(1−1/p)−α)q)1/q

≤ c‖f ; WK̇α
p,q‖.
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Also, since α ≤ n(1 − 1/p) and β + n/σ < m, one has

2nd term ≤ (
∞∑

k=3

2k(β+n/σ−m)q)1/q (
0∑

j=−∞
2jαq‖f ; Lp,∞(Aj)‖q2j(n(1−1/p)−α)q)1/q

≤ c‖f ;WK̇α
p,q‖.

Furthermore, since n(1 − 1/p) − α + β + n/σ ≤ m, we obtain

3rd term = (
∞∑

j=1

2jαq‖f ; Lp,∞(Aj)‖q2j(n(1−1/p)−α)q
∞∑

k=j+2

2k(β+n/σ−m)q)1/q

≤ c‖f ; WK̇α
p,q‖,

which imply I ≤ c‖f ; WK̇α
p,q‖.

Going through a similar argument as above, one obtains

III ≤ c‖f ; WK̇α
p,q‖,

which completes the proof of the case (i).
Next we consider the case (3) with the same decompositions as above. By using n(1 − 1/p) −

α + β + n/σ ≥ 0 and β − α ≤ 0, we have

II = sup
k∈Z

2kβ
k+1∑

j=k−1

‖f ; Lp,∞(Aj)‖ min (2kn/σ2jn(1−1/p), 1)

≤ c‖f ; WK̇α
p,∞‖ sup

k∈Z
min (2k(n(1−1/p)−α+β+n/σ), 2k(β−α))

≤ c‖f ; WK̇α
p,∞‖.

I is dominated by ‖f ; WK̇α
p,∞‖ in the following way;

1st term = sup
k≤2

2kβ
k−2∑

j=−∞
‖f ;Lp,∞(Aj)‖2kn/σ2jn(1−1/p)

≤ ‖f ; WK̇α
p,∞‖ sup

k≤2
2k(β+n/σ)

0∑
j=−∞

2j(n(1−1/p)−α)

≤ c‖f ; WK̇α
p,∞‖,

2nd term = sup
k≥3

2kβ
0∑

j=−∞
‖f ; Lp,∞(Aj)‖2k(n/σ−m)2jn(1−1/p)

≤ ‖f ;WK̇α
p,∞‖ sup

k≥3
2k(β+n/σ−m)

0∑
j=−∞

2j(n(1−1/p)−α)

≤ c‖f ; WK̇α
p,∞‖,

3rd term = sup
k≥3

2kβ
k−2∑
j=1

‖f ; Lp,∞(Aj)‖2k(n/σ−m)2jn(1−1/p)

≤ c‖f ; WK̇α
p,∞‖ sup

k≥3
2k(β+n/σ−m)2k(n(1−1/p)−α)

≤ c‖f ; WK̇α
p,∞‖.

12



Hence we have I ≤ c‖f ;WK̇α
p,∞‖.

Using a similar argument as above, we can get the estimate III ≤ c‖f ;WK̇α
p,∞‖, which completes

the proof of the case (3).
The inequality in the case (2) follows from the interpolation.

Next proposition says that if we restrict the condition of the weight parameters α and β, then
we can improve the right hand side of Proposition 2.1 with respect to the summation parameter q.

Proposition 2.2. Let 1 < p ≤ σ ≤ ∞, 0 < δ < q ≤ ∞ and m ≥ 0. Suppose that φ ∈ Lr,1 ∩ L∞,
with 1+1/σ = 1/p+1/r, satisfies |φ(x)| ≤ C∗|x|−m for all x 6= 0. If −n/σ < β < α < n(1−1/p) <
m, then we obtain the following estimates.
(i): In the case p < σ

‖f ∗ φ ; K̇β
σ,δ‖ ≤ c‖f ;WK̇α

p,q‖, and

(ii): in the case p = σ

‖f ∗ φ ;WK̇β
p,δ‖ ≤ c‖f ;WK̇α

p,q‖.

Proof. It suffices to prove the estimate in the cases q = ∞ and 0 < δ < 1. We omit the proof of
this proposition, because it is not hard to complete the proof modifying the argument of the proof
of Proposition 2.1.

Using Propositions 2.1 and 2.2, we can investigate the behavior of the heat semigroup et∆ and
∇et∆P in the weak Herz spaces. We use this corollary many times.

Corollary 2.1. Let 1 < p ≤ σ ≤ ∞, 0 < q, δ ≤ ∞, −n/σ ≤ β ≤ α ≤ n(1 − 1/p) and j ∈ {0, 1}.
[I]: (In the case q = δ) If the exponents verify the first two conditions of one of (1), (2) and (3)

in Proposition 2.1, the following inequalities hold.
(i): (In the case p < σ)

‖∇jet∆f ; K̇β
σ,q‖ ≤ ct−j/2−(α−β+n(1/p−1/σ))/2‖f ;WK̇α

p,q‖.

(ii): (In the case p = σ)

‖∇jet∆f ; WK̇β
p,q‖ ≤ ct−j/2−(α−β)/2‖f ; WK̇α

p,q‖.

(iii): (In the case p < σ)

‖∇jet∆Pf ; K̇β
σ,q‖ ≤ ct−j/2−(α−β+n(1/p−1/σ))/2‖f ; WK̇α

p,q‖.

(iv): (In the case p = σ) If j = 1 or β < α, it follows

‖∇jet∆Pf ; WK̇β
p,q‖ ≤ ct−j/2−(α−β)/2‖f ; WK̇α

p,q‖.

[II]: (In the case q = δ) When 1 < p < ∞ and −n/p < α < n(1 − 1/p), it follows

‖et∆Pf ;WK̇α
p,q‖ ≤ c‖f ; WK̇α

p,q‖.

[III]: (In the case δ < q) The following inequalities hold if −n/σ < β < α < n(1 − 1/p)).
(i): (In the case p < σ)

‖∇jet∆f ; K̇β
σ,δ‖ ≤ ct−j/2−(α−β+n(1/p−1/σ))/2‖f ; WK̇α

p,q‖.

(ii): (In the case p = σ)

‖∇jet∆f ; WK̇β
p,δ‖ ≤ c t−j/2−(α−β)/2‖f ; WK̇α

p,q‖.

(iii): (In the case p < σ)

‖∇jet∆Pf ; K̇β
σ,δ‖ ≤ c t−j/2−(α−β+n(1/p−1/σ))/2‖f ; WK̇α

p,q‖.

(iv): (In the case p = σ)

‖∇jet∆Pf ;WK̇β
p,δ‖ ≤ c t−j/2−(α−β)/2‖f ; WK̇α

p,q‖.
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Proof. (I-i), (I-ii): The proofs of the inequalities are concluded from Lemma 2.5, Proposition 2.1
and the equation et∆f = (f1/

√
t ∗ G)√t.

(I-iii): It is well known that the operator et∆P is a convolution operator with the Oseen
kernel Kt(x) = t−n/2K(x/

√
t) such that |∇mK(x)| ≤ c〈x〉−(n+m), see for example [31]. Then the

inequality can be verified by applying Proposition 2.1 to K.
(I-iv): If j = 1, then the inequality is showed by the same argument as above. We shall

consider the case β < α. When p < ∞ and −n/p < β, from Proposition 2.3 P is bounded on
WK̇β

p,q. Therefore, we have

‖et∆Pf ; WK̇β
p,q‖ ≤ c‖et∆f ; WK̇β

p,q‖

≤ ct−(α−β)/2‖f ; WK̇α
p,q‖.

When p < ∞ and β = −n/p, for two positive numbers ε and θ with −n/p + ε < n(1 − 1/p) and
−n/p + ε + θ = α, we have

‖et∆Pf ; WK̇−n/p
p,q ‖ ≤ ct−ε/2‖et/2∆Pf ; WK̇−n/p+ε

p,q ‖

≤ ct−ε/2‖et/2∆f ;WK̇−n/p+ε
p,q ‖

≤ ct−(ε+θ)/2‖f ; WK̇−n/p+ε+θ
p,q ‖.

When p = ∞, there exists r ∈ (1,∞) with −n/r < β < n(1 − 1/r). Hence, one obtains

‖et∆Pf ; WK̇β
∞,q‖ ≤ ct−n/(2r)‖et/2∆Pf ; WK̇β

r,q‖

≤ ct−n/(2r)‖et/2∆f ; WK̇β
r,q‖

≤ ct−n/(2r)‖et/2∆f ; WK̇β+n/r
∞,q ‖

≤ ct−(α+β)/2‖f ; WK̇α
∞,q‖.

(II), (III): We omit the details.

The following proposition is useful to establish estimates on the weak Herz spaces for many
operators, for example, the Hardy-Littlewood maximal operator, Calderon-Zygmund operators and
fractional integral operators.

Proposition 2.3. Let 1 < p < n/γ, 0 < q ≤ ∞, 0 ≤ γ < n and −n/p + γ < α < n(1 − 1/p). Let
1/p− 1/r = γ/n and Tγ be a bounded operator from Lp,∞ to Lr,∞ with ‖Tγ ; Lp,∞ → Lr,∞‖ ≤ C1

satisfying

|Tγ(f)(x)| ≤ C2

∫
|f(y)|

|x − y|n−γ
dy

for f ∈ L1
loc with x 6∈ supp f . Then Tγ is also a bounded operator from WK̇α

p,q to WK̇α
r,q with

‖Tγ‖ ≤ c(C1 + C2).

Proof. We prove the case q = ∞ only;

‖Tγ(f) ; WK̇α
r,∞‖ ≤ c(C1 + C2)‖f ;WK̇α

p,∞‖.

We decompose

‖Tγ(f) ; WK̇α
r,∞‖ ≤ c sup

k∈Z
2kα sup

λ>0
λ|{x ∈ Ak;

k−2∑
j=−∞

|Tγ(|fχj |)(x)| > λ}|1/r

+ c sup
k∈Z

2kα sup
λ>0

λ|{x ∈ Ak;
k+1∑

j=k−1

|Tγ(|fχj |)(x)| > λ}|1/r

+ c sup
k∈Z

2kα sup
λ>0

λ|{x ∈ Ak;
∞∑

j=k+2

|Tγ(|fχj |)(x)| > λ}|1/r

=: I + II + III.
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The boundedness of Tγ yields that II ≤ cC1 ‖f ; WK̇α
p,∞‖. Let x ∈ Ak. Since from the property

of Tγ we have

k−2∑
j=−∞

Tγ(|fχj |)(x) ≤ cC22−k(n−γ)
k−2∑

j=−∞
‖f ; L1(Aj)‖

≤ cC22−k(n−γ)
k−2∑

j=−∞
2jn(1−1/p)‖f ; L(p,∞)(Aj)‖ =: A,

and hence, I is dominated by C2‖f ; WK̇α
p,∞‖ in the following way;

I = sup
k∈Z

2kα sup
0<λ≤A

λ|{x ∈ Ak;
k−2∑

j=−∞
Tγ(|fχj |)(x) > λ}|1/r

≤ cC2 sup
k∈Z

2k(α+n/r−n+γ)
k−2∑

j=−∞
2jn(1−1/p)‖f ; L(p,∞)(Aj)‖

≤ cC2‖f ; WK̇α
p,∞‖.

It is not hard to show that III ≤ cC2‖f ; WK̇α
p,∞‖ by the same argument as above.

The final proposition is a generalization of [31, Lemma 27.6] in the setting of the weak Herz
spaces and the proof is based on that of [31, Lemma 27.6]. The proposition is applied in the proof
of Theorems 1.4 and 1.5 in Section 4.

Proposition 2.4. Let n ≥ 2, 1 < p < n, 1 ≤ q ≤ ∞ and 1−n/p < α < n(1−1/p). For a positive
β > 0 satisfying

0 < β < min
(1

2
,

n

2
(
1
p
− 1

n
),

n

2
(1 − 1

p
+

1
n

),
1
2
(α − (1 − n

p
))

)
,

suppose that 1/r1 = 1/r + 2β/n, 1/r2 = 1/r − 2β/n and 1/p− 1/r = 1/n. Then, we have that for
every j, k ∈ {1, · · · , n}

‖
∫ ∞

0

(−∆)1/2et∆Pj,kf(t)dt ; (WK̇α
r1,q, WK̇α

r2,q)1/2,∞‖ ≤ c ‖f ; L∞(0,∞; WK̇α
p,q)‖,

with a constant c independent of f . In particular, in the case q = ∞, we have

‖
∫ ∞

0

(−∆)1/2et∆Pj,kf(t)dt ; WK̇α
r,∞‖ ≤ c ‖f ; L∞(0,∞; WK̇α

p,∞)‖.

Proof. Let A > 0 and we decompose

F : =
∫ ∞

0

(−∆)1/2et∆Pj,kf(t)dt

=
∫ A

0

· · · dt +
∫ ∞

A

· · · dt

=
∫ A

0

(−∆)1−βet∆Pj,k(−∆)−(1/2−β)f(t)dt

+
∫ ∞

A

(−∆)1+βet∆Pj,k(−∆)−(β+1/2)f(t)dt

=: GA + HA.
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Remark that 1/p− 1/r1 = 2(1/2− β)/n, 1/p− 1/r2 = 2(1/2 + β)/n and −n/ri < α < n(1− 1/p)
for i = 1, 2. Therefore, applications of Proposition 2.3 give the following estimates;

‖GA ; WK̇α
r1,q‖ ≤

∫ A

0

‖(−∆)1−βet∆Pj,kI2(1/2−β)f(t) ; WK̇α
r1,q‖ dt

≤ c

∫ A

0

tβ−1 ‖e t
2∆Pj,kI2(1/2−β)f(t) ;WK̇α

r1,q‖ dt

≤ c

∫ A

0

tβ−1‖I2(1/2−β)f(t) ;WK̇α
r1,q‖ dt

≤ c

∫ A

0

tβ−1 ‖f(t) ; WK̇α
p,q‖ dt

≤ cAβ ‖f ; L∞(0,∞; WK̇α
p,q)‖,

where Is is the fractional integral operator which satisfies the conditions of Proposition 2.3. Here
we have used the boundedness of the convolution operator (∆1−βG)√t ∗ and et∆Pj,k on WK̇α

r1,q.
Also, by the similar argument to above, we can obtain

‖HA ; WK̇α
r2,q‖ ≤ cA−β ‖f ;L∞(0,∞; WK̇α

p,q)‖.

Then, we reach the desired inequality in the following way;

LHS = sup
t>0

t−1/2K(t, F ; WK̇α
r1,q, WK̇α

r2,q)

≤ sup
t>0

t−1/2(‖Gt1/(2β) ; WK̇α
r1,q‖ + t ‖Ht1/(2β) ; WK̇α

r2,q‖)

≤ c ‖f ;L∞(0,∞; WK̇α
p,q)‖ = RHS.

It remains to show the continuous inclusion (WK̇α
r1,∞, WK̇α

r2,∞)1/2, ∞ ↪→ WK̇α
r,∞. Once we

know the estimate

‖gχk ; L(r,∞)‖ ≤ c2−kα‖g ; (WK̇α
r1,∞, WK̇α

r2,∞)1/2, ∞‖,

the inclusion is immediately verified. By using the real interpolation theory for Lorentz spaces, we
get the estimate as follows;

‖gχk ;L(r,∞)‖ ≈ ‖gχk ; (L(r1,∞), L(r2,∞))1/2,∞‖

= sup
λ>0

λ− 1
2 inf

gχk=g1+g2
(‖g1 ; L(r1,∞))‖ + λ‖g2 ;L(r2,∞)‖)

≤ sup
λ>0

λ− 1
2 inf

gχk=g1+g2

g1=g2=0 on Ac
k

(‖g1 ; L(r1,∞))‖ + λ‖g2 ;L(r2,∞)‖)

= sup
λ>0

λ− 1
2 inf

g=g1+g2
(‖g1χk ; L(r1,∞))‖ + λ‖g2χk ; L(r2,∞)‖)

≤ 2−kα sup
λ>0

λ− 1
2 inf

g=g1+g2
(‖g1 ; WK̇α

r1,∞‖ + λ‖g2 ; WK̇α
r2,∞‖)

= 2−kα‖g ; (WK̇α
r1,∞,WK̇α

r2,∞)1/2,∞‖

Remark 2.1. In the proof above, we have used the one side inclusion

(WK̇α
r1,∞, WK̇α

r2,∞)1/2, ∞ ↪→ WK̇α
r,∞

only. The author does not know whether the reverse inclusion is true or not. On the other hand,
for the interpolation with respect to the weight parameter α, we have

(WK̇α1
p,∞, WK̇α2

p,∞)θ, ∞ = WK̇α
p,∞
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where α = (1−θ)α1+θα2 and 0 < p ≤ ∞. Then it is natural to try to prove Proposition 2.4 by using
the interpolation with respect to the parameter α, but we have not the estimate WK̇α

p,∞ −WK̇β
σ,∞

of heat semigroup in the case α < β.

In order to solve (I.E.), we use the following Picard contraction principle. For example, see [31]
for the proof.

Proposition 2.5 (The Picard contraction principle). Let E be a Banach space and let B be a
bounded bilinear transform E × E to E satisfying

‖B(e, f) ; E‖ ≤ CB‖e ; E‖ ‖f ; E‖.

Then, if 0 < δ < (4CB)−1 and e0 ∈ E satisfies ‖e0 ; E‖ ≤ δ, the equation e = e0 − B(e, e) has
a solution with ‖e ; E‖ ≤ 2δ. This solution is unique in the closed ball B̄(0, 2δ). Moreover, the
solution continuously depends on e0; if ‖f0 ; E‖ ≤ δ, f = f0 − B(f, f) and ‖f ; E‖ ≤ 2δ, then
‖e − f ; E‖ ≤ (1 − 4CBδ)−1‖e0 − f0 ;E‖.

3 Proof of Theorems 1.1 and 1.2

3.1 Proof of Theorem 1.1

The constant T > 0 will be chosen later. To prove Theorem 1.1, we divide the proof into 4 Steps.
Step 1: The bilinear form B is a map from XT × XT to XT and has the estimate

‖B(u, v) ; XT ‖ ≤ CBT (1−n/p−α)/2‖u ;XT ‖ ‖v ;XT ‖.

The claim is an immediate consequence of Corollary 2.1. Indeed, by using the corollary, we have
the following three estimates. Firstly, because 1 − n/p − α > 0, one has that for 0 < t ≤ T ,

‖B(u, v)(t) ; K̇α
p,∞‖ ≤

∫ t

0

‖∇e(t−s)∆P(u ⊗ v)(s) ; K̇α
p,∞‖ds

≤ c

∫ t

0

(t − s)−(1+n/p+α)/2‖u ⊗ v(s) ;WK̇2α
p/2,∞‖ds

≤ c‖u ; XT,1‖ ‖v ;XT,1‖
∫ t

0

s−(1+n/p+α)/2ds

≤ (CB/2)T (1−n/p−α)/2‖u ; XT ‖ ‖v ; XT ‖,

which implies ‖B(u, v) ;XT,1‖ ≤ (CB/2)T (1−n/p−α)/2‖u ; XT ‖ ‖v ; XT ‖. Secondly, from the same
reason as above, one can show that ‖B(u, v) ;XT,2‖ ≤ (CB/2)T (1−α−n/p)/2‖u ; XT ‖ ‖v ;XT ‖ in
the following way;

‖∇B(u, v)(t) ; K̇α
p,∞‖ ≤

∫ t

0

‖∇e(t−s)∆P(u · ∇)v(s) ; K̇α
p,∞‖ds

≤ c

∫ t

0

(t − s)−(1+n/p+α)/2‖(u · ∇)v(s) ; WK̇2α
p/2,∞‖ds

≤ c‖u ;XT,1‖ ‖v ; XT,2‖
∫ t

0

(t − s)−(1+n/p+α)/2s−1/2ds

≤ (CB/2)t−(n/p+α)/2‖u ; XT ‖ ‖v ; XT ‖.

As a result, we get the desired estimate.

Step 2: We verify that
‖e·∆u0 ; XT ‖ ≤ C0‖u0 ; WK̇α

p,∞‖.
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Our hypothesis guarantees the following estimates to hold;

‖et∆u0 ; WK̇α
p,∞‖ ≤ C0/2‖u0 ;WK̇α

p,∞‖

‖∇et∆u0 ; WK̇α
p,∞‖ ≤ (C0/2)t−1/2‖u0 ; WK̇α

p,∞‖.

Therefore, the above estimate holds.
Now, we define T as(

1
8CBC0‖u0 ; WK̇α

p,∞‖

)2/(1−n/p−α)

=
C∗

‖u0 ; WK̇α
p,∞‖2/(1−n/p−α)

.

Then, because T satisfies that C0‖u0 ;WK̇α
p,∞‖ < (4CBT (1−n/p−α)/2)−1, we can find a solution

u ∈ XT to (I.E.) and the solution continuously depends on the initial data u0, from the Picard
contraction principle. Remark that the constant C∗, in the definition of T above, depends on p, n
and α only. Then the solution automatically satisfies the condition (1). In fact, we have

‖et∆u0 ; L∞‖ ≤ ct−(α+n/p)/2‖u0 ; WK̇α
p,∞‖ and

‖B(u, u)(t) ; L∞‖ ≤ c

∫ t

0

(t − s)−(α+n/p)‖u(s) ; WK̇α
p,∞‖‖∇u(s) ;WK̇α

p,∞‖ds

≤ c‖u ; XT,1‖‖u ; XT,2‖
∫ t

0

(t − s)−(α+n/p)s−1/2ds

≤ ct1/2−(α+n/p)‖u ; XT ‖2,

which implies

sup
0<t≤T

t(α+n/p)/2‖B(u, u)(t) ;L∞‖ ≤ cT (1−α−n/p)/2‖u ;XT ‖2 < ∞.

Step 3: In this step, we check the properties (2), (3), (4) and (5) for the solution u.
But, because these assertions can be verified by the same arguments as Steps 3, 4 and 5 in the
proof of Theorem 1.3, we omit the details.

Step 4: Finally, the solution u is the only solution of (I.E.) in the class L∞(0, T ; WK̇α
p,∞).

Let v also be a solution of (I.E.) with the initial data u0 in the class L∞(0, T ;WK̇α
p,∞). Put

w = u − v = −B(u, u) + B(v, v) = −B(u, w) − B(w, v). An application of Corollary 2.1 and our
condition −n/p ≤ 0 ≤ α < 1 − n/p yield that for 0 < t ≤ T0 < T ,

‖w(t) ;WK̇α
p,∞‖ ≤ c

∫ t

0

(t − s)−(1+n/p+α)/2‖u ⊗ w(s) + w ⊗ v(s) ; WK̇2α
p/2,∞‖ds

≤ c
(

sup
0<s≤T0

‖u(s) ;WK̇α
p,∞‖ + sup

0<s≤T0

‖v(s) ;WK̇α
p,∞‖

)
sup

0<s≤T0

‖w(s) ;WK̇α
p,∞‖ T

(1−n/p−α)/2
0 .

Here, if we take T0 as

c( sup
0<s≤T0

‖u(s) ; WK̇α
p,∞‖ + sup

0<s≤T0

‖v(s) ; WK̇α
p,∞‖)T 2/(1−n/p−α)

0 ≤ 1/2,

then we can get w = 0 on (0, T0], i.e., u = v on (0, T0]. By the similar method as Proposition 3.1
in [27], we have u = v on (0, T ) and the proof of Theorem 1.1 is completed.

¤
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3.2 Proof of Theorem 1.2

Next we give the proof of Theorem 1.2. In the proof, the following bilinear estimate plays an
important role.

Theorem 3.1 ([47]). Let 1 < p < ∞, 1 ≤ q ≤ ∞, −n/p < α < ∞ and m ∈ N. There exists a
constant c such that for any f ∈ K̇α

p,q with ∇mf ∈ K̇0
BMO,∞ and g ∈ K̇α

p,q with ∇mg ∈ K̇0
BMO,∞,

‖f∇mg ; K̇α
p,q‖ ≤ c

(
‖f ; K̇α

p,q‖ ‖∇mg ; K̇0
BMO,∞‖ + ‖∇mf ; K̇0

BMO,∞‖ ‖g ; K̇α
p,q‖

)
.

We can conclude that sup
T∗/2≤t<T∗

‖u(t) ; K̇α
p,∞‖ is finite by applying Theorem 3.1 to u and ∇u,

as follows; for T ∗/2 ≤ t < T ∗

‖u(t) ; K̇α
p,∞‖ ≤ c‖u0 ; K̇α

p,∞‖ + c

∫ t

0

‖(u · ∇)u(s) ; K̇α
p,∞‖ds

≤ c‖u0 ; K̇α
p,∞‖ + c

∫ t

0

‖u(s) ; K̇α
p,∞‖ ‖∇u(s) ; K̇0

BMO,∞‖ds,

and from the Gronwall’s inequality,

‖u(t) ; K̇α
p,∞‖ ≤ c‖u0 ; K̇α

p,∞‖ exp
(
c

∫ T∗

0

‖∇u(s) ; K̇0
BMO,∞‖ds

)
< ∞.

Now we suppose that for every T̃ > T ∗, u would not be a mild solution of (N-S) with initial data
u0 in the class L∞(0, T̃ ; K̇α

p,∞). Then, from Remark 1.1 we know that for any positive number
τ < T ∗,

C

‖u(τ) ; K̇α
p,∞‖2/(1−n/p−α)

≤ T ∗ − τ

with a constant C independent of τ . Therefore, positivity of 1 − n/p − α yields

lim sup
τ↗T∗

‖u(τ) ; K̇α
p,∞‖ ≥ lim sup

τ↗T∗

( C

T ∗ − τ

)(1−n/p−α)/2

= ∞,

which contradicts that u ∈ L∞(0, T ∗; K̇α
p,∞).

¤

4 Proof of Theorems 1.3, 1.4 and 1.5

4.1 Proof of Theorem 1.3

We divide the proof into 5 steps and begin with an estimate of the bilinear form B.
Step 1: The bilinear form B is the map from X × X to X and has the estimate

‖B(u, v) ; X‖ ≤ CB‖u ; X‖ ‖v ; X‖.

From Corollary 2.1, we know that our hypothesis guarantees the following inequalities to hold; for
1/σ = 1/n + 1/p

‖B(u, v)(t) ; K̇0
n,∞‖ ≤ c

∫ t

0

‖e(t−s)∆(u · ∇)v(s) ; K̇0
n,∞‖ds

≤ c

∫ t

0

(t − s)−n/2p‖(u · ∇)v(s) ;WK̇0
σ,∞‖ds

≤ c‖u ; X2‖ ‖v ; X4‖
∫ t

0

(t − s)−n/2ps−(2−n/p)/2ds

≤ CB/4‖u ; X‖ ‖v ; X‖,
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which implies ‖B(u, v) ; X1‖ ≤ CB/4‖u ; X‖ ‖v ;X‖. As for the X2 norm of B(u, v), an application
of the same corollary yields

‖B(u, v)(t) ; K̇0
p,∞‖ ≤

∫ t

0

‖∇e(t−s)∆P(u ⊗ v)(s) ; K̇0
p,∞‖ds

≤ c

∫ t

0

(t − s)−1/2−n(2/p−1/p)/2‖u ⊗ v(s) ; WK̇0
p/2,∞‖ds

≤ c‖u ;X2‖ ‖v ; X2‖
∫ t

0

(t − s)−1/2−n/2ps−(1−n/p)ds

≤ (CB/4)t−(1−n/p)/2‖u ; X‖ ‖v ; X‖,

and as a consequence, we have ‖B(u, v) ;X2‖ ≤ CB/4‖u ; X‖ ‖v ;X‖. Furthermore, to estimate
the X3 norm of B(u, v), we use Corollary 2.1 again and obtain

‖B(u, v)(t) ; L∞‖ ≤
∫ t

0

‖e(t−s)∆P(u · ∇)v(s) ;L∞‖ds

≤ c

∫ t

0

min
(
(t − s)−n/2σ‖(u · ∇)v(s) ; WK̇0

σ,∞‖, (t − s)−1/2‖u ⊗ v(s) ;L∞‖
)
ds

≤ c‖u ; X‖‖v ; X‖
∫ t

0

min
(
(t − s)−n/2σs−1+n/2p, (t − s)−1/2s−1

)
ds

≤ (CB/4)t−1/2‖u ; X‖‖v ;X‖.

Finally, the 4th term consisting in X norm of B(u, v) can be bounded by the product of the X
norms of u and v as follows;

‖∇B(u, v)(t) K̇0
n,∞‖ ≤

∫ t

0

‖∇e(t−s)∆P(u · ∇)v(s) ; K̇0
n,∞‖ds

≤ c

∫ t

0

(t − s)−1/2−n(1/σ−1/n)/2‖(u · ∇)v(s) WK̇0
σ,∞‖ds

≤ c‖u X2‖ ‖v ; X4‖
∫ t

0

(t − s)−(1+n/p)/2s−(2−n/p)/2ds

≤ (CB/4)t−1/2‖u ; X‖ ‖v ; X‖,

hence one has ‖B(u, v) ;X4‖ ≤ CB/4‖u ;X‖ ‖v ; X‖. By putting three estimates above together,
the desired norm inequality is verified and we finish Step 1.

Step 2: In this step, we shall check

‖e·∆u0 ; X‖ ≤ C0‖u0 ; WK̇0
n,∞‖.

From our assumption and applications of Corollary 2.1, we conclude the claim in the following
way;

‖et∆u0 ;WK̇0
n,∞‖ ≤ C0/4‖u0 ; WK̇0

n,∞‖,

‖et∆u0 ; K̇0
p,∞‖ ≤ (C0/4) t−(1−n/p)/2‖u0 ;WK̇0

n,∞‖,

‖et∆u0 ; L∞‖ ≤ (C0/4)t−1/2‖u0 ; WK̇0
n,∞‖ and

‖∇et∆u0 ;WK̇0
n,∞‖ ≤ (C0/4) t−1/2‖u0 ; WK̇0

n,∞‖.

Therefore, from the Picard contraction principle, we can find a solution u ∈ X to (I.E.) which
continuously depends on u0.

Step 3: In this step, we show the continuity of u.
Since e(t±τ)∆u0 − et∆u0 = u0 ∗ (G√

t±τ − G√
t), by using Proposition 2.3, one has

‖e(t±τ)∆u0 − et∆u0 ; WK̇0
n,∞‖ ≤ c|G√

t±τ − G√
t|S ‖u0 ;WK̇0

n,∞‖
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which implies that et∆u0 ∈ C((0,∞);WK̇0
n,∞), where | · |S denotes a seminorm of S. To show the

right continuity of B in K̇0
n,∞ on (0,∞), we write, for t > 0 and τ > 0,

B(u, u)(t + τ) − B(u, u)(t) =
∫ t

0

(e(t+τ−s)∆P(u · ∇)u(s) − e(t−s)∆P(u · ∇)u(s))ds

+
∫ t+τ

t

e(t+τ−s)∆P(u · ∇)u(s)ds

=: I+ + II+.

Because we have, for sufficiently small τ > 0,

‖e(t+τ−s)∆P(u · ∇)u(s) ; K̇0
n,∞‖ ≤ c(t − s)−n/2ps−1+n/2p‖u ;X2‖ ‖u ; X4‖ ∈ L1(0, t),

the Lebesgue’s convergence theorem yields that lim
τ↘0

‖I+ ; K̇0
n,∞‖ = 0. And the second term also

tends to 0 as τ ↘ 0;

‖II+ ; K̇0
n,∞‖ ≤

∫ t+τ

t

‖e(t+τ−s)∆P(u · ∇)u(s) ; K̇0
n,∞‖ds

≤ c‖u ; X2‖ ‖u ; X4‖
∫ t+τ

t

(t + τ − s)−n/2ps−1+n/2pds

→ 0 as τ ↘ 0.

Therefore, (9) is proved. Next, we check the left continuity of B in WK̇0
n,∞ on (0,∞). To this

end, we write, for t > 0 and τ > 0,

B(u, u)(t − τ) − B(u, u)(t) =
∫ t−τ

0

e(t−τ−s)∆P(u · ∇)u(s) − e(t−s)∆P(u · ∇)u(s)ds

+
∫ t

t−τ

e(t−s)∆P(u · ∇)u(s)ds

=: I− + II−.

Since one obtains the estimate

‖e(t−τ−s)∆P(u · ∇)u(s) ;WK̇0
n,∞‖

≤ cmin
(
‖(u · ∇)u(s) ; WK̇0

n,∞‖, (t − τ − s)−1/2‖u ⊗ u(s) ; WK̇0
n,∞‖

)
≤ cmin

(
s−1, (t − τ − s)−1/2s−1/2

)
‖u ;X‖2,

the convergence lim
τ↘0

‖I− ; WK̇0
n,∞‖ = 0 is verified from the Lebesgue convergence theorem. It

is not hard to show that lim
τ↘0

‖II− ; WK̇0
n,∞‖ = 0. As a result, we obtain the continuity of the

solution u in WK̇0
n,∞ on (0,∞), and u(t) ∈ W K̇0

n,∞ for t > 0, that is (6).

Step 4: Here we check the properties (7) and (8) for the solution u.
Since the property (8) is proved in Steps 1 and 3, we have to verify (7). To do this, thanks to
Theorem 1.2 in [42], it suffices to show

lim
t↘0

|〈
∫ t

0

e(t−s)∆P(u · ∇)u(s)ds, φ〉| = 0

for any φ ∈ C∞
0 . For n/2 < r < n, the equality can be verified by integration by parts;

|〈
∫ t

0

e(t−s)∆P(u · ∇)u(s)ds, φ〉| ≤
∫ t

0

‖e(t−s)∆P(u ⊗ u)(s) ; WK̇0
r,∞‖ ‖∇φ ;Z‖ds

≤ c

∫ t

0

(t − s)−1+n/2r‖u ⊗ u(s) ;WK̇0
n/2,∞‖ ‖∇φ ; Z‖ds

≤ ct(n/r−1)/2‖u ; X‖2‖∇φ ; Z‖ → 0, as t ↘ 0,
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where
‖f ; Z‖ :=

∑
k∈Z

‖f ;Lr′,1(Ak)‖.

Step 5: Finally, we consider the case u0 ∈ W K̇0
n,∞.

In this case, by the same argument as above, we can find a solution u in

Y := {u ∈ X; lim
t↘0

t(1−n/p)/2‖u(t) ; K̇0
p,∞‖ = lim

t↘0
t1/2‖u(t) ;L∞‖ = 0}.

This means that the required convergences are true.

¤

4.2 Proof of Theorem 1.4

Next, we shall show Theorem 1.4 by the method due to Meyer [39] and [31]. The main ingredient
is Proposition 2.4 which yields the critical estimate of the bilinear form B.

Proof of Theorem 1.4:
Let w(t) := u(t) − v(t), then we have that w ∈ L∞(0, T ; WK̇0

n,∞) and

w(t) = B(e·∆u0 − u,w)(t) + B(w, e·∆u0 − v)(t) − B(e·∆u0, w)(t) − B(w, e·∆u0)(t).

Remark that

B(u, v)(t) =
∫ t

0

∇e(t−s)∆P(u ⊗ v)(s)ds

=
∫ ∞

0

∇es∆P(u ⊗ v)χ(0,t)(t − s)ds.

By using Proposition 2.4 with r1 = 2n/3 and r2 = 2n, i.e. β = 1/4, one obtains

‖B(e·∆u0 − u,w)(t) ; WK̇0
n,∞‖ = ‖

∫ ∞

0

∇es∆P((e·∆u0 − u) ⊗ w)χ(0,t)(t − s)ds ; WK̇0
n,∞‖

≤ c‖((e·∆u0 − u) ⊗ w)χ(0,t)(t − ·) ;L∞(0,∞; WK̇0
n/2,∞)‖

≤ c‖(e·∆u0 − u) ⊗ w ; L∞(0, t; WK̇0
n/2,∞)‖

≤ c
(

sup
0<s≤t

‖es∆u0 − u(s) ;WK̇0
n,∞‖

) (
sup

0<s≤t
‖w(s) ;WK̇0

n,∞‖
)
.

B(w, e∆u0−v) also has a similar bound as above. On the other hand, the bilinear form B(e·∆u0, w)
is estimated as follows;

‖B(e·∆u0, w)(t) ;WK̇0
n,∞‖ ≤

∫ t

0

‖∇e
(t−s)

2 ∆e
(t−s)

2 ∆P(es∆u0 ⊗ w)(s) ; WK̇0
n,∞‖ds

≤ c

∫ t

0

(t − s)−1/2‖(es∆u0 ⊗ w)(s) ; WK̇0
n,∞‖ds

≤ c
(

sup
0<s≤t

s1/2‖es∆u0 ; WK̇0
∞,∞‖

) (
sup

0<s≤t
‖w(s) ; WK̇0

n,∞‖
)
.

We now claim that

sup
0<s≤t

‖es∆u0 − u(s) ;WK̇0
n,∞‖ → 0, as t ↘ 0, (21)

and
sup

0<s≤t
s1/2‖es∆u0 ; WK̇0

∞,∞‖ → 0, as t ↘ 0. (22)
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The claim (21) follows from the continuity of u at t = 0 and the definition of W K̇0
n,∞. To show the

claim (22), we take a small τ > 0 such that ‖u0 − ũ0 ; WK̇0
n,∞‖ is sufficiently small, where ũ0 =

eτ∆u0. Applying Corollary 2.1 to ũ0, one has ‖es∆ũ0 ; WK̇0
∞,∞‖ ≤ cs−n/(2(n+1))‖ũ0 ;WK̇0

n+1,∞‖,
which implies the claim (22). Then, there exists T0 > 0 such that

sup
0<s≤T0

‖w(s) ; WK̇0
n,∞‖ ≤ 1

2
sup

0<s≤T0

‖w(s) ;WK̇0
n,∞‖,

which implies u = v on [0, T0]. Next, we put

T ∗ := sup{0 < t ≤ T ; u = v on [0, t]}.

Then we assume that T ∗ < ∞, otherwise the proof of Theorem 1.4 is completed. By the continuity
of solutions, we have u = v on [0, T ∗]. Then ũ(x, t) := u(x, T ∗+t) and ṽ(x, t) := v(x, T ∗+t) are mild
solutions of (N-S) in the class C([0, T−T ∗];WK̇0

n,∞) with initial data u(·, T ∗) = v(·, T ∗) ∈ W K̇0
n,∞.

Therefore, from the above argument there exists τ > 0 such that ũ = ṽ on [0, τ ], i.e.,

u = v on [0, T ∗ + τ ]

which contradicts the maximal property of T ∗.

¤

Remark 4.1. In the proof above, we showed that the bilinear operator B is bounded from Ẽ × Ẽ
to Ẽ where

Ẽ := {f ∈ L∞(0,∞; WK̇0
n,∞); sup

t>0
‖f(t) ;WK̇0

n,∞‖ < ∞}.

This is similar to the Meyer’s estimate [39]; B is continuous from E × E to E where

E := {f ∈ L∞(0,∞; Ln,∞); sup
t>0

‖f(t) ;Ln,∞‖ < ∞}.

The discontinuity of B from C([0, T ]; Ln)×C([0, T ];Ln) to C([0, T ]; Ln) was showed by Oru [43].

4.3 Proof of Theorem 1.5

We make use of the boundedness of B above to get the stability result. As we mentioned at first
section, the reverse also holds without the smallness condition on initial data. Because the proof
is not difficult, we omit the detail.

Proof of Theorem 1.5: From the smallness assumption on u0 and v0, we have the estimate for
solutions u and v; ‖u ; L∞(0,∞;WK̇0

n,∞)‖, ‖v ; L∞(0,∞;WK̇0
n,∞)‖ ≤ c∗δ. Hence the difference of

solutions is dominated by itself with a small constant by applying the boundedness of B mentioned
in Remark 4.1 as follows;

‖u(t)−v(t) ;WK̇0
n,∞‖ ≤ ‖et∆(u0 − v0) ;WK̇0

n,∞‖
+ ‖B(u, u − v)(t) ; WK̇0

n,∞‖ + ‖B(v, u − v)(t) ;WK̇0
n,∞‖

≤ ‖et∆(u0 − v0) ;WK̇0
n,∞‖ + ‖B‖

(
sup

0<s≤t
‖u(s) ;WK̇0

n,∞‖ + sup
0<s≤t

‖v(s) ; WK̇0
n,∞‖

)
× sup

0<s≤t
‖u(s) − v(s) ; WK̇0

n,∞‖

≤ ‖et∆(u0 − v0) ;WK̇0
n,∞‖ + 2c∗‖B‖δ sup

0<s≤t
‖u(s) − v(s) ;WK̇0

n,∞‖.

Therefore, we obtain sup
0<s≤t

‖u(s)− v(s) ; WK̇0
n,∞‖ ≤ 1

1 − 2c∗‖B‖δ
‖et∆(u0 − v0) ;WK̇0

n,∞‖, which

implies lim sup
t↗∞

‖u(t) − v(t) ;WK̇0
n,∞‖ = 0.

¤
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5 Embeddings of Herz spaces into Besov spaces

5.1 Embedding results

We prove Theorem 1.6.
(i): In this case, −n/σ < 0 < α < n(1 − 1/p). Then, by using Corollary 2.1, one has

‖f ; Ḃ−(α+n(1/p−1/σ))
σ,∞ ‖ = sup

k∈Z
2−k(α+n(1/p−1/σ))‖(f2k ∗ F−1φ)2−k ; Lσ‖

≈ sup
k∈Z

2−k(α+n(1/p−1))‖f2k ∗ F−1φ ; K̇0
σ,σ‖

≤ sup
k∈Z

2−k(α+n(1/p−1))‖f2k ; WK̇α
p,∞‖

≈ ‖f ; WK̇α
p,∞‖.

(ii): In this case, −n/p < 0 < α < n(1 − 1/p). The inequality ‖f ; Ḃ−α
p,∞‖ . ‖f ; K̇α

p,∞‖ can be
verified by the same argument as (i).

(iii): In this case, −n/σ < 0 < n(1 − 1/p). By replacing the estimate ‖f2k ∗ F−1φ ; K̇0
σ,σ‖ .

‖f2k ; WK̇α
p,∞‖ in the proof of (i) by the estimate ‖f2k ∗ F−1φ ; K̇0

σ,σ‖ . ‖f2k ; WK̇0
p,σ‖, we can

get the inequality ‖f ; Ḃ−n(1/p−1/σ)
σ,∞ ‖ . ‖f ; WK̇0

p,σ‖.
(iv): In this case, 0 ≤ α < n(1 − 1/p). We omit the details.
(v): In this case, 0 ≤ α < n. We omit the details.
(vi): If α + n/p = 0, i.e. α = 0 and p = ∞, then we have

WK̇0
∞,1 = K̇0

∞,1 ↪→ K̇0
∞,∞ ↪→ Ḃ0

∞,∞.

To show the case α + n/p > 0, we use the following lemma with Ψ = G.

Lemma 5.1. Let 0 < p, q ≤ ∞. Then, for any Ψ ∈ S there exists a constant CΨ > 0, depending
on p, q, α, n and Ψ, such that

sup
y∈Rn

‖Ψ(· + y) ; K̇α
(p,1),q‖ ≤ CΨ, if p < ∞

and
sup
y∈Rn

‖Ψ(· + y) ; K̇α
p,q‖ ≤ CΨ,

provided that q < ∞ and −n/p < α ≤ 0 or q = ∞ and −n/p ≤ α ≤ 0, where

‖f ; K̇α
(p,r),q‖ :=

(∑
k∈Z

2kαq‖fχk ; Lp,r‖q
)1/q

.

We verify the first inequality of Lemma 5.1 after the proof of Theorem 1.6 is completed. An
application of the lemma yields

|et∆f(x)| ≤ t−n/2‖f1/
√

t ; WK̇α
p,1‖‖G(· − x√

t
) ; K̇−α

(p′,1),∞‖

≤ c t−(α+n/p)/2‖f ; WK̇α
p,1‖,

where p′ = p
p−1 is the conjugate exponent. Here we have used that −n/p′ ≤ −α ≤ 0, i.e.,

0 ≤ α ≤ n(1 − 1/p). As a consequence, we have

sup
t>0

t(α+n/p)/2‖et∆f ;L∞‖ ≤ c‖f ; WK̇α
p,1‖.

(vii): Since L1 ↪→ Ḃ−n
∞,∞, we have ‖f ; Ḃ−n

∞,∞‖ . ‖f ; K̇0
1,1‖.
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(viii): From (iv), it readily follows that

‖f ; bmo−1‖ = sup
|Q|≤1

(∫
−

Q

∫ l(Q)2

0

|et∆f(x)|2dtdx
)1/2

≤ c sup
|Q|≤1

(∫ l(Q)2

0

t−(α+n/p)‖f ;WK̇α
p,∞‖2dt

)1/2

≤ c‖f ; WK̇α
p,∞‖.

¤
We shall verify Lemma 5.1. To do this, it suffices to prove the following lemma;

Lemma 5.2. Let 0 < p, q ≤ ∞ and y ∈ Rn. Then, for any Ψ ∈ S the inequalities

‖Ψ(· + y) ; K̇α
(p,1),q‖ ≤ CΨ(1 + min(|y|α, |y|α+n/p)), if p < ∞

and
‖Ψ(· + y) ; K̇α

p,q‖ ≤ CΨ(1 + min(|y|α, |y|α+n/p))

hold with a constant CΨ depending on p, q, α, n and Ψ, provided that q < ∞ and −n/p < α < ∞
or q = ∞ and −n/p ≤ α < ∞.

Proof. We show the first inequality in the case q < ∞ and −n/p < α < ∞ only. The other case can
be showed by the same argument. Let k0 be an integer satisfying 2k0−1 ≤ |y| < 2k0 , i.e. y ∈ Ak0 .
We decompose the left hand side;

‖Ψ(· + y) ; K̇α
(p,1),q‖ ≤ c

( k0−2∑
k=−∞

2kαq‖Ψ(· + y) ;Lp,1(Ak)‖q
)1/q

+ c
( k0+1∑

k=k0−1

2kαq‖Ψ(· + y) ; Lp,1(Ak)‖q
)1/q

+ c
( ∞∑

k=k0+2

2kαq‖Ψ(· + y) ; Lp,1(Ak)‖q
)1/q

=: I + II + III.

Each term are dominated by the right hand side of the statement in the following way;

I ≤ CΨ

( k0−2∑
k=−∞

2kαq‖〈· + y〉−N ; Lp,1(Ak)‖q
)1/q

≤ CΨ 2−k0N |y|α+n/p

≤ CΨ,

where N is a positive integer with |N − (α + n/p)| ≤ 1,

II ≤ cmin(‖Ψ ; Lp,1‖|y|α , ‖Ψ ; L∞‖|y|α+n/p)

≤ CΨ min(|y|α , |y|α+n/p)

and

III ≤ c
( ∞∑

k=k0

2kαq‖Ψ ; Lp,1(Ak)‖q
)1/q

≤ c‖Ψ ; K̇α
(p,1),q‖

≤ CΨ.
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5.2 Negative results

Next, we shall prove Theorem 1.7.
(i): Let

f(x) :=
∑
k∈Z

2−kα

|x − xk|n/p
χk(x),

where xk := (
3
2
2k−1, 0, · · · , 0) ∈ Rn. Since ‖f ; Lp,∞(Ak)‖ = sup

λ>0
λ|Ak ∩ B(xk, λ−p/n)|1/p, we see

f ∈ WK̇α
p,∞. On the other hand, by using (10), we have

‖f ; Ḃ−(α+n(1/p−1/σ))
σ,∞ ‖ ≈ sup

t>0
t(α+n(1/p−1/σ))/2‖et∆f ; Lσ‖

≥ ‖e∆f ; Lσ‖

=
(∑

k∈Z

‖e∆f ; Lσ(Ak)‖σ
)1/σ

.

For a sufficiently large k, the term ‖e∆f ;Lσ(Ak)‖ has the lower bound 2−kα. In fact,

‖e∆f ;Lσ(Ak)‖ ≥ 1
(4π)n/2

(∫
Ak

(
∫

Ak

2−kα

|y − xk|n/p
e−|x−y|2/4dy)σdx

)1/σ

≥ 1
(4π)n/2

(∫
B(xk,1)

(
∫

2≤|y−xk|≤3

2−kα

|y − xk|n/p
e−|x−y|2/4dy)σdx

)1/σ

& 2−kα.

Hence, since α ≤ 0, we have ‖f ; Ḃ−(α+n(1/p−1/σ))
σ,∞ ‖ = ∞.

(ii): From the same argument as above, one has

‖f ; Ḃ−(α+n/p)
∞,∞ ‖ & sup

k∈Z
‖f ∗ G ; L∞(B(xk, 1))‖

≥ sup
kÀ0

2−kα = ∞.

¤

Furthermore, there is no embedding relation between K̇−1
n,∞ and BMO, which include L∞, that

is,

Proposition 5.1. There is no embedding relation between K̇−1
n,∞ and BMO. Moreover, there is

no embedding relation between K̇−1
n,∞ and BMOd, where BMOd stands for dyadic BMO.

Proof. Because log |x| 6∈ K̇−1
n,∞, the problem is whether K̇−1

n,∞ ↪→ BMO is true or not. Let us
consider a function h(x) := (− log |x − 2|)χ(2,4)(x) on R. By an easy computation, we obtain
h ∈ K̇−1

n,∞(R) and h 6∈ BMO(R) ∩ BMOd(R), which imply the embedding does not hold in
general.

Acknowledgements. The author would like to express thank to Prof. T. Nishitani for
valuable comments. The author is grateful to Prof. A. Miyachi for indicating him a proof of the
inclusion WK̇0

n,∞ ↪→ BMO−1. The author also would like to thank Prof. N. Tomita, Prof. H.
Miura and Dr. T. Yoneda for valuable conversations. The author would like to thank the referees
for many helpful suggestions.

26



References

[1] A. Baernstein II and E.T. Sawyer, “Embedding and multiplier theorems for Hp(Rn)”, Mem.
Amer. Math. Soc., 318 (1985).

[2] O. Barraza, Self-similar solutions in weak Lp-spaces of the Navier-Stokes equations, Rev. Mat.
Iberoamericana. 12 (1996), 411-439.

[3] J. T. Beale, T. Kato and A. Majda, Remarks on the breakdown of smooth solutions for the
3-D Euler equations, Commu. Math. Phys. 94 (1984), 61-66.

[4] A. Beurling, Construction and analysis of some convolution algebras, Ann. Inst. Fourier Greno-
ble. 14 (1964), 1-32.
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