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Abstract

The paper concerns characterization of BMO in terms of Banach function spaces. In particular, we are
interested in characterizing BMO by using the variable Lebesgue norm.

1 Introduction

We propose a property of the Hardy-Littlewood maximal operator M here. For a measurable function
f ∶Rn →C, we define

Mf(x) ∶= sup
r>0, y∈Rn ;x∈y+(−r,r)n

1

(2r)n ∫y+[−r,r]n
∣f(z)∣dz.

To state our main results, we need to describe the Lebesgue space Lp(⋅)(Rn) with variable exponent. For a
measurable function p(⋅) ∶Rn → [1,∞), the Lebesgue space Lp(⋅)(Rn) with variable exponent is defined to the
set of all measurable functions f on Rn for which the quantity

∥f∥Lp(⋅) = inf
⎧⎪⎪⎨⎪⎪⎩
λ > 0 ∶ ∫

Rn
( ∣f(x)∣

λ
)
p(x)

dx ≤ 1
⎫⎪⎪⎬⎪⎪⎭

is finite. We shall prove;
Theorem A Let p(⋅) ∶ Rn → [1,∞) be a bounded function. Assume that the Hardy-Littlewood maximal
operator M is of weak type (p(⋅), p(⋅)), namely

sup
λ>0

λ∥χ{Mf(x)>λ}∥Lp(⋅) ≤ C∥f∥Lp(⋅)

holds for all measurable functions f . Then there exists a constant 0 < δ ≤ 1 such that

∥fδ∥Lp(⋅) ≤ C (
1

∣Q∣ ∫Q
f(x)dx)

δ

∥χQ∥Lp(⋅) (1)

for all non-negative measurable functions f supported on a cube Q.
The space BMO(Rn) is a famous space and it dates back to the paper of John and Nirenberg [12]. Theorem

A enables us to characterize BMO(Rn), the set of all locally integrable functions with bounded mean oscillation,
by means of Banach function spaces.

In the whole paper we will use the following notation:

1. Given a measurable set S ⊂ Rn, we denote the Lebesgue measure by ∣S∣ and the characteristic function
by χS .

2. Given a measurable set S ⊂Rn such that 0 < ∣S∣ <∞ and a function f on Rn, we denote the mean value
of f on S by fS , namely fS ∶= 1

∣S∣ ∫S f(x)dx.

3. A symbol C always stands for a positive constant independent of the main parameters.

4. A cube Q ⊂Rn is always assumed to be open and have sides parallel to the coordinate axes. Namely we
can write

Q =
n

∏
ν=1
(xν − r/2, xν + r/2)

using a point x = (x1, x2, . . . , xn) ∈Rn and a constant r > 0.
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5. The BMO space BMO(Rn) consists of all b ∈ L1
loc(Rn) such that

∥b∥BMO ∶= sup
Q∶cube

1

∣Q∣ ∫Q
∣b(x) − bQ∣dx <∞. (2)

We apply Theorem A and investigate the space BMO(Rn):
Theorem B. Let p(⋅) ∶ Rn → [1,∞) be a bounded function. Assume that the Hardy-Littlewood maximal
operator M is of weak type (p(⋅), p(⋅)). Then we have that for all b ∈ BMO(Rn),

C−1∥b∥BMO ≤ sup
Q∶cube

1

∥χQ∥Lp(⋅)
∥(b − bQ)χQ∥Lp(⋅) ≤ C ∥b∥BMO. (3)

Theorem B gives an example of affirmative answers for the following problem:
Problem Let X be a subset of the set of all measurable functions on Rn. Suppose that X is a Banach

function space eqquipped with a norm ∥ ⋅ ∥X . We write

∥b∥BMOX
∶= sup

Q∶cube

1

∥χQ∥X
∥(b − bQ)χQ∥X .

Can we say that there exists a constant C > 0 such that

C−1∥b∥BMO ≤ ∥b∥BMOX
≤ C∥b∥BMO

for all b ∈ L1
loc(Rn) ?

The first author and the second author proved the following results:
Theorem C. Let p(⋅) ∶ Rn → (0,∞) be a bounded variable exponent.

1. (Izuki [9]) If p(⋅) is an exponent for which M is bounded on Lp(⋅)(Rn), then we have that for all b ∈
BMO(Rn),

C−1∥b∥BMO ≤ sup
Q∶cube

1

∥χQ∥Lp(⋅)
∥(b − bQ)χQ∥Lp(⋅) ≤ C ∥b∥BMO. (4)

2. (Izuki-Sawano [10]) If 1 ≤ p− = inf p(⋅) and p(⋅) ∈ LH(Rn), then equivalence (4) is also true.

We refer to Subsection 2.1 for the definition of LH(Rn).
Theorem D[Ho [8]] If the Hardy-Littlewood maximal operator M is bounded on the associate space X ′,

then we have that, for all b ∈ BMO(Rn),

C−1∥b∥BMO ≤ ∥b∥BMOX
≤ C ∥b∥BMO.

We refer to the book [1] for the definition of Banach function spaces and we recall it in Subsection 2.2.
We note that Theorem D includes Theorem C. However, Theorem B is an outrange of Theorem D.
Here we organize the remaining part of this paper. We clarify some terminology in Section 2. In Section 3,

we prove Theorems A and B In Section 4, we give an equivalence norm of BMOX under some condition on X.
Section 5 contains another characterization of BMO(Rn) by using the harmonic extension.

2 Preliminaries

2.1 Lebesgue spaces with variable exponent

Let Ω ⊂Rn be a measurable set such that ∣Ω∣ > 0.
Given a measurable function p(⋅) ∶ Ω→ [1,∞], define the Lebesgue space with variable exponent

Lp(⋅)(Ω) ∶= {f ∶ ρp(f/λ) <∞ for some λ > 0},

where
ρp(f) ∶= ∫

{p(x)<∞}
∣f(x)∣p(x) dx + ∥f∥L∞({p(x)=∞}).

We additionally define
∥f∥Lp(⋅) ∶= ∥f∥Lp(⋅)(Ω) = inf{λ > 0 ∶ ρp(f/λ) ≤ 1}.

The functional ∥ ⋅∥Lp(⋅) is a norm of the space Lp(⋅)(Ω). If a variable exponent p(⋅) equals to a constant, then
Lp(⋅)(Ω) is the usual Lebesgue space with norm coincidence.
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1. Given a variable exponent p(⋅) ∶ Ω→ [1,∞], we define

p+ ∶= ∥p∥L∞(Ω), p− ∶= {(
1

p
)
+
}
−1

.

2. The set P(Ω) consists of all variable exponents p(⋅) such that 1 < p− ≤ p+ <∞.

3. The set B(Ω) consists of all p(⋅) ∈ P(Ω) such that the Hardy-Littlewood maximal operator M is bounded
on Lp(⋅)(Ω).

4. A measurable function r(⋅) ∶ Ω → (0,∞) is said to be globally log-Hölder continuous if the following two
conditions are satisfied:

∣r(x) − r(y)∣ ≤ C

− log(∣x − y∣)
(∣x − y∣ ≤ 1/2),

∣r(x) − r∞∣ ≤
C

log(e + ∣x∣)
(x ∈ Ω),

where r∞ is a real constant. The set LH(Ω) consists of all globally log-Hölder continuous functions.

The next proposition ([3, 6]) gives us a sufficient condition for the boundedness of the Hardy-Littlewood
maximal operator when a variable exponent p(⋅) ∶ Rn → [1,∞] satisfies 1 ≤ p− ≤ p+ ≤∞ and 1/p(⋅) ∈ LH(Rn).
Then M is of weak type (p(⋅), p(⋅)), that is,

∥χ{Mf(x)>λ}∥Lp(⋅) ≤ Cλ−1∥f∥Lp(⋅)

holds for all λ > 0 and all f ∈ Lp(⋅)(Rn). Additionally if 1 < p−, then M is bounded on Lp(⋅)(Rn), that is,

∥Mf∥Lp(⋅) ≤ C ∥f∥Lp(⋅) .

We next state some equivalent conditions due to Diening [5]. Below p′(⋅) means the conjugate exponent of
p(⋅), that is, 1/p(x)+ 1/p′(x) = 1 holds, and Y consists of all families of disjoint cubes. We recall the result due
to Diening[5]. Given a variable exponent p(⋅) ∈ P(Rn), the next four conditions are equivalent:

(D1) p(⋅) ∈ B(Rn).

(D2) p′(⋅) ∈ B(Rn).

(D3) There exists a constant q ∈ (1, p−) such that p(⋅)/q ∈ B(Rn).

(D4) For all Y ∈ Y and all f ∈ Lp(⋅)(Rn), we have

XXXXXXXXXXX
∑
Q∈Y
∣f ∣QχQ

XXXXXXXXXXXLp(⋅)

≤ C ∥f∥Lp(⋅) .

If we take an arbitrary cube Q and put Y = {Q} and f = fχQ in (D4) above, then we get a weaker condition:

(A1) ∣f ∣Q∥χQ∥Lp(⋅) ≤ C ∥fχQ∥Lp(⋅) holds for all cubes Q and all f ∈ Lp(⋅)(Rn).

Condition (A1) is a necessary condition for the weak boundedness of M on Lp(⋅) and equivalent to the
following (A2) called the Muckenhoupt condition for a variable exponent p(⋅):

(A2) sup
Q∶cube

1

∣Q∣
∥χQ∥Lp(⋅)∥χQ∥Lp′(⋅) <∞.

We will prove those facts in Lemmas H and I in the context of general Banach function spaces.

2.2 Banach function spaces

In this subsection we first recall the definition and fundamental properties of Banach function spaces.
Let Ω ⊂ Rn be a measurable subset with ∣Ω∣ > 0 and M(Ω) the set of all measurable and complex-valued

functions on Ω. A linear space X ⊂M(Ω) is said to be a Banach function space if there exists a functional
∥ ⋅ ∥X ∶M(Ω)→ [0,∞] with the following conditions: Let f, g, fj ∈M(Ω) (j = 1,2, . . .).

1. f ∈X if and only if ∥f∥X <∞.

3



2. (Norm property):

(a) (Positivity): ∥f∥X ≥ 0.
(b) (Strict Positivity): ∥f∥X = 0 if and only if f = 0 a.e..

(c) (Homogeneity): ∥λf∥X = ∣λ∣ ⋅ ∥f∥X .

(d) (Triangle inequality): ∥f + g∥X ≤ ∥f∥X + ∥g∥X .

3. (Symmetry): ∥f∥X = ∥ ∣f ∣ ∥X .

4. (Lattice property): If 0 ≤ g ≤ f a.e., then ∥g∥X ≤ ∥f∥X .

5. (Fatou property): If 0 ≤ f1 ≤ f2 ≤ . . . and limj→∞ fj = f , then

lim
j→∞
∥fj∥X = ∥f∥X .

6. For all measurable sets F with ∣F ∣ <∞, it follows ∥χF ∥X <∞ and

∫
F
∣f(x)∣dx ≤ CF ∥f∥X (f ∈X)

with the constant CF depending on F .

Next, we recall the notion of the associate space. Let X ⊂M(Ω) be a Banach function space equipped with
a norm ∥ ⋅ ∥X . The associate space X ′ is defined by

X ′ ∶= {f ∈M(Ω) ∶ ∥f∥X′ <∞},

where

∥f∥X′ ∶= sup{∣∫
Ω
f(x)g(x)dx∣ ∶ ∥g∥X ≤ 1} .

For example the Lebesgue space Lp(⋅)(Ω) with variable exponent p(⋅) ∶ Ω→ [1,∞] is a Banach function space

and the associated space is Lp′(⋅)(Ω).
The following lemma consists of the generalized Hölder inequality and the norm equivalence for Banach

function spaces.
Lemma G. Let X ⊂M(Ω) be a Banach function space.

1. For all f ∈X and all g ∈X ′, we have

∫
Ω
∣f(x)g(x)∣dx ≤ C ∥f∥X∥g∥X′ .

2. For all f ∈X we have

C−1∥f∥X ≤ sup{∣∫
Ω
f(x)g(x)dx∣ ∶ ∥g∥X′ ≤ 1} ≤ C ∥f∥X .

In particular the space (X ′)′ is equal to X.

As an application of Lemma G, we show the following equivalence. Lemma H. Let X ⊂ M(Rn) be a
Banach function space. Then the following two conditions are equivalent:

(I)
sup

Q∶cube

1

∣Q∣
∥χQ∥X∥χQ∥X′ <∞.

(II) For all cubes Q and all f ∈ L1
loc(Rn) we have

∣f ∣Q∥χQ∥X ≤ C ∥fχQ∥X .

Proof. Take an open cube Q and f ∈ L1
loc(Rn) arbitarily. The implication (II) ⇒ (I) is proved as follows;

1

∣Q∣
∥χQ∥X∥χQ∥X′ ≤

C

∣Q∣
∥χQ∥X sup{∫

Rn
∣f(x)∣χQ(x)dx ∶ ∥f∥X ≤ 1}

= C sup{∣f ∣Q∥χQ∥X ∶ ∥f∥X ≤ 1}
≤ C sup{∥fχQ∥X ∶ ∥f∥X ≤ 1}
≤ C.
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On the other hand, from (I) and the Hölder inequality, (II) is verified;

∣f ∣Q∥χQ∥X = 1

∣Q∣ ∫Q
∣f(y)∣dy ⋅ ∥χQ∥X

≤ C ⋅ 1

∣Q∣
∥fχQ∥X∥χQ∥X′∥χQ∥X

≤ C ∥fχQ∥X .

○
Lemma H. If the Hardy-Littlewood maximal operator M is weak bounded on X, that is

∥χ{Mg>λ}∥X ≤ Cλ−1∥g∥X

holds for all λ > 0 and all g ∈X, then we have

∣f ∣Q∥χQ∥X ≤ C ∥fχQ∥X

for all cubes Q and all f ∈ L1
loc(Rn).

Proof. Take a cube Q and f ∈ L1
loc(Rn) arbitrarily. If ∣f ∣Q = 0, then the conclusion is obviously true. Below

we assume ∣f ∣Q > 0 and write λ ∶= ∣f ∣Q/2. Since ∣f ∣QχQ(x) ≤ CM(fχQ)(x) one has

M(fχQ) > λ on Q.

Thus, we get

∣f ∣Q∥χQ∥X ≤ ∣f ∣Q∥χ{M(fχQ)(x)>λ}∥X ≤ ∣f ∣Q ⋅Cλ−1∥fχQ∥X = C ∥fχQ∥X .

This proves the lemma. ○

3 Proof of Theorems A and B

3.1 Proof of Theorem A

We will use the next lemma in order to prove the theorem above. Lemma J.

(i) Let r(⋅) ∶Rn → (0,∞) be a bounded measurable function with r+ ≤ 1. It holds

∥f + g∥Lr(⋅) ≥ ∥f∥Lr(⋅) + ∥g∥Lr(⋅)

for all positive measurable functions f, g.

(ii) Let p(⋅) ∶Rn → (0,∞) be a bounded measurable function with p+ ≥ 1. It holds

∥f + g∥p+
Lp(⋅) ≥ ∥f∥

p+
Lp(⋅) + ∥g∥

p+
Lp(⋅)

for all positive measurable functions f, g.

Proof. We first prove (i). Note that

((1 − θ)a + θb)r(x) ≥ (1 − θ)ar(x) + θbr(x),

since ϕx(t) ∶= tr(x) is concave. Hence we have

∫
Rn
( f(x) + g(x)
∥f∥Lr(⋅) + ∥g∥Lr(⋅)

)
r(x)

dx

= ∫
Rn
( ∥f∥Lr(⋅)

∥f∥Lr(⋅) + ∥g∥Lr(⋅)
⋅ f(x)
∥f∥Lr(⋅)

+ ∥g∥Lr(⋅)

∥f∥Lr(⋅) + ∥g∥Lr(⋅)
⋅ g(x)
∥g∥Lr(⋅)

)
r(x)

dx

≥ ∫
Rn

⎧⎪⎪⎨⎪⎪⎩

∥f∥Lr(⋅)

∥f∥Lr(⋅) + ∥g∥Lr(⋅)
( f(x)
∥f∥Lr(⋅)

)
r(x)

+ ∥g∥Lr(⋅)

∥f∥Lr(⋅) + ∥g∥Lr(⋅)
( g(x)
∥g∥Lr(⋅)

)
r(x)⎫⎪⎪⎬⎪⎪⎭

dx

= 1.

This is the desired result. Next we prove (ii) by applying (i) with r(⋅) = p(⋅)/p+. Let h be a positive measurable
function. Observe that

∥h∥p+
Lp(⋅) = ∥hp+∥Lp(⋅)/p+
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and (f + g)p+ ≥ fp+ + gp+ . Therefore, we obtain

∥f∥p+
Lp(⋅) + ∥g∥

p+
Lp(⋅) = ∥fp+∥Lp(⋅)/p+ + ∥gp+∥Lp(⋅)/p+

≤ ∥fp+ + gp+∥Lp(⋅)/p+

≤ ∥(f + g)p+∥Lp(⋅)/p+

= ∥f + g∥p+
Lp(⋅) .

Thus, the proof is complete.
Proof of Theorem A.

1. To prove Theorem A, we invoke the following preliminary observations: We set Q0,0 ∶= E0 ∶= Q = xQ +
[0, r]n. By a dyadic cube of Q we mean the set

{xQ + 2−mz + 2−mw ∶ w ∈ [0, r]n, m = 0,1,2,⋯, z ∈ {0,1,2,⋯,2m − 1}}.

First of all, we let
Ek = {x ∈ Q ∶ 2(n+1)(k−1)fQ <Md,Qf(x)} , k = 0,1,2, . . .

where Md,Q denotes the dyadic maximal operator with respect to Q, namely,

Md,Qf(x) = sup{χR(x)(
1

∣R∣ ∫R
∣f(z)∣dz) ∶ Ris a dyadic cube of Q} .

By the definition of the dyadic maximal operator Md,Q, we obtain a family of non-overlapping cubes
{Qk,l}l∈Lk

such that

⋃
l∈Lk

Qk,l = Ek,

and that
1

∣Qk,l∣ ∫Qk,l

f(y)dy > 2(n+1)(k−1)fQ ≥
1

2n∣Qk,l∣ ∫Qk,l

f(y)dy. (5)

Note that (⋃∞k=1Ek ∖Ek+1) differs from Q by a set of measure zero. Hence,

f(x) ≤ Md,Qf(x) (6)

= Md,Qf(x)χE0∖E1(x) +
∞
∑
k=1

Md,Qf(x)χEk∖Ek+1(x)

≤
∞
∑
k=0

2(n+1)kfQχEk
(x)

as we did in [15]. Here for the last inequality, we have used the fact that E0 ⊃ E1.

2. About the structure of Ek, we can prove

∣Ek+1 ∩Qk,l∣ ≤
1

2
∣Qk,l∣

by way of (5) and the decomposition

Ek+1 ∩Qk,l = ⋃
l′∈Lk,l

Qk+1,l′

with Ll,k ⊂ Lk. See [15, p.3688] for details. Hence we have

∣Ek+1 ∩Qk,l∣ ≤
1

2
∣Qk,l∣.

By virtue of the weak boundedness of M , we have

1

2
∥χEk

∥Lp(⋅) = 1

2
∥χ{∑l∈Lk

(2χEk∖Ek+1)Qk,l
χQk,l

>1}∥Lp(⋅)

≤ 1

2
∥χ{M(2χEk∖Ek+1)>1}∥Lp(⋅)

≤ C∥χEk∖Ek+1∥Lp(⋅) .
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Consequently,
∥χEk

∥Lp(⋅) ≤ 2C∥χEk∖Ek+1∥Lp(⋅) . (7)

Hence by using Lemma J, we have

∥f + g∥p+
Lp(⋅) ≥ ∥f∥

p+
Lp(⋅) + ∥g∥

p+
Lp(⋅) ,

which holds for all positive measurable functions f, g. In particular,

∥χEk
∥p+
Lp(⋅) ≥ ∥χEk+1∥

p+
Lp(⋅) + ∥χEk∖Ek+1∥

p+
Lp(⋅) . (8)

Thus, combining (7) and (8), we obtain

∥χEk
∥p+
Lp(⋅) ≥ ∥χEk+1∥

p+
Lp(⋅) + (

1

2C
∥χEk

∥Lp(⋅))
p+

we conclude that

∥χEk+1∥Lp(⋅) ≤ (1 − (
1

2C
)
p+

)
1/p+
∥χEk

∥Lp(⋅) , k = 0,1,2, . . . .

Thus, we have

∥χEk
∥Lp(⋅) ≤ (1 − (

1

2C
)
p+

)
k/p+
∥χQ∥Lp(⋅) , k = 0,1,2, . . . . (9)

3. If we combine (6) and (9), then we take a positive constant δ ≤ 1 so that

2(n+1)δ/p− (1 − ( 1

2C
)
p+

)
1/(p+p−)

< 1

and obtain

∥fδ∥1/p−
Lp(⋅) ≤ ∥

∞
∑
k=0

2(n+1)kδ(fQ)δχEk
∥
1/p−

Lp(⋅)

≤
∞
∑
k=0

2(n+1)kδ/p− ∥(fQ)δχEk
∥1/p−
Lp(⋅)

≤
∞
∑
k=0

2(n+1)kδ/p−(fQ)δ/p− (1 − (
1

2C
)
p+

)
k/(p+p−)

∥χQ∥1/p−Lp(⋅)

≤ C(fQ)δ/p−∥χQ∥1/p−Lp(⋅) .

This is the desired result.

○

3.2 Proof of Theorem B

As an application of Theorem A we prove Theorem B.
Proof. We give the proof based on [10]. Take a cube Q and b ∈ BMO(Rn) arbitrarily. By virtue of Lemma

?? we see that
∣g∣Q∥χQ∥Lp(⋅) ≤ C ∥gχQ∥Lp(⋅)

holds for all g ∈ L1
loc(Rn). By putting g ∶= b − bQ, we can immediately get the left hand side inequality of (3).

Applying Theorem A, with f ∶= ∣b − bQ∣1/δχQ with δ ∈ (0,1], the other implication is verified as follows;

∥(b − bQ)χQ∥Lp(⋅) ≤ C ( 1

∣Q∣ ∫Q
∣b(x) − bQ∣1/δ dx)

δ

∥χQ∥Lp(⋅)

≤ C ∥b∥BMO∥χQ∥Lp(⋅) .

Thus, Theorem B is proved. ○
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4 Another characterization of BMOX(Rn)
We know several equivalence norms of BMO(Rn). It is well known that

sup
Q∶cube

inf
c∈C

1

∥χQ∥Lp

∥(b − c)χQ∥Lp (10)

with p ∈ [1,∞) is equivalent to the original one ∥b∥BMO. In [14] Muckenhoupt and Wheeden proved that, for
the weight w belonging to Muckenhoupt class A∞,

∥b∥BMO(w) = sup
Q

1

w(Q) ∫Q
∣b(x) − bQ;w ∣w(x)dx,

where w(Q) ∶= ∫Qw(x)dx and

bQ;w ∶=
1

w(Q) ∫Q
b(x)w(x)dx,

is also equivalent to ∥b∥BMO. Moreover, owing to the John-Nirenberg inequality in the context of non-doubling
measures by Mateu, Mattila, Nicolau and Orobitg [13], we see that for the same weight w above

C−1 sup
Q
⟨b − bQ⟩expL(Q;w) ≤ ∥b∥BMO ≤ C sup

Q
⟨b − bQ⟩expL(Q;w),

where

⟨f⟩expL(Q;w) = inf
⎧⎪⎪⎨⎪⎪⎩
λ > 0 ∶ (exp( ∣f ∣

λ
) − 1)

Q;w

≤ 1
⎫⎪⎪⎬⎪⎪⎭
.

In this subsection, we establish the same equivalence with “infc∈C” instead of the average bQ in the context
of Banach function spaces under a condition.
Theorem E. If Banach function space X satisfies

sup
Q∶cube

1

∣Q∣
∥χQ∥X∥χQ∥X′ <∞,

then it follows

C∥b∥BMOX
≤ sup

Q∶cube
inf
c∈C

1

∥χQ∥X
∥(b − c)χQ∥X ≤ ∥b∥BMOX

for all measurable functions b.
Proof. The right-hand side inequality is obvious. Applying Lemma G, we can verify the left-hand one as

follows; for a cube Q and c ∈C,

1

∥χQ∥X
∥(b − bQ)χQ∥X ≤ 1

∥χQ∥X
{∥(b − c)χQ∥X + ∥(c − bQ)χQ∥X}

= 1

∥χQ∥X
∥(b − c)χQ∥X + ∣c − bQ∣ (11)

≤ 1

∥χQ∥X
∥(b − c)χQ∥X +

1

∣Q∣ ∫Q
∣b − c∣dx

≤ 1

∥χQ∥X
∥(b − c)χQ∥X +C

1

∣Q∣
∥(b − c)χQ∥X∥χQ∥X′

≤ C

∥χQ∥X
∥(b − c)χQ∥X .

A couple of helpful remarks may be in order.

1. For example, X = expL(Rn) satisfies the condtion in Theorem E where expL(Rn) denotes the set of all
functions f such that

∥f∥expL = inf {λ > 0 ∶ ∫
Rn
{exp( ∣f(x)∣

λ
) − 1} dx ≤ 1} <∞.

In fact, it holds that ∥χQ∥expL = 1
log(1+1/∣Q∣) and that

∥χQ∥(expL)′ ≤ c∣Q∣ log(1 + 1/∣Q∣).
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2. The same argument with fundamental fact ∣b∣Q ≤ 2⟨b⟩expL(Q), see [16] for the proof, yields the equivalence

sup
Q
⟨b − bQ⟩expL(Q) ∼ sup

Q
inf
c∈C
⟨b − c⟩expL(Q),

with ⟨f⟩expL(Q) = ⟨f⟩expL(Q;1).

Combining Theorems B and E we get another equivalence norm of BMO(Rn) by means of variable exponent
spaces.
Corollary. Let p(⋅) ∶ Rn → [1,∞) be a bounded function. Assume that M is of weak type (p(⋅), p(⋅)). Then
we have that for b ∈ BMO(Rn),

C−1 ∥b∥BMO ≤ sup
Q∶cube

inf
c∈C

1

∥χQ∥Lp(⋅)
∥(b − c)χQ∥Lp(⋅) ≤ C∥b∥BMO.

5 A characterization by way of harmonic extension

Let 1 ≤ p <∞ be a constant. The BMO(Rn) norm ∥b∥BMO is equivalent to

sup
(x,t)∈Rn×(0,∞)

(∫
Rn
∣b(y) − u(y, t)∣pPt(x − y)dy)

1/p
,

where Pt is the Poisson kernel given by

Pt(x) ∶=
1

(∣x∣2 + t2)n+1
2

(x ∈Rn, t > 0)

and u(x, t) = (b ∗ Pt)(x).
Chen-Lau [2] proved the equivalence replacing Pt by a more general function. Here for the sake of conve-

nience, we include the proof and provide an alternative interpretation. By virtue of [4, Theorem 3.2], we know
that

sup
(x,t)∈Rn×(0,∞)

( 1
tn
∫
B(x,t)

∣b(y) − u(y, t)∣p dy)
1/p

is an equivalent norm for b ∈ BMO(Rn). That is,

sup
(x,t)∈Rn×(0,∞)

( 1
tn
∫
B(x,t)

∣b(y) − u(y, t)∣p dy)
1/p
∼ ∥b∥BMO.

By the definition of poisson kernel, we have

sup
(x,t)∈Rn×(0,∞)

( 1
tn
∫
B(x,t)

∣b(y) − u(y, t)∣p dy)
1/p

≤ C sup
(x,t)∈Rn×(0,∞)

(∫
Rn
∣b(y) − u(y, t)∣pPt(x − y)dy)

1/p
.

Meanwhile,

sup
(x,t)∈Rn×(0,∞)

(∫
Rn
∣b(y) − u(y, t)∣pPt(x − y)dy)

1/p

≤ sup
(x,t)∈Rn×(0,∞)

∑
k∈Zn

(∫
B(x+kt,2nt)

∣b(y) − u(y, t)∣pPt(x − y)dy)
1/p

≤ C sup
(x,t)∈Rn×(0,∞)

∑
k∈Zn

(1 + ∣k∣)−n−1 (∫
B(x+kt,2nt)

∣b(y) − u(y, t)∣p dy)
1/p

≤ C sup
(x,t)∈Rn×(0,∞)

( 1
tn
∫
B(x,t)

∣b(y) − u(y, t)∣p dy)
1/p
∼ ∥b∥BMO.

We can generalize the result from the viewpoint of variable exponent.
Theorem F Let p(⋅) ∶Rn → [1,∞) be a variable exponent such that

1 ≤ p− ≤ p+ <∞.

9



Then we have that for all b ∈ BMO(Rn),

C−1∥b∥BMO ≤ ∥b∥BMOp(⋅) ≤ C ∥b∥BMO,

where

∥b∥BMOp(⋅) ∶= inf
⎧⎪⎪⎨⎪⎪⎩
λ > 0 ∶ sup

(x,t)∈Rn×(0,∞)
∫
Rn
∣b(y) − u(x, t)

λ
∣
p(y)

Pt(x − y)dy ≤ 1
⎫⎪⎪⎬⎪⎪⎭
.

Proof. As we have mentioned, the result is known when p(⋅) is a constant. Since

up(⋅) ≤ up− + up+ for allu > 0,

one inequality is obvious. To prove ∥b∥BMO ≤ C∥b∥BMOp(⋅) , we let λ satisfy

∫
Rn
∣b(y) − u(x, t)

λ
∣
p(y)

Pt(x − y)dy ≤ 1

for all (x, t) ∈Rn × (0,∞). Then

∫
Rn
(1
2
∣b(y) − u(x, t)

λ
∣ + 1

2
)
p(y)

Pt(x − y)dy ≤
1

2
∫
Rn

⎛
⎝
∣b(y) − u(x, t)

λ
∣
p(y)

+ 1
⎞
⎠
Pt(x − y)dy ≤ 1,

since

∫
Rn

Pt(x − y)dy = 1.

Since
t

2
≤ ( t + 1

2
)
p(x)

, t > 0

it follows that

∫
Rn
∣b(y) − u(x, t)

2λ
∣Pt(x − y)dy ≤ 1.

Thus, the proof is complete.
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[11] O. Kováčik and J. Rákosńık, On spaces Lp(x) and W k,p(x), Czechoslovak Math. 41 (116) (1991), 592-618.

[12] J. John and L. Nirenberg, On function of bounded mean oscillation, Comm. Pure and Appl. Math. 14
(1961), 415-426.

[13] J. Mateu, P. Mattila, A. Nicolau and J. Orobitg, BMO for nondoubling measures, Duke Math. 102, 533-565,
(2000).

[14] B. Muckenhoupt and R. Wheeden, Weighted bounded mean oscillation and the Hilbert transform, Studia
Math. 54, (1975/76), 221-237.

[15] E. Nakai and Y. Sawano, Hardy spaces with variable exponents and generalized Campanato spaces, J.
Funct. Anal. 262 (2012) 3665-3748.

[16] Y. Tsutsui, A∞ constant between BMO and weighted BMO. Proc. Japan Acad. Ser. A Math. Sci. 90
(2014), no. 1, 11-14.

11


