Variable Lebesgue norm estimates for BMO functions II

Mitsuo Izuki* Yoshihiro Sawano ${ }^{\dagger}$ and Yohei Tsutsui ${ }^{\ddagger}$

Abstract

The paper concerns characterization of BMO in terms of Banach function spaces. In particular, we are interested in characterizing BMO by using the variable Lebesgue norm.

1 Introduction

We propose a property of the Hardy-Littlewood maximal operator M here. For a measurable function $f: \mathbf{R}^{n} \rightarrow \mathbf{C}$, we define

$$
M f(x):=\sup _{r>0, y \in \mathbf{R}^{n} ; x \in y+(-r, r)^{n}} \frac{1}{(2 r)^{n}} \int_{y+[-r, r]^{n}}|f(z)| d z .
$$

To state our main results, we need to describe the Lebesgue space $L^{p(\cdot)}\left(\mathbf{R}^{n}\right)$ with variable exponent. For a measurable function $p(\cdot): \mathbf{R}^{n} \rightarrow[1, \infty)$, the Lebesgue space $L^{p(\cdot)}\left(\mathbf{R}^{n}\right)$ with variable exponent is defined to the set of all measurable functions f on \mathbf{R}^{n} for which the quantity

$$
\|f\|_{L^{p(\cdot)}}=\inf \left\{\lambda>0: \int_{\mathbf{R}^{n}}\left(\frac{|f(x)|}{\lambda}\right)^{p(x)} d x \leq 1\right\}
$$

is finite. We shall prove;
Theorem A Let $p(\cdot): \mathbf{R}^{n} \rightarrow[1, \infty)$ be a bounded function. Assume that the Hardy-Littlewood maximal operator M is of weak type $(p(\cdot), p(\cdot))$, namely

$$
\sup _{\lambda>0} \lambda\left\|\chi_{\{M f(x)>\lambda\}}\right\|_{L^{p(\cdot)}} \leq C\|f\|_{L^{p(\cdot)}}
$$

holds for all measurable functions f. Then there exists a constant $0<\delta \leq 1$ such that

$$
\begin{equation*}
\left\|f^{\delta}\right\|_{L^{p(\cdot)}} \leq C\left(\frac{1}{|Q|} \int_{Q} f(x) d x\right)^{\delta}\left\|\chi_{Q}\right\|_{L^{p(\cdot)}} \tag{1}
\end{equation*}
$$

for all non-negative measurable functions f supported on a cube Q.
The space $\operatorname{BMO}\left(\mathbf{R}^{n}\right)$ is a famous space and it dates back to the paper of John and Nirenberg [12]. Theorem A enables us to characterize $\operatorname{BMO}\left(\mathbf{R}^{n}\right)$, the set of all locally integrable functions with bounded mean oscillation, by means of Banach function spaces.

In the whole paper we will use the following notation:

1. Given a measurable set $S \subset \mathbf{R}^{n}$, we denote the Lebesgue measure by $|S|$ and the characteristic function by χ_{S}.
2. Given a measurable set $S \subset \mathbf{R}^{n}$ such that $0<|S|<\infty$ and a function f on \mathbf{R}^{n}, we denote the mean value of f on S by f_{S}, namely $f_{S}:=\frac{1}{|S|} \int_{S} f(x) d x$.
3. A symbol C always stands for a positive constant independent of the main parameters.
4. A cube $Q \subset \mathbf{R}^{n}$ is always assumed to be open and have sides parallel to the coordinate axes. Namely we can write

$$
Q=\prod_{\nu=1}^{n}\left(x_{\nu}-r / 2, x_{\nu}+r / 2\right)
$$

using a point $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbf{R}^{n}$ and a constant $r>0$.

[^0]5. The BMO space $\mathrm{BMO}\left(\mathbf{R}^{n}\right)$ consists of all $b \in L_{\mathrm{loc}}^{1}\left(\mathbf{R}^{n}\right)$ such that
\[

$$
\begin{equation*}
\|b\|_{\text {BMO }}:=\sup _{Q: \text { cube }} \frac{1}{|Q|} \int_{Q}\left|b(x)-b_{Q}\right| d x<\infty . \tag{2}
\end{equation*}
$$

\]

We apply Theorem A and investigate the space $\operatorname{BMO}\left(\mathbf{R}^{n}\right)$:
Theorem B. Let $p(\cdot): \mathbf{R}^{n} \rightarrow[1, \infty)$ be a bounded function. Assume that the Hardy-Littlewood maximal operator M is of weak type $(p(\cdot), p(\cdot))$. Then we have that for all $b \in \operatorname{BMO}\left(\mathbf{R}^{n}\right)$,

$$
\begin{equation*}
C^{-1}\|b\|_{\mathrm{BMO}} \leq \sup _{Q: \text { cube }} \frac{1}{\left\|\chi_{Q}\right\|_{L^{p(\cdot)}}}\left\|\left(b-b_{Q}\right) \chi_{Q}\right\|_{L^{p(\cdot)}} \leq C\|b\|_{\mathrm{BMO}} . \tag{3}
\end{equation*}
$$

Theorem B gives an example of affirmative answers for the following problem:
Problem Let X be a subset of the set of all measurable functions on \mathbf{R}^{n}. Suppose that X is a Banach function space eqquipped with a norm $\|\cdot\|_{X}$. We write

$$
\|b\|_{\mathrm{BMO}_{X}}:=\sup _{Q: \text { cube }} \frac{1}{\left\|\chi_{Q}\right\|_{X}}\left\|\left(b-b_{Q}\right) \chi_{Q}\right\|_{X} .
$$

Can we say that there exists a constant $C>0$ such that

$$
C^{-1}\|b\|_{\mathrm{BMO}} \leq\|b\|_{\mathrm{BMO}_{X}} \leq C\|b\|_{\mathrm{BMO}}
$$

for all $b \in L_{\mathrm{loc}}^{1}\left(\mathbf{R}^{n}\right)$?
The first author and the second author proved the following results:
Theorem C. Let $p(\cdot): \mathbf{R}^{n} \rightarrow(0, \infty)$ be a bounded variable exponent.

1. (Izuki [9]) If $p(\cdot)$ is an exponent for which M is bounded on $L^{p(\cdot)}\left(\mathbf{R}^{n}\right)$, then we have that for all $b \in$ $\operatorname{BMO}\left(\mathbf{R}^{n}\right)$,

$$
\begin{equation*}
C^{-1}\|b\|_{\mathrm{BMO}} \leq \sup _{Q: \text { cube }} \frac{1}{\left\|\chi_{Q}\right\|_{L^{p(\cdot)}}}\left\|\left(b-b_{Q}\right) \chi_{Q}\right\|_{L^{p(\cdot)}} \leq C\|b\|_{\mathrm{BMO}} \tag{4}
\end{equation*}
$$

2. (Izuki-Sawano [10]) If $1 \leq p_{-}=\inf p(\cdot)$ and $p(\cdot) \in L H\left(\mathbf{R}^{n}\right)$, then equivalence (4) is also true.

We refer to Subsection 2.1 for the definition of $L H\left(\mathbf{R}^{n}\right)$.
Theorem $\mathbf{D}\left[\right.$ Ho [8]] If the Hardy-Littlewood maximal operator M is bounded on the associate space X^{\prime}, then we have that, for all $b \in \operatorname{BMO}\left(\mathbf{R}^{n}\right)$,

$$
C^{-1}\|b\|_{\mathrm{BMO}} \leq\|b\|_{\mathrm{BMO}_{X}} \leq C\|b\|_{\mathrm{BMO}} .
$$

We refer to the book [1] for the definition of Banach function spaces and we recall it in Subsection 2.2. We note that Theorem D includes Theorem C. However, Theorem B is an outrange of Theorem D.
Here we organize the remaining part of this paper. We clarify some terminology in Section 2. In Section 3, we prove Theorems A and B In Section 4, we give an equivalence norm of $\mathrm{BMO}_{\mathrm{X}}$ under some condition on X. Section 5 contains another characterization of $\operatorname{BMO}\left(\mathbf{R}^{n}\right)$ by using the harmonic extension.

2 Preliminaries

2.1 Lebesgue spaces with variable exponent

Let $\Omega \subset \mathbf{R}^{n}$ be a measurable set such that $|\Omega|>0$.
Given a measurable function $p(\cdot): \Omega \rightarrow[1, \infty]$, define the Lebesgue space with variable exponent

$$
L^{p(\cdot)}(\Omega):=\left\{f: \rho_{p}(f / \lambda)<\infty \text { for some } \lambda>0\right\}
$$

where

$$
\rho_{p}(f):=\int_{\{p(x)<\infty\}}|f(x)|^{p(x)} d x+\|f\|_{L^{\infty}(\{p(x)=\infty\})} .
$$

We additionally define

$$
\|f\|_{L^{p(\cdot)}}:=\|f\|_{L^{p(\cdot)}(\Omega)}=\inf \left\{\lambda>0: \rho_{p}(f / \lambda) \leq 1\right\} .
$$

The functional $\|\cdot\|_{L^{p(\cdot)}}$ is a norm of the space $L^{p(\cdot)}(\Omega)$. If a variable exponent $p(\cdot)$ equals to a constant, then $L^{p(\cdot)}(\Omega)$ is the usual Lebesgue space with norm coincidence.

1. Given a variable exponent $p(\cdot): \Omega \rightarrow[1, \infty]$, we define

$$
p_{+}:=\|p\|_{L^{\infty}(\Omega)}, p_{-}:=\left\{\left(\frac{1}{p}\right)_{+}\right\}^{-1} .
$$

2. The set $\mathcal{P}(\Omega)$ consists of all variable exponents $p(\cdot)$ such that $1<p_{-} \leq p_{+}<\infty$.
3. The set $\mathcal{B}(\Omega)$ consists of all $p(\cdot) \in \mathcal{P}(\Omega)$ such that the Hardy-Littlewood maximal operator M is bounded on $L^{p(\cdot)}(\Omega)$.
4. A measurable function $r(\cdot): \Omega \rightarrow(0, \infty)$ is said to be globally log-Hölder continuous if the following two conditions are satisfied:

$$
\begin{aligned}
|r(x)-r(y)| \leq \frac{C}{-\log (|x-y|)} & (|x-y| \leq 1 / 2) \\
\left|r(x)-r_{\infty}\right| \leq \frac{C}{\log (e+|x|)} & (x \in \Omega)
\end{aligned}
$$

where r_{∞} is a real constant. The set $L H(\Omega)$ consists of all globally log-Hölder continuous functions.
The next proposition ([3, 6]) gives us a sufficient condition for the boundedness of the Hardy-Littlewood maximal operator when a variable exponent $p(\cdot): \mathbf{R}^{n} \rightarrow[1, \infty]$ satisfies $1 \leq p_{-} \leq p_{+} \leq \infty$ and $1 / p(\cdot) \in L H\left(\mathbf{R}^{n}\right)$. Then M is of weak type $(p(\cdot), p(\cdot))$, that is,

$$
\left\|\chi_{\{M f(x)>\lambda\}}\right\|_{L^{p(\cdot)}} \leq C \lambda^{-1}\|f\|_{L^{p(\cdot)}}
$$

holds for all $\lambda>0$ and all $f \in L^{p(\cdot)}\left(\mathbf{R}^{n}\right)$. Additionally if $1<p_{-}$, then M is bounded on $L^{p(\cdot)}\left(\mathbf{R}^{n}\right)$, that is,

$$
\|M f\|_{L^{p(\cdot)}} \leq C\|f\|_{L^{p(\cdot)}} .
$$

We next state some equivalent conditions due to Diening [5]. Below $p^{\prime}(\cdot)$ means the conjugate exponent of $p(\cdot)$, that is, $1 / p(x)+1 / p^{\prime}(x)=1$ holds, and \mathcal{Y} consists of all families of disjoint cubes. We recall the result due to Diening[5]. Given a variable exponent $p(\cdot) \in \mathcal{P}\left(\mathbf{R}^{n}\right)$, the next four conditions are equivalent:
(D1) $p(\cdot) \in \mathcal{B}\left(\mathbf{R}^{n}\right)$.
(D2) $p^{\prime}(\cdot) \in \mathcal{B}\left(\mathbf{R}^{n}\right)$.
(D3) There exists a constant $q \in\left(1, p_{-}\right)$such that $p(\cdot) / q \in \mathcal{B}\left(\mathbf{R}^{n}\right)$.
(D4) For all $Y \in \mathcal{Y}$ and all $f \in L^{p(\cdot)}\left(\mathbf{R}^{n}\right)$, we have

$$
\left\|\sum_{Q \in Y}|f|_{Q} \chi_{Q}\right\|_{L^{p(\cdot)}} \leq C\|f\|_{L^{p(\cdot)}} .
$$

If we take an arbitrary cube Q and put $Y=\{Q\}$ and $f=f \chi_{Q}$ in (D4) above, then we get a weaker condition:
(A1) $|f|_{Q}\left\|\chi_{Q}\right\|_{L^{p(\cdot)}} \leq C\left\|f \chi_{Q}\right\|_{L^{p(\cdot)}}$ holds for all cubes Q and all $f \in L^{p(\cdot)}\left(\mathbf{R}^{n}\right)$.
Condition (A1) is a necessary condition for the weak boundedness of M on $L^{p(\cdot)}$ and equivalent to the following (A2) called the Muckenhoupt condition for a variable exponent $p(\cdot)$:
(A2) $\sup _{Q: \text { cube }} \frac{1}{|Q|}\left\|\chi_{Q}\right\|_{L^{p(\cdot)}}\left\|\chi_{Q}\right\|_{L^{p^{\prime}(\cdot)}}<\infty$.
We will prove those facts in Lemmas H and I in the context of general Banach function spaces.

2.2 Banach function spaces

In this subsection we first recall the definition and fundamental properties of Banach function spaces.
Let $\Omega \subset \mathbf{R}^{n}$ be a measurable subset with $|\Omega|>0$ and $\mathcal{M}(\Omega)$ the set of all measurable and complex-valued functions on Ω. A linear space $X \subset \mathcal{M}(\Omega)$ is said to be a Banach function space if there exists a functional $\|\cdot\|_{X}: \mathcal{M}(\Omega) \rightarrow[0, \infty]$ with the following conditions: Let $f, g, f_{j} \in \mathcal{M}(\Omega)(j=1,2, \ldots)$.

1. $f \in X$ if and only if $\|f\|_{X}<\infty$.
2. (Norm property):
(a) (Positivity): $\|f\|_{X} \geq 0$.
(b) (Strict Positivity): $\|f\|_{X}=0$ if and only if $f=0$ a.e..
(c) (Homogeneity): $\|\lambda f\|_{X}=|\lambda| \cdot\|f\|_{X}$.
(d) (Triangle inequality): $\|f+g\|_{X} \leq\|f\|_{X}+\|g\|_{X}$.
3. (Symmetry): $\|f\|_{X}=\||f|\|_{X}$.
4. (Lattice property): If $0 \leq g \leq f$ a.e., then $\|g\|_{X} \leq\|f\|_{X}$.
5. (Fatou property): If $0 \leq f_{1} \leq f_{2} \leq \ldots$ and $\lim _{j \rightarrow \infty} f_{j}=f$, then

$$
\lim _{j \rightarrow \infty}\left\|f_{j}\right\|_{X}=\|f\|_{X}
$$

6. For all measurable sets F with $|F|<\infty$, it follows $\left\|\chi_{F}\right\|_{X}<\infty$ and

$$
\int_{F}|f(x)| d x \leq C_{F}\|f\|_{X} \quad(f \in X)
$$

with the constant C_{F} depending on F.
Next, we recall the notion of the associate space. Let $X \subset \mathcal{M}(\Omega)$ be a Banach function space equipped with a norm $\|\cdot\|_{X}$. The associate space X^{\prime} is defined by

$$
X^{\prime}:=\left\{f \in \mathcal{M}(\Omega):\|f\|_{X^{\prime}}<\infty\right\}
$$

where

$$
\|f\|_{X^{\prime}}:=\sup \left\{\left|\int_{\Omega} f(x) g(x) d x\right|:\|g\|_{X} \leq 1\right\} .
$$

For example the Lebesgue space $L^{p(\cdot)}(\Omega)$ with variable exponent $p(\cdot): \Omega \rightarrow[1, \infty]$ is a Banach function space and the associated space is $L^{p^{\prime}(\cdot)}(\Omega)$.

The following lemma consists of the generalized Hölder inequality and the norm equivalence for Banach function spaces.

Lemma \mathbf{G}. Let $X \subset \mathcal{M}(\Omega)$ be a Banach function space.

1. For all $f \in X$ and all $g \in X^{\prime}$, we have

$$
\int_{\Omega}|f(x) g(x)| d x \leq C\|f\|_{X}\|g\|_{X^{\prime}}
$$

2. For all $f \in X$ we have

$$
C^{-1}\|f\|_{X} \leq \sup \left\{\left|\int_{\Omega} f(x) g(x) d x\right|:\|g\|_{X^{\prime}} \leq 1\right\} \leq C\|f\|_{X} .
$$

In particular the space $\left(X^{\prime}\right)^{\prime}$ is equal to X.
As an application of Lemma G, we show the following equivalence. Lemma H. Let $X \subset \mathcal{M}\left(\mathbf{R}^{n}\right)$ be a Banach function space. Then the following two conditions are equivalent:
(I)

$$
\sup _{Q: \text { cube }} \frac{1}{|Q|}\left\|\chi_{Q}\right\|_{X}\left\|\chi_{Q}\right\|_{X^{\prime}}<\infty
$$

(II) For all cubes Q and all $f \in L_{\text {loc }}^{1}\left(\mathbf{R}^{n}\right)$ we have

$$
|f|_{Q}\left\|\chi_{Q}\right\|_{X} \leq C\left\|f \chi_{Q}\right\|_{X}
$$

Proof. Take an open cube Q and $f \in L_{\mathrm{loc}}^{1}\left(\mathbf{R}^{n}\right)$ arbitarily. The implication (II) \Rightarrow (I) is proved as follows;

$$
\begin{aligned}
\frac{1}{|Q|}\left\|\chi_{Q}\right\|_{X}\left\|_{\chi_{Q}}\right\|_{X^{\prime}} & \leq \frac{C}{|Q|}\left\|\chi_{Q}\right\|_{X} \sup \left\{\int_{\mathbf{R}^{n}}|f(x)| \chi_{Q}(x) d x:\|f\|_{X} \leq 1\right\} \\
& =C \sup \left\{|f|_{Q}\left\|_{\chi_{Q}}\right\|_{X}:\|f\|_{X} \leq 1\right\} \\
& \leq C \sup \left\{\left\|f \chi_{Q}\right\|_{X}:\|f\|_{X} \leq 1\right\} \\
& \leq C .
\end{aligned}
$$

On the other hand, from (I) and the Hölder inequality, (II) is verified;

$$
\begin{aligned}
|f|_{Q}\left\|\chi_{Q}\right\|_{X} & =\frac{1}{|Q|} \int_{Q}|f(y)| d y \cdot\left\|\chi_{Q}\right\|_{X} \\
& \leq C \cdot \frac{1}{|Q|}\left\|f \chi_{Q}\right\|_{X}\left\|_{\chi_{Q}}\right\|_{X^{\prime}}\left\|\chi_{Q}\right\|_{X} \\
& \leq C\left\|f \chi_{Q}\right\|_{X} .
\end{aligned}
$$

-

Lemma H. If the Hardy-Littlewood maximal operator M is weak bounded on X, that is

$$
\left\|\chi_{\{M g>\lambda\}}\right\|_{X} \leq C \lambda^{-1}\|g\|_{X}
$$

holds for all $\lambda>0$ and all $g \in X$, then we have

$$
|f|_{Q}\left\|\chi_{Q}\right\|_{X} \leq C\left\|f \chi_{Q}\right\|_{X}
$$

for all cubes Q and all $f \in L_{\mathrm{loc}}^{1}\left(\mathbf{R}^{n}\right)$.
Proof. Take a cube Q and $f \in L_{\text {loc }}^{1}\left(\mathbf{R}^{n}\right)$ arbitrarily. If $|f|_{Q}=0$, then the conclusion is obviously true. Below we assume $|f|_{Q}>0$ and write $\lambda:=|f|_{Q} / 2$. Since $|f|_{Q} \chi_{Q}(x) \leq C M\left(f \chi_{Q}\right)(x)$ one has

$$
M\left(f \chi_{Q}\right)>\lambda \quad \text { on } Q
$$

Thus, we get

$$
|f|_{Q}\left\|\chi_{Q}\right\|_{X} \leq|f|_{Q}\left\|\chi_{\left\{M\left(f \chi_{Q}\right)(x)>\lambda\right\}}\right\|_{X} \leq|f|_{Q} \cdot C \lambda^{-1}\left\|f \chi_{Q}\right\|_{X}=C\left\|f \chi_{Q}\right\|_{X} .
$$

This proves the lemma. \circ

3 Proof of Theorems A and B

3.1 Proof of Theorem A

We will use the next lemma in order to prove the theorem above. Lemma J.
(i) Let $r(\cdot): \mathbf{R}^{n} \rightarrow(0, \infty)$ be a bounded measurable function with $r_{+} \leq 1$. It holds

$$
\|f+g\|_{L^{r(\cdot)}} \geq\|f\|_{L^{r(\cdot)}}+\|g\|_{L^{r(\cdot)}}
$$

for all positive measurable functions f, g.
(ii) Let $p(\cdot): \mathbf{R}^{n} \rightarrow(0, \infty)$ be a bounded measurable function with $p_{+} \geq 1$. It holds

$$
\|f+g\|_{L^{p(.)}}^{p_{+}} \geq\|f\|_{L^{p(.)}}^{p_{+}}+\|g\|_{L^{p(\cdot)}}^{p_{+}}
$$

for all positive measurable functions f, g.
Proof. We first prove (i). Note that

$$
((1-\theta) a+\theta b)^{r(x)} \geq(1-\theta) a^{r(x)}+\theta b^{r(x)},
$$

since $\phi_{x}(t):=t^{r(x)}$ is concave. Hence we have

$$
\begin{aligned}
& \int_{\mathbf{R}^{n}}\left(\frac{f(x)+g(x)}{\|f\|_{L^{r(\cdot)}}+\|g\|_{L^{r(\cdot)}}}\right)^{r(x)} d x \\
& \quad=\int_{\mathbf{R}^{n}}\left(\frac{\|f\|_{L^{r(\cdot)}}}{\|f\|_{L^{r(\cdot)}}+\|g\|_{L^{r(\cdot)}}} \cdot \frac{f(x)}{\|f\|_{L^{r(\cdot)}}}+\frac{\|g\|_{L^{r(\cdot)}}}{\|f\|_{L^{r(\cdot)}}+\|g\|_{L^{r(\cdot)}}} \cdot \frac{g(x)}{\|g\|_{L^{r(\cdot)}}}\right)^{r(x)} d x \\
& \quad \geq \int_{\mathbf{R}^{n}}\left\{\frac{\|f\|_{L^{r(\cdot)}}}{\|f\|_{L^{r(\cdot)}}+\|g\|_{L^{r(\cdot)}}}\left(\frac{f(x)}{\|f\|_{L^{r(\cdot)}}}\right)^{r(x)}+\frac{\|g\|_{L^{r(\cdot)}}}{\|f\|_{L^{r(\cdot)}}+\|g\|_{L^{r(\cdot)}}}\left(\frac{g(x)}{\|g\|_{L^{r(\cdot)}}}\right)^{r(x)}\right\} d x \\
& \quad=1 .
\end{aligned}
$$

This is the desired result. Next we prove (ii) by applying (i) with $r(\cdot)=p(\cdot) / p_{+}$. Let h be a positive measurable function. Observe that

$$
\|h\|_{L^{p(\cdot)}}^{p_{+}}=\left\|h^{p_{+}}\right\|_{L^{p(\cdot) / p_{+}}}
$$

and $(f+g)^{p_{+}} \geq f^{p_{+}}+g^{p_{+}}$. Therefore, we obtain

$$
\begin{aligned}
\|f\|_{L^{p(\cdot)}}^{p_{+}}+\|g\|_{L^{p(\cdot)}}^{p_{+}} & =\left\|f^{p_{+}}\right\|_{L^{p(\cdot) / p_{+}}}+\left\|g^{p_{+}}\right\|_{L^{p(\cdot) / p_{+}}} \\
& \leq\left\|f^{p_{+}}+g^{p_{+}}\right\|_{L^{p(\cdot) / p_{+}}} \\
& \leq\left\|(f+g)^{p_{+}}\right\|_{L^{p(\cdot) / p_{+}}} \\
& =\|f+g\|_{L^{p(\cdot)}}^{p_{+}} .
\end{aligned}
$$

Thus, the proof is complete.

Proof of Theorem A.

1. To prove Theorem A, we invoke the following preliminary observations: We set $Q_{0,0}:=E_{0}:=Q=x_{Q}+$ $[0, r]^{n}$. By a dyadic cube of Q we mean the set

$$
\left\{x_{Q}+2^{-m} z+2^{-m} w: w \in[0, r]^{n}, m=0,1,2, \cdots, z \in\left\{0,1,2, \cdots, 2^{m}-1\right\}\right\} .
$$

First of all, we let

$$
E_{k}=\left\{x \in Q: 2^{(n+1)(k-1)} f_{Q}<M^{d, Q} f(x)\right\}, \quad k=0,1,2, \ldots
$$

where $M^{d, Q}$ denotes the dyadic maximal operator with respect to Q, namely,

$$
M^{d, Q} f(x)=\sup \left\{\chi_{R}(x)\left(\frac{1}{|R|} \int_{R}|f(z)| d z\right): \text { Ris a dyadic cube of } Q\right\} .
$$

By the definition of the dyadic maximal operator $M^{d, Q}$, we obtain a family of non-overlapping cubes $\left\{Q_{k, l}\right\}_{l \in L_{k}}$ such that

$$
\bigcup_{l \in L_{k}} Q_{k, l}=E_{k},
$$

and that

$$
\begin{equation*}
\frac{1}{\left|Q_{k, l}\right|} \int_{Q_{k, l}} f(y) d y>2^{(n+1)(k-1)} f_{Q} \geq \frac{1}{2^{n}\left|Q_{k, l}\right|} \int_{Q_{k, l}} f(y) d y . \tag{5}
\end{equation*}
$$

Note that $\left(\bigcup_{k=1}^{\infty} E_{k} \backslash E_{k+1}\right)$ differs from Q by a set of measure zero. Hence,

$$
\begin{align*}
f(x) & \leq M^{d, Q} f(x) \tag{6}\\
& =M^{d, Q} f(x) \chi_{E_{0} \backslash E_{1}}(x)+\sum_{k=1}^{\infty} M^{d, Q} f(x) \chi_{E_{k} \backslash E_{k+1}}(x) \\
& \leq \sum_{k=0}^{\infty} 2^{(n+1) k} f_{Q} \chi_{E_{k}}(x)
\end{align*}
$$

as we did in [15]. Here for the last inequality, we have used the fact that $E_{0} \supset E_{1}$.
2. About the structure of E_{k}, we can prove

$$
\left|E_{k+1} \cap Q_{k, l}\right| \leq \frac{1}{2}\left|Q_{k, l}\right|
$$

by way of (5) and the decomposition

$$
E_{k+1} \cap Q_{k, l}=\bigcup_{l^{\prime} \in L_{k, l}} Q_{k+1, l^{\prime}}
$$

with $L_{l, k} \subset L_{k}$. See [15, p.3688] for details. Hence we have

$$
\left|E_{k+1} \cap Q_{k, l}\right| \leq \frac{1}{2}\left|Q_{k, l}\right| .
$$

By virtue of the weak boundedness of M, we have

$$
\begin{aligned}
\frac{1}{2}\left\|\chi_{E_{k}}\right\|_{L^{p(\cdot)}} & \left.=\frac{1}{2} \| \chi_{\left\{\sum_{l \in L_{k}}\left(2 \chi_{E_{k} \backslash E_{k+1}}\right)\right.}\right)_{Q_{k, l}} \chi_{\left.Q_{k, l}>1\right\}} \|_{L^{p(\cdot)}} \\
& \leq \frac{1}{2}\left\|\chi_{\left\{M\left(2 \chi_{E_{k} \backslash E_{k+1}}\right)>1\right\}}\right\|_{L^{p(\cdot)}} \\
& \leq C\left\|\chi_{E_{k} \backslash E_{k+1}}\right\|_{L^{p(\cdot)}} .
\end{aligned}
$$

Consequently,

$$
\begin{equation*}
\left\|\chi_{E_{k}}\right\|_{L^{p(\cdot)}} \leq 2 C\left\|\chi_{E_{k} \backslash E_{k+1}}\right\|_{L^{p(\cdot)}} . \tag{7}
\end{equation*}
$$

Hence by using Lemma J, we have

$$
\|f+g\|_{L^{p(\cdot)}}^{p_{+}} \geq\|f\|_{L^{p(\cdot)}}^{p_{+}}+\|g\|_{L^{p(\cdot)}}^{p_{+}}
$$

which holds for all positive measurable functions f, g. In particular,

$$
\begin{equation*}
\left\|\chi_{E_{k}}\right\|_{L^{p(\cdot)}}^{p_{+}} \geq\left\|\chi_{E_{k+1}}\right\|_{L^{p(\cdot)}}^{p_{+}}+\left\|\chi_{E_{k} \backslash E_{k+1}}\right\|_{L^{p(\cdot)}}^{p_{+}} . \tag{8}
\end{equation*}
$$

Thus, combining (7) and (8), we obtain

$$
\left\|\chi_{E_{k}}\right\|_{L^{p(\cdot)}}^{p_{+}} \geq\left\|\chi_{E_{k+1}}\right\|_{L^{p(\cdot)}}^{p_{+}}+\left(\frac{1}{2 C}\left\|\chi_{E_{k}}\right\|_{L^{p(\cdot)}}\right)^{p_{+}}
$$

we conclude that

$$
\left\|\chi_{E_{k+1}}\right\|_{L^{p(\cdot)}} \leq\left(1-\left(\frac{1}{2 C}\right)^{p_{+}}\right)^{1 / p_{+}}\left\|\chi_{E_{k}}\right\|_{L^{p(\cdot)}}, \quad k=0,1,2, \ldots
$$

Thus, we have

$$
\begin{equation*}
\left\|\chi_{E_{k}}\right\|_{L^{p(\cdot)}} \leq\left(1-\left(\frac{1}{2 C}\right)^{p_{+}}\right)^{k / p_{+}}\left\|\chi_{Q}\right\|_{L^{p(\cdot)}}, \quad k=0,1,2, \ldots \tag{9}
\end{equation*}
$$

3. If we combine (6) and (9), then we take a positive constant $\delta \leq 1$ so that

$$
2^{(n+1) \delta / p_{-}}\left(1-\left(\frac{1}{2 C}\right)^{p_{+}}\right)^{1 /\left(p_{+} p_{-}\right)}<1
$$

and obtain

$$
\begin{aligned}
\left\|f^{\delta}\right\|_{L^{p(\cdot)}}^{1 / p_{-}} & \leq\left\|\sum_{k=0}^{\infty} 2^{(n+1) k \delta}\left(f_{Q}\right)^{\delta} \chi_{E_{k}}\right\|_{L^{p(\cdot)}}^{1 / p_{-}} \\
& \leq \sum_{k=0}^{\infty} 2^{(n+1) k \delta / p_{-}}\left\|\left(f_{Q}\right)^{\delta} \chi_{E_{k}}\right\|_{L^{p(\cdot)}}^{1 / p_{-}} \\
& \leq \sum_{k=0}^{\infty} 2^{(n+1) k \delta / p_{-}}\left(f_{Q}\right)^{\delta / p_{-}}\left(1-\left(\frac{1}{2 C}\right)^{p_{+}}\right)^{k /\left(p_{+} p_{-}\right)}\left\|\chi_{Q}\right\|_{L^{p(\cdot)}}^{1 / p_{-}} \\
& \leq C\left(f_{Q}\right)^{\delta / p_{-}}\left\|\chi_{Q}\right\|_{L^{p(\cdot)}}^{1 / p_{-}} .
\end{aligned}
$$

This is the desired result.

3.2 Proof of Theorem B

As an application of Theorem A we prove Theorem B.
Proof. We give the proof based on [10]. Take a cube Q and $b \in \operatorname{BMO}\left(\mathbf{R}^{n}\right)$ arbitrarily. By virtue of Lemma ?? we see that

$$
|g|_{Q}\left\|\chi_{Q}\right\|_{L^{p(\cdot)}} \leq C\left\|g \chi_{Q}\right\|_{L^{p(\cdot)}}
$$

holds for all $g \in L_{\mathrm{loc}}^{1}\left(\mathbf{R}^{n}\right)$. By putting $g:=b-b_{Q}$, we can immediately get the left hand side inequality of (3). Applying Theorem A, with $f:=\left|b-b_{Q}\right|^{1 / \delta} \chi_{Q}$ with $\delta \in(0,1]$, the other implication is verified as follows;

$$
\begin{aligned}
\left\|\left(b-b_{Q}\right) \chi_{Q}\right\|_{L^{p(\cdot)}} & \leq C\left(\frac{1}{|Q|} \int_{Q}\left|b(x)-b_{Q}\right|^{1 / \delta} d x\right)^{\delta}\left\|\chi_{Q}\right\|_{L^{p(\cdot)}} \\
& \leq C\|b\|_{\mathrm{BMO}}\left\|_{\chi_{Q}}\right\|_{L^{p(\cdot)}} .
\end{aligned}
$$

Thus, Theorem B is proved.

4 Another characterization of $\mathrm{BMO}_{\mathrm{X}}\left(\mathbf{R}^{\mathrm{n}}\right)$

We know several equivalence norms of $\operatorname{BMO}\left(\mathbf{R}^{n}\right)$. It is well known that

$$
\begin{equation*}
\sup _{Q: \text { cube }} \inf _{c \in \mathbf{C}} \frac{1}{\left\|\chi_{Q}\right\|_{L^{p}}}\left\|(b-c) \chi_{Q}\right\|_{L^{p}} \tag{10}
\end{equation*}
$$

with $p \in[1, \infty)$ is equivalent to the original one $\|b\|_{\text {BMO }}$. In [14] Muckenhoupt and Wheeden proved that, for the weight w belonging to Muckenhoupt class A_{∞},

$$
\|b\|_{\mathrm{BMO}(w)}=\sup _{Q} \frac{1}{w(Q)} \int_{Q}\left|b(x)-b_{Q ; w}\right| w(x) d x
$$

where $w(Q):=\int_{Q} w(x) d x$ and

$$
b_{Q ; w}:=\frac{1}{w(Q)} \int_{Q} b(x) w(x) d x
$$

is also equivalent to $\|b\|_{\text {BMO }}$. Moreover, owing to the John-Nirenberg inequality in the context of non-doubling measures by Mateu, Mattila, Nicolau and Orobitg [13], we see that for the same weight w above

$$
C^{-1} \sup _{Q}\left\langle b-b_{Q}\right\rangle_{\exp L(Q ; w)} \leq\|b\|_{\mathrm{BMO}} \leq C \sup _{Q}\left\langle b-b_{Q}\right\rangle_{\exp L(Q ; w)},
$$

where

$$
\langle f\rangle_{\exp L(Q ; w)}=\inf \left\{\lambda>0:\left(\exp \left(\frac{|f|}{\lambda}\right)-1\right)_{Q ; w} \leq 1\right\}
$$

In this subsection, we establish the same equivalence with "inf ${ }_{c \in \mathbf{C}}$ " instead of the average b_{Q} in the context of Banach function spaces under a condition.
Theorem E. If Banach function space X satisfies

$$
\sup _{Q: \text { cube }} \frac{1}{|Q|}\left\|\chi_{Q}\right\|_{X}\left\|_{\chi_{Q}}\right\|_{X^{\prime}}<\infty
$$

then it follows

$$
C\|b\|_{\mathrm{BMO}_{X}} \leq \sup _{Q: \text { cube }} \inf _{c \in \mathbf{C}} \frac{1}{\left\|\chi_{Q}\right\|_{X}}\left\|(b-c) \chi_{Q}\right\|_{X} \leq\|b\|_{\mathrm{BMO}_{X}}
$$

for all measurable functions b.
Proof. The right-hand side inequality is obvious. Applying Lemma G, we can verify the left-hand one as follows; for a cube Q and $c \in \mathbf{C}$,

$$
\begin{align*}
\frac{1}{\left\|\chi_{Q}\right\|_{X}}\left\|\left(b-b_{Q}\right) \chi_{Q}\right\|_{X} & \leq \frac{1}{\left\|\chi_{Q}\right\|_{X}}\left\{\left\|(b-c) \chi_{Q}\right\|_{X}+\left\|\left(c-b_{Q}\right) \chi_{Q}\right\|_{X}\right\} \\
& =\frac{1}{\left\|\chi_{Q}\right\|_{X}}\left\|(b-c) \chi_{Q}\right\|_{X}+\left|c-b_{Q}\right| \tag{11}\\
& \leq \frac{1}{\left\|\chi_{Q}\right\|_{X}}\left\|(b-c) \chi_{Q}\right\|_{X}+\frac{1}{|Q|} \int_{Q}|b-c| d x \\
& \leq \frac{1}{\left\|\chi_{Q}\right\|_{X}}\left\|(b-c) \chi_{Q}\right\|_{X}+C \frac{1}{|Q|}\left\|(b-c) \chi_{Q}\right\|_{X}\left\|_{Q}\right\|_{X^{\prime}} \\
& \leq \frac{C}{\left\|\chi_{Q}\right\|_{X}}\left\|(b-c) \chi_{Q}\right\|_{X} .
\end{align*}
$$

A couple of helpful remarks may be in order.

1. For example, $X=\exp L\left(\mathbf{R}^{n}\right)$ satisfies the condtion in Theorem E where $\exp L\left(\mathbf{R}^{n}\right)$ denotes the set of all functions f such that

$$
\|f\|_{\exp L}=\inf \left\{\lambda>0: \int_{\mathbf{R}^{n}}\left\{\exp \left(\frac{|f(x)|}{\lambda}\right)-1\right\} d x \leq 1\right\}<\infty .
$$

In fact, it holds that $\left\|\chi_{Q}\right\|_{\exp L}=\frac{1}{\log (1+1 /|Q|)}$ and that

$$
\left\|\chi_{Q}\right\|_{(\exp L)^{\prime}} \leq c|Q| \log (1+1 /|Q|)
$$

2. The same argument with fundamental fact $|b|_{Q} \leq 2\langle b\rangle_{\exp L(Q)}$, see [16] for the proof, yields the equivalence

$$
\sup _{Q}\left\langle b-b_{Q}\right\rangle_{\exp L(Q)} \sim \sup _{Q} \inf _{c \in \mathbf{C}}\langle b-c\rangle_{\exp L(Q)},
$$

with $\langle f\rangle_{\exp L(Q)}=\langle f\rangle_{\exp L(Q ; 1)}$.
Combining Theorems B and E we get another equivalence norm of $\operatorname{BMO}\left(\mathbf{R}^{n}\right)$ by means of variable exponent spaces.
Corollary. Let $p(\cdot): \mathbf{R}^{n} \rightarrow[1, \infty)$ be a bounded function. Assume that M is of weak type $(p(\cdot), p(\cdot))$. Then we have that for $b \in \operatorname{BMO}\left(\mathbf{R}^{n}\right)$,

$$
C^{-1}\|b\|_{\mathrm{BMO}} \leq \sup _{Q: \text { cube }} \inf _{c \in \mathbf{C}} \frac{1}{\left\|\chi_{Q}\right\|_{L^{p(\cdot)}}}\left\|(b-c) \chi_{Q}\right\|_{L^{p(\cdot)}} \leq C\|b\|_{\mathrm{BMO}}
$$

5 A characterization by way of harmonic extension

Let $1 \leq p<\infty$ be a constant. The $\operatorname{BMO}\left(\mathbf{R}^{n}\right)$ norm $\|b\|_{\text {BMO }}$ is equivalent to

$$
\sup _{(x, t) \in \mathbf{R}^{n} \times(0, \infty)}\left(\int_{\mathbf{R}^{n}}|b(y)-u(y, t)|^{p} P_{t}(x-y) d y\right)^{1 / p}
$$

where P_{t} is the Poisson kernel given by

$$
P_{t}(x):=\frac{1}{\left(|x|^{2}+t^{2}\right)^{\frac{n+1}{2}}} \quad\left(x \in \mathbf{R}^{n}, t>0\right)
$$

and $u(x, t)=\left(b * P_{t}\right)(x)$.
Chen-Lau [2] proved the equivalence replacing P_{t} by a more general function. Here for the sake of convenience, we include the proof and provide an alternative interpretation. By virtue of [4, Theorem 3.2], we know that

$$
\sup _{(x, t) \in \mathbf{R}^{n} \times(0, \infty)}\left(\frac{1}{t^{n}} \int_{B(x, t)}|b(y)-u(y, t)|^{p} d y\right)^{1 / p}
$$

is an equivalent norm for $b \in \operatorname{BMO}\left(\mathbf{R}^{n}\right)$. That is,

$$
\sup _{(x, t) \in \mathbf{R}^{n} \times(0, \infty)}\left(\frac{1}{t^{n}} \int_{B(x, t)}|b(y)-u(y, t)|^{p} d y\right)^{1 / p} \sim\|b\|_{\mathrm{BMO}} .
$$

By the definition of poisson kernel, we have

$$
\begin{aligned}
& \sup _{(x, t) \in \mathbf{R}^{n} \times(0, \infty)}\left(\frac{1}{t^{n}} \int_{B(x, t)}|b(y)-u(y, t)|^{p} d y\right)^{1 / p} \\
& \leq C \sup _{(x, t) \in \mathbf{R}^{n} \times(0, \infty)}\left(\int_{\mathbf{R}^{n}}|b(y)-u(y, t)|^{p} P_{t}(x-y) d y\right)^{1 / p} .
\end{aligned}
$$

Meanwhile,

$$
\begin{aligned}
& \sup _{(x, t) \in \mathbf{R}^{n} \times(0, \infty)}\left(\int_{\mathbf{R}^{n}}|b(y)-u(y, t)|^{p} P_{t}(x-y) d y\right)^{1 / p} \\
\leq & \sup _{(x, t) \in \mathbf{R}^{n} \times(0, \infty)} \sum_{k \in \mathbf{Z}^{n}}\left(\int_{B(x+k t, 2 n t)}|b(y)-u(y, t)|^{p} P_{t}(x-y) d y\right)^{1 / p} \\
\leq & C \sup _{(x, t) \in \mathbf{R}^{n} \times(0, \infty)} \sum_{k \in \mathbf{Z}^{n}}(1+|k|)^{-n-1}\left(\int_{B(x+k t, 2 n t)}|b(y)-u(y, t)|^{p} d y\right)^{1 / p} \\
\leq & C \sup _{(x, t) \in \mathbf{R}^{n} \times(0, \infty)}\left(\frac{1}{t^{n}} \int_{B(x, t)}|b(y)-u(y, t)|^{p} d y\right)^{1 / p} \sim\|b\|_{\text {BMO }} .
\end{aligned}
$$

We can generalize the result from the viewpoint of variable exponent.
Theorem \mathbf{F} Let $p(\cdot): \mathbf{R}^{n} \rightarrow[1, \infty)$ be a variable exponent such that

$$
1 \leq p_{-} \leq p_{+}<\infty
$$

Then we have that for all $b \in \operatorname{BMO}\left(\mathbf{R}^{n}\right)$,

$$
C^{-1}\|b\|_{\mathrm{BMO}} \leq\|b\|_{\mathrm{BMO}_{p(\cdot)}} \leq C\|b\|_{\mathrm{BMO}}
$$

where

$$
\|b\|_{\mathrm{BMO}_{p(\cdot)}}:=\inf \left\{\lambda>0: \sup _{(x, t) \in \mathbf{R}^{n} \times(0, \infty)} \int_{\mathbf{R}^{n}}\left|\frac{b(y)-u(x, t)}{\lambda}\right|^{p(y)} P_{t}(x-y) d y \leq 1\right\} .
$$

Proof. As we have mentioned, the result is known when $p(\cdot)$ is a constant. Since

$$
u^{p(\cdot)} \leq u^{p_{-}}+u^{p_{+}} \quad \text { for all } u>0,
$$

one inequality is obvious. To prove $\|b\|_{\mathrm{BMO}} \leq C\|b\|_{\mathrm{BMO}_{p(\cdot)}}$, we let λ satisfy

$$
\int_{\mathbf{R}^{n}}\left|\frac{b(y)-u(x, t)}{\lambda}\right|^{p(y)} P_{t}(x-y) d y \leq 1
$$

for all $(x, t) \in \mathbf{R}^{n} \times(0, \infty)$. Then

$$
\int_{\mathbf{R}^{n}}\left(\frac{1}{2}\left|\frac{b(y)-u(x, t)}{\lambda}\right|+\frac{1}{2}\right)^{p(y)} P_{t}(x-y) d y \leq \frac{1}{2} \int_{\mathbf{R}^{n}}\left(\left|\frac{b(y)-u(x, t)}{\lambda}\right|^{p(y)}+1\right) P_{t}(x-y) d y \leq 1
$$

since

$$
\int_{\mathbf{R}^{n}} P_{t}(x-y) d y=1 .
$$

Since

$$
\frac{t}{2} \leq\left(\frac{t+1}{2}\right)^{p(x)}, \quad t>0
$$

it follows that

$$
\int_{\mathbf{R}^{n}}\left|\frac{b(y)-u(x, t)}{2 \lambda}\right| P_{t}(x-y) d y \leq 1
$$

Thus, the proof is complete.

Acknowledgements

The authors are thankful to the anonymous referee for his/her careful reading of the paper. Indeed, his/her comment improved the paper significantly.

References

[1] C. Bennett and R. Sharpley, Interpolation of Operators, Academic Press, Boston, San Diego, New York, 1988.
[2] Y. Z. Chen and K. S. Lau, On an equivalent class of norms for BMO, J. Austral. Math. Soc. (Series A) 46 (1989), 289-295.
[3] D. Cruz-Uribe, L. Diening and A. Fiorenza, A new proof of the boundedness of maximal operators on variable Lebesgue spaces, Bull. Unione mat. Ital. (9) 2 (1) (2009), 151-173.
[4] D. Deng, X. T. Duong and L. Yan, A characterization of the Morrey-Campanato spaces, Math. Z. 250 (2005), no. 3, 641-655.
[5] L. Diening, Maximal functions on Musielak-Orlicz spaces and generalized Lebesgue spaces, Bull. Sci. Math. 129 (2005), 657-700.
[6] L. Diening, P. Harjulehto, P. Hästö, Y. Mizuta and T. Shimomura, Maximal functions in variable exponent spaces: limiting cases of the exponent, Ann. Acad. Sci. Fenn. Math. 34 (2009), 503-522.
[7] L. Diening, P. Harjulehto, P. Hästö and M. Růžička, Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Math. 2017, Springer-Verlag, Berlin, 2011.
[8] K.-P. Ho, Atomic decomposition of Hardy spaces and characterization of BMO via Banach function spaces, Anal. Math. 38 (2012), 173-185.
[9] M. Izuki, Boundedness of commutators on Herz spaces with variable exponent, Rend. Circ. Mat. Palermo, 59 (2010), 199-213.
[10] M. Izuki and Y. Sawano, Variable Lebesgue norm estimates for BMO functions, Czechoslovak Mathematical Journal 62 (137) (2012), 717-727.
[11] O. Kováčik and J. Rákosník, On spaces $L^{p(x)}$ and $W^{k, p(x)}$, Czechoslovak Math. 41 (116) (1991), 592-618.
[12] J. John and L. Nirenberg, On function of bounded mean oscillation, Comm. Pure and Appl. Math. 14 (1961), 415-426.
[13] J. Mateu, P. Mattila, A. Nicolau and J. Orobitg, BMO for nondoubling measures, Duke Math. 102, 533-565, (2000).
[14] B. Muckenhoupt and R. Wheeden, Weighted bounded mean oscillation and the Hilbert transform, Studia Math. 54, (1975/76), 221-237.
[15] E. Nakai and Y. Sawano, Hardy spaces with variable exponents and generalized Campanato spaces, J. Funct. Anal. 262 (2012) 3665-3748.
[16] Y. Tsutsui, A_{∞} constant between BMO and weighted BMO. Proc. Japan Acad. Ser. A Math. Sci. 90 (2014), no. 1, 11-14.

[^0]: * Department of Mathematics Education, Faculty of Education, Okayama University, Okayama 700-8530, Japan. e-mail: izuki@mail.dendai.ac.jp
 ${ }^{\dagger}$ Department of Mathematics and Information Science, Tokyo Metropolitan University, 1-1 Minami-Ohsawa, Hachioji, Tokyo 192-0397, Japan.
 e-mail: ysawano@tmu.ac.jp
 ${ }^{\ddagger}$ Graduate School of Mathematical Science, The University of Tokyo, Meguro, 153-8914, Japan.
 e-mail: tsutsui@ms.u-tokyo.ac.jp

