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Abstract

In this note we establish the sharp maximal inequalities for Herz spaces and Morrey spaces
by use of good λ-inequality. As an application, we obtain estimates of some bilinear forms
which include usual product of functions and the nonlinear term of Euler and Navier-Stokes
equations on Herz spaces and Morrey spaces.
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1 Introduction

The present paper has two purposes. The first one is to establish the sharp maximal inequality,
so-called Fefferman-Stein’s inequality, for Herz and Morrey spaces. The second one is to extend
bilinear estimates, which were shown by Kozono and Taniuchi [19], by using the sharp maximal
inequality. This article is based on Miyachi’s unpublished paper.

The sharp maximal inequality stands for an inequality of the form

‖f‖X ≤ c‖f ]‖X ,

with some quasi-Banach space X, where f ] denotes the Fefferman-Stein sharp maximal function.
It was firstly introduced in [13]. We will show the inequality with a more general sharp maximal
function f

](r)
l,τ . Indeed, f

](1)
0,0 = f ]. For the precise definition of f

](r)
l,τ , see Section 2. Such maximal

function were studied by DeVore and Sharpley in [10]. The prototype of the maximal function
was introduced in papers of Calderón [5] and Calderón and Scott [6]. The sharp function contain
information on the smoothness of functions. For instance, the following equivalence due to Calderón
holds: for 1 < p ≤ ∞ and a positive integer m,

‖∇mf‖Lp ≈ ‖f ](1)
m−1,m‖Lp .

In this connection, Cho [8] studied the inequalities

‖f‖Ȧs
r,q

≤ c‖f ](1)
0,α ‖Lp

for some exponents r, q, s, p and 0 < α ≤ 1, where Ȧs
p,q is the Besov space Ḃs

p,q or Triebel-Lizorkin
space Ḟ s

p,q. Moreover, this maximal function was used for the extension problem of functions
belonging to Triebel-Lizorkin spaces [10] and the modified sharp function was used to characterize
Besov spaces and Triebel-Lizorkin spaces with smoothness index s > 0 [36], [39]. See also [3], [21],
[26] and [38], for several variants of the sharp maximal functions.
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The sharp function is useful for real interpolation theory [2] and for pointwise estimates of
several operators appearing in harmonic analysis, for example, singular integrals [37], pseudodif-
ferential operators [31], Coifman-Rochberg-Weiss type commutators [15]. And, combining these
pointwise estimates with the sharp maximal inequality enable us to estimate these operators. As
an application of the sharp maximal function to the theory of partial differential equations, Krylov
[20] used pointwise estimates of the sharp function of second-order derivatives to study Lp-theory
of divergence and non-divergence elliptic and parabolic equations with discontinuous coefficients.
Also, in [32], Rogers and Seeger applied it to the estimate for the Fourier multipliers related to
the initial value problem for the dispersive equation i∂tu + (−∆)α/2u = 0 for α ∈ (0, 1) ∪ (1,∞),
u(·, 0) = f .

There are several ways to obtain the sharp maximal inequality for Lp. For example, by the du-
ality argument [21], [37], by using the non-increasing rearrangement [1] and by a good λ-inequality
[16], [30]. Similarly, the weighted inequality is shown by these techniques, see, for example [12].
When we use the first or the second, the duality and the Hardy’s inequality prevent the exponents
to extend to the large range. Meanwhile, when we use the good λ-inequality, the exponents are
not restricted, [30]. To enjoy this favor, we use a good λ-inequality. On Morrey spaces, Sawano
and Tanaka [35] showed the sharp maximal inequality with non-doubling measures by applying a
good λ-inequality. Their good λ-inequality is slightly different from ours. Their statement does
not include the exponents p, q less than 1, but it seems that their proof also works even for the
case p, q ≤ 1. Our inequalities cover their inequality as special cases. The main results in the first
half of this paper are the following maximal inequalities. For the precise definitions of K̇α

p,q and
Mp

q , see Section 2.

Theorem 1.1. Let 0 < p, r < ∞, 0 < p ≤ ∞, −n/p < α < ∞ and l ∈ N0. Then, there exists

a constant c such that for f ∈ Lr
loc(Rn\{0}) satisfying

(∫
−

Qk

|f |rdy
)1/r

→ 0 as k → ∞, where

Qk = (−2k, 2k)n\(−2k−1, 2k−1)n,

‖f‖K̇α
p,q

≤ c‖f ](r),Q∗
·

l,0 ‖K̇α
p,q

,

where

‖f ](r),Q∗
·

l,0 ‖K̇α
p,q

:=
(∑

k∈Z

2kαq‖f ](r),Q∗
k

l,0 ‖q
Lp(Qk)

)1/q

and Q∗
k := Qk−1 ∪ Qk ∪ Qk+1.

Theorem 1.2. Let 0 < q ≤ p < ∞, 0 < r, s < ∞ and l ∈ N0. Then, there exists a constant c such

that for f ∈ Lr
loc satisfying that

(∫
−

Ik

|f |rdy
)1/r

→ 0 as k → ∞, for some cube I, where Ik = 2kI,

‖f‖Mp
q
≤ c‖f ](r),I·

l,0 ‖Mp
q
,

where
‖f ](r),I·

l,0 ‖Mp
q

:= sup
I

|I|1/p−1/q‖f ](r),I
l,0 ‖Lq(I),

where the supremum is taken over all cubes.

Remark 1.1. 1. It is not hard to modify the argument of the proof of Theorem 1.1 to check that
the same inequalities hold for the nonhomogeneous Herz space Kα

p,q(Rn).
2. In [17], Komori showed the inequality above in the context of nonhomogeneous Herz space

with α = −n/p in the following sense; for 1 < p < ∞ and f ∈ Lp
loc,

‖f‖CMOp ≤ c‖f ](1)
0,0 ‖

K̇
−n/p
∞,p

,
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where CMOp is a space of functions of central mean oscillation and equipped with the norm

‖f‖CMOp := sup
R>1

(∫
−

B(0,R)

|f − fB(0,R)|pdy
)1/p

.

3. The decay condition on the average of function in Theorem 1.2 is equivalent to the one for all
cubes I.
4. The sharp maximal inequalities above fail for any P ∈ Pl\{0}. Because we must exclude the
case, the decay condition seems natural. Indeed,(∫

−
Qk

|P |rdx
)1/r

≈ ‖P‖L∞(Qk) 6→ 0, as k → ∞,

for every polynomial P 6≡ 0.

The latter half of this article is motivated by Miyachi’s unpublished paper, and the basic ideas
of this half are based on it. Also, the spirit of Miyachi in the unpublished paper are collected
in [33]. Thanks to his idea, we can establish same bilinear estimates as (ii) of Theorems 1.4 and
1.5 for function spaces on which the Fefferman-Stein inequality holds and the Hardy-Littelewood
maximal function is bounded.

In the latter half, we consider the estimate of the bilinear form f∇mg, (m ∈ N ∪ {0}), which
includes the nonlinear term u∇u of Euler and Navier-Stokes equations. Our main tools are the
sharp maximal inequality and pointwise estimate of the sharp maximal function of f∇mg.

Our purpose is to estimate products of functions. Many estimates of these are known. It seems
that the most famous inequality of product of functions is Hölder’s inequality. The inequality
says that if f ∈ Lq and g ∈ Lr then a product fg belongs to Lp when 1/p = 1/q + 1/r. In this
connection at endpoint p = q, the following inequality is well known;

‖fg‖Lp ≤ c
(
‖f‖Lp‖g‖BMO + ‖f‖BMO‖g‖Lp

)
which is a consequence of a pointwise inequality for the sharp function of fg;

(fg)](x) ≤ c
(
Mrf(x)‖g‖BMO + ‖f‖BMOMrg(x)

)
where Mrf = M(|f |r)1/r, M is the Hardy-Littlewood maximal function and 1 < r < ∞. Miyachi
showed the above bilinear estimate with 0 < p < ∞ by using pointwise estimate of the sharp
function of fg. There is a similar bilinear inequality with the derivatives. In [19], Kozono and
Taniuchi showed the following bilinear inequality by the use of the boundedness of the bilinear
Fourier multipliers due to Coifman and Meyer [9]; for f, g ∈ W 1,p with ∇f, ∇g ∈ BMO and
1 < p < ∞,

‖f∇g‖Lp ≤ c
(
‖f‖Lp‖∇g‖BMO + ‖∇f‖BMO‖g‖Lp

)
.

In his unpublished paper, Miyachi gave a proof of this bilinear estimate by using pointwise estimate
of the sharp maximal function of f∂βg with |β| = 1 and 1 < p < ∞. Their bilinear inequality
played an important role in the study of the blow-up phenomena of smooth solutions to the Navier-
Stokes equations. It is clear that ‖fg‖Ẇ 1,p also can be dominated by the right hand side. Here,
Ẇ 1,p is the homogeneous Sobolev space. Moreover, there is a similar estimate due to Christ and
Weinstein [7] with the fractional derivative;

‖fg‖Ḟ s
p,2

≈ ‖Ds(fg)‖Lp

≤ c
(
‖f‖Lq‖Dsg‖Lq′ + ‖Dsf‖Lr‖g‖Lr′

)
≈

(
‖f‖Ḟ 0

q,2
‖g‖Ḟ s

q′,2
+ ‖f‖Ḟ s

r,2
‖g‖Ḟ 0

r′,2

)
,
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where Ds is a Fourier multiplier operator Dsf = F−1[| · |sFf ], where F is the Fourier transform,
F−1 is the inverse Fourier transform and 0 < s < 1. There are other bilinear estimates for fg in
several function spaces by using the paraproduct of Bony. For instance, in [18], the authors showed
the following bilinear estimate in Triebel-Lizorkin spaces,

‖fg‖Ḟ s
p,q

≤ c
(
‖f‖Ḟ s+α

p1,q
‖g‖Ḟ−α

p2,∞
+ ‖f‖Ḟ−β

r1,∞
‖g‖Ḟ s+β

r2,q

)
with some exponents.

Our bilinear estimates are the following. For the precise definitions of HK̇α
p,q, K̇0

BMO,∞ and
HMp

q , see Section 2.

Theorem 1.3. Let 0 < p < ∞, 0 < q ≤ ∞ and −n/p < α < ∞.
(i): There exists a constant c such that for any f, g ∈ K̇α

p,q ∩ K̇0
BMO,∞,

‖fg‖Kα
p,q

≤ c
(
‖f‖K̇α

p,q
‖g‖K̇0

BMO,∞
+ ‖f‖K̇0

BMO,∞
‖g‖K̇α

p,q

)
.

(ii): Let m ∈ N. There exists a constant c such that for any f ∈ K̇α
p,q ∩L1

loc with ∇mf ∈ K̇0
BMO,∞

and g ∈ HK̇α
p,q ∩ L1

loc with ∇mg ∈ K̇0
BMO,∞,

‖f∇mg‖K̇α
p,q

≤ c
(
‖f‖K̇α

p,q
‖∇mg‖K̇0

BMO,∞
+ ‖∇mf‖K̇0

BMO,∞
‖g‖HK̇α

p,q

)
.

Theorem 1.4. Let 0 < q ≤ p < ∞.
(i): There exists a constant c such that for any f, g ∈ Mp

q ∩ BMO,

‖fg‖Mp
q
≤ c

(
‖f‖Mp

q
‖g‖BMO + ‖f‖BMO‖g‖Mp

q

)
.

(ii): Let m ∈ N. There exists a constant c such that for any f ∈ Mp
q ∩ L1

loc with ∇mf ∈ BMO
and g ∈ HMp

q ∩ L1
loc with ∇mg ∈ BMO,

‖f∇mg‖Mp
q
≤ c

(
‖f‖Mp

q
‖∇mg‖BMO + ‖∇mf‖BMO‖g‖HMp

q

)
.

Remark 1.2. 1. The inequalities in Theorem 1.3 also hold for the nonhomogeneous Herz space.
2. It is clear that the inequality

‖f∇mg‖K̇α
p,q

≤ c
(
‖f‖BMO‖∇mg‖K̇α

p,q
+ ‖∇mf‖HK̇α

p,q
‖g‖BMO

)
fails for f ∈ BMO with ∇mf ∈ K̇α

p,q and g ∈ BMO with ∇mg ∈ HK̇α
p,q. In fact, if we take

f = c ∈ C\{0}, then the left hand side is not zero in general while the right hand side must be
zero.

3. Since (ii) in Theorems 1.3 and 1.4 are proved by using a pointwise inequality, they have some
variants. For example, we can obtain the bilinear estimates for the Campanato norm replacing
BMO norm.

4. Since these inequalities are derived from a good λ-inequality and pointwise estimate, we also
obtain the weighted versions of the ones in the sense of B. Muckenhoupt. See Remarks 3.1, 3.2,
3.3 and 4.1.

5. By the results below, the following local estimate can be shown; for 0 < p, r < ∞, cube Q
and f, g ∈ Lp(Q) with ∇mf,∇mg ∈ BMO(Q),

‖f∇mg‖Lp(Q) ≤ c
(
‖f‖Lp(Q)‖∇mg‖BMO(Q) + ‖∇mf‖BMO(Q)‖g‖Lp(Q) + |Q|1/p−1/r‖f∇mg‖Lr(Q)

)
with a constant c independent of f, g and Q.

6. In [40], the above bilinear estimate will be applied to study the blow-up phenomena of
solutions to the Navier-Stokes equations with the initial data in the Herz space.
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2 Preliminaries

Throughout this paper we use the following notations. Let Ω be a nonempty subset of Rn. N0 :=
N ∪ {0}. For x ∈ Rn and t > 0, B(x, t) denotes the ball, centered at x of radius t. By a “ cube
” Q we mean a cube in Rn with sides parallel to the coordinate axes. Its side length and center
will be denoted by l(Q) and c(Q). Also, for a > 0, aQ means the cube with the same center
as Q whose side length is a times that of Q. The set of all dyadic cubes is denoted by Q, and
set Qk := (−2k, 2k)n\(−2k−1, 2k−1)n for k ∈ Z. Let Pl be the space of polynomials of degree
at most l. For a measurable set E, χE denotes the characteristic function of E and the slashed

integral
∫
−

E

fdx denotes the average fE =
1
|E|

∫
E

fdx, where |E| is the Lebesgue measure of E.

∇mf stands for the vector of all derivatives ∂αf with |α| = m and ‖∇mf‖X =
∑

|α|=m ‖∂αf‖X

with some quasi-Banach space X. In what follows c denotes a constant that is independent of the
functions involved, which may differ from line to line.

In this section, we recall the definitions and fundamental properties of function spaces and also
collect several lemmas about polynomials which are used to study the sharp maximal function. In
particular, Lemmas 2.3 and 2.6 play an important role in Section 4.

Definition 2.1. Let 0 < r, τ < ∞ and l ∈ N0 be such that [τ ]− 1 ≤ l. For functions f ∈ Lr
loc(Ω),

one defines the two maximal functions

Mτ,Ω
r f(x) := sup

x∈Q⊂Ω
|Q|τ/n

(∫
−

Q

|f |rdy
)1/r

,

and

f
](r),Ω
l,τ (x) := sup

x∈Q⊂Ω
inf

P∈Pl

|Q|−τ/n
(∫
−

Q

|f − P |rdy
)1/r

,

where the supremum is taken over all cubes Q containing x and included in Ω. In particular, we
write f ] = f

](1)
0,0 and MΩ

r = M0,Ω
r . Omit r and Ω when r = 1 and Ω = Rn, respectively. Also,

M̃τ,Ω
r f and f̃

](r),Ω
l,τ mean the dyadic maximal function and the dyadic sharp maximal function of

f , respectively. That is

M̃τ,Ω
r f(x) := sup

x∈Q⊂Ω
Q∈Q

|Q|τ/n
(∫
−

Q

|f |rdy
)1/r

,

and

f̃
](r),Ω
l,τ (x) := sup

x∈Q⊂Ω
Q∈Q

inf
P∈Pl

|Q|−τ/n
(∫
−

Q

|f − P |rdy
)1/r

,

where the supremums are taken over all dyadic cubes Q containing x and included in Ω. In
particular, we write M̃Ω

r = M̃0,Ω
r .

Definition 2.2. Let 0 < p, q ≤ ∞ and α ∈ R. Define the (homogeneous) Herz space K̇α
p,q as

K̇α
p,q(Rn) := {f ∈ Lp

loc(R
n\{0}); ‖f‖K̇α

p,q
:=

( ∑
k∈Z

2kαq‖f‖q
Lp(Qk)

)1/q

< ∞},

and
K̇0

BMO,∞(Rn) := {f ∈ L1
loc(Rn\{0}); ‖f‖K̇0

BMO,∞
:= sup

k∈Z
‖f‖BMO(Q∗

k) < ∞},

where Q∗
k := Qk−1 ∪ Qk ∪ Qk+1 and

‖f‖BMO(Ω) := sup
Q⊂Ω

inf
c∈C

∫
−

Q

|f − c|dx,

where the supremum is taken over all cubes Q included in Ω.
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It is trivial that ‖f‖K̇0
BMO,∞

≤ ‖f‖BMO, i.e. BMO ↪→ K̇0
BMO,∞. Moreover, K̇0

BMO,∞ strictly
includes BMO. Indeed, a function h(x) := −χx>0 log |x|, appearing in [14, pp.121], is not in
BMO(R) but in K̇0

BMO,∞(R). It is well known that − log |x| is in BMO. Then it is clear from
the definition that

‖h‖K̇0
BMO,∞

≤ ‖ − log |x| ‖BMO < ∞.

Definition 2.3. Let 0 < q ≤ p < ∞. Define the Morrey space Mp
q(Rn) as

Mp
q(Rn) := {f ∈ Lq

loc; ‖f‖Mp
q

:= sup
I

|I|1/p
(∫
−

I

|f |qdy
)1/q

< ∞},

where the supremum is taken over all cubes.

It is easy to see the equivalence ‖f‖Mp
q
≈ sup

I∈Q
|I|1/p

(∫
−

I

|f |qdy
)1/q

.

Above two function spaces extend Lebesgue spaces; for all 0 < p < ∞,

K̇0
p,p = Lp = Mp

p.

In particular, Herz spaces include also Lebesgue spaces with power weight, i.e.

K̇α
p,p = Lp(|x|αpdx).

Note that, for nonhomogeneous Herz spaces, we have

Kα
p,p = Lp(〈x〉αpdx)

where 〈x〉 = (1 + |x|2)1/2.
Morrey spaces have the following inclusion property:

Mp
p = Lp ↪→ Lp,∞(Lorentz space) ↪→ Mp

q1
↪→ Mp

q2
for 0 < q2 ≤ q1 < p < ∞.

Further, the following inclusion holds; for 0 < q ≤ p < ∞

Mp
q ↪→ K̇n(1/p−1/q)

q,∞ .

To define Hardy type spaces for the above two function spaces, we fix a test function φ ∈ C∞
0

which is supported in the unit ball B(0, 1) and whose integral is not zero. For a distribution f ∈ D ′

we define the radial maximal function φ+(f) by

φ+(f)(x) = sup
0<t<∞

|〈f, φt(x − ·)〉|

where φt(x) = t−nφ(x/t).

Definition 2.4. Let p and q be the same as in Definition 2.2 and −n/p < α < ∞. Define the
Herz-type Hardy space HK̇α

p,q as

HK̇α
p,q(Rn) := {f ∈ D ′; ‖f‖HK̇α

p,q
:= ‖φ+(f)‖K̇α

p,q
}.

Definition 2.5. Let p and q be the same as in Definition 2.3. Define the Morrey-type Hardy space
HMp

q as
HMp

q(Rn) := {f ∈ D ′; ‖f‖HMp
q

:= ‖φ+(f)‖Mp
q
}.
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Remark 2.1. 1. HK̇α
p,q and HMp

q are independent of the choise of φ. The fact about Herz-type
Hardy space was shown in [25]. As for HMp

q , this was shown in [34].
2. It is known in [23] that if 1 < p < ∞, 0 < q ≤ ∞,−n/p < α < n(1− 1/p) then HK̇α

p,q coincides
with K̇α

p,q. Similarly, for 1 < q ≤ p < ∞, HMp
q = Mp

q with norm equivalence. Indeed, from an
inequality φ+(f) ≤ cMf , the inclusion Mp

q ⊂ HMp
q is clear. The reverse inclusion is also deduced

from the Banach-Alaoglu theorem, see [22].

Many authors studied the mapping properties of several operators on Herz spaces and Morrey
spaces. We use the boundedness of the Hardy-Littlewood maximal operator M = M0,Rn

1 in the
sequel.

Proposition 2.1. M is a bounded operator on K̇α
p,q if 1 < p ≤ ∞, 0 < q ≤ ∞ and −n/p < α <

n(1 − 1/p).

Proposition 2.2. M is a bounded operator on Mp
q if 1 < q ≤ p < ∞.

The first lemma is well known.

Lemma 2.1 ([28, lemma 3.1]). The following inequalities hold for all cubes Q ⊂ Rn and all
polynomials P ∈ Pl.
(i): For 0 < r < ∞, (∫

−
Q

|P |rdy
)1/r

≤ ‖P‖L∞(Q) ≤ c
(∫
−

Q

|P |rdy
)1/r

,

where the constant c depends on n, l and r only.
(ii): For each a ≥ 1,

‖P‖L∞(aQ) ≤ cal‖P‖L∞(Q),

where the constant c depends on n and l only.
(iii): (Markov’s inequality) For each multi-index β,

‖∂βP‖L∞(Q) ≤ c|Q|−|β|/n‖P‖L∞(Q),

where the constant c depends on n and l only.

We define the specific polynomial class Πl(f, Lr(Q)). In the proofs of Propositions 3.1 and 3.2,
we use polynomials in these classes.

Definition 2.6. Let 0 < r < ∞, l ∈ N0, Q be a cube in Rn and f a measurable function. Define

Πl(f, Lr(Q)) = {π ∈ Pl; ‖f − π‖Lr(Q) = inf
P∈Pl

‖f − P‖Lr(Q)}.

The next lemma is fundamental to deal the above function spaces with q ≤ 1.

Lemma 2.2 ([28, Lemma 3.3]). Let 0 < r < ∞, l ∈ N0, Q be a cube in Rn and f a measurable
function. Then the following (i), (ii) and (iii) hold.
(i): Πl(f, Lr(Q)) 6= ∅.
(ii): There exists a constant c = c(n, l, r) such that for all π ∈ Πl(f, Lr(Q)),

‖π‖L∞(Q) ≤ c
(∫
−

Q

|f |rdy
)1/r

.

(iii): For any positive number δ ≤ 1 there exists c = c(n, l, r, δ) such that for Qi ⊂ Q with
|Qi| ≥ δ|Q| and πi ∈ Πl(f, Lr(Qi)), i = 1, 2,

‖π1 − π2‖L∞(Q) ≤ c inf
P∈Pl

(∫
−

Q

|f − P |rdy
)1/r

.
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The following property of the sharp maximal functions is important. A similar inequality can
be found in [10].

Lemma 2.3. Let 1 ≤ r < ∞, l ∈ N and f ∈ Lr
loc. If ∂αf ∈ Lr

loc for all |α| = l, then the inequality

f
](r),Ω
l,l (x) ≤ 2l

∑
|α|=l

(∂αf)](r),Ω
0,0 (x)

holds for any open subset Ω in Rn and x ∈ Ω.

Miyachi proved Lemma 2.3 with r = 1 and l = 1 in his unpublished paper. To verify Lemma
2.3 in that case, he used the following two lemmas. Once these are proved, it is easy to check
Lemma 2.3.

We write f⊥Pm if
∫

fPdx = 0 for all P ∈ Pm, for f ∈ L1
loc.

The first lemma follows easily from the duality.

Lemma 2.4. Let Q be a cube, m ∈ N, 1 ≤ r < ∞, 1/r + 1/r′ = 1, f ∈ Lr
loc and

Am(Q) = {ϕ ∈ C∞
0 (Q);ϕ⊥Pm, and ‖ϕ‖Lr′ ≤ |Q|−1/r−m/n}.

Then, the equality

inf
P∈Pm

|Q|−1/r−m/n‖f − P‖Lr(Q) = sup
ϕ∈Am(Q)

|
∫

fϕdx|

holds.

The proof of the second lemma is similar to that of [27, Lemma 2].

Lemma 2.5 ([27, Lemma 2]). Let Q be a cube, m ∈ N, 1 ≤ r < ∞, 1/r + 1/r′ = 1 and

Bm(Q) = {ϕ ∈ C∞
0 (Q);ϕ =

n∑
j=1

∂jψj ,

where ψj ∈ C∞
0 (Q), ψj⊥Pm−1 and ‖ψj‖Lr′ ≤ 2|Q|−1/r−(m−1)/n}.

Then, the inclusion Am(Q) ⊂ Bm(Q) holds.

We end this section with the following lemma which is a key to the proof of (ii) in Proposition
4.1 and is interesting of its own right in itself. To state the lemma, we define the grand maximal
function.

Definition 2.7. Let k ∈ N0. For x ∈ Rn and 0 < t < ∞, define Tk(x, t) as the set of all functions
φ ∈ C∞

0 so that supp φ ⊂ B(x, t) and ‖∂αφ‖L∞ ≤ t−n−|α| for |α| ≤ k. For f ∈ D ′, set

f∗
k (x) = sup{|〈f, φ〉|; φ ∈ ∪0<t<∞Tk(x, t)}.

Lemma 2.6. Let 1 ≤ p ≤ ∞, Q be a cube, β a non zero multi-index and k a non-negative integer.
Suppose that g ∈ D ′ and ∂βg ∈ Lp(Q). Then, there exists a constant AQ satisfying both

‖∂βg − AQ‖Lp(Q) ≤ c inf
c∈C

‖∂βg − c‖Lp(Q) and

|AQ| ≤ c|Q|−|β|/n inf
ξ∈Q

g∗k(ξ),

where the constant c depends on n, p, β and k only. Moreover, if g ∈ L1
loc, then we also have

|AQ| ≤ c|Q|−|β|/n inf
P∈P|β|−1

∫
−

Q

|g − P |dy.
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This lemma improves the result by Miyachi in the case |β| = 1. The following proof is based
on the idea due to [11], and differs from that of Miyachi. Naturally enough, the average (∂βg)Q

does not satisfy the second estimate. Since AQ is defined by integral of ∂βg and the bound of |AQ|

is dominated by C|Q|−|β|/n

∫
−

Q

|g|dy, the second estimate is stronger than Markov’s inequality for

polynomials.

Proof. Let ρ ∈ C∞
0 (Rn) be such that supp ρ ⊂ B(0, 1/2) and

∫
ρdx = 1. For a function f , we

write

fQ(x) := |Q|−1f(
x − c(Q)

l(Q)
).

It is obvious that supp ρQ ⊂ B(c(Q), l(Q)/2) ⊂ Q. We define AQ by∫
Q

∂βg ρQdx = (−1)|β||Q|−|β|/n〈g, (∂βρ)Q〉).

Since the integral of ρQ equals to 1, it is easy to check that AQ satisfies the first property. Let
X := n(n+k)/2 max|α|≤k ‖∂α+βρ‖L∞ . Then we have |∂α((∂βρ)Q)(x)| ≤ X(

√
nl(Q))−(n+|α|) for

all |α| ≤ k. Because supp (∂βρ)Q ⊂ Q ⊂ B(ξ,
√

nl(Q)) and (∂βρ)Q/X ∈ Tk(ξ,
√

nl(Q)) for all
ξ ∈ B(c(Q),

√
n

2 l(Q)), we obtain the require inequality in the following way;

|AQ| = X|Q|−|β|/n|〈g, (∂βρ)Q/X〉|
≤ X|Q|−|β|/n inf

ξ∈B(c(Q),
√

n
2 l(Q))

g∗k(ξ)

≤ X|Q|−|β|/n inf
ξ∈Q

g∗k(ξ).

For every P ∈ P|β|−1, we can write

AQ =
∫

ρQ(x)∂β(g(x) − P (x))dx.

Therefore, in the case g ∈ L1
loc, the desired inequality follows from integration by parts.

3 Proof of Theorems 1.1 and 1.2

The following lemma is our good λ-inequality that we mentioned in the Section 1 and is the key
to the proofs of Theorems 1.1 and 1.2. Miyachi proved Lemma 3.1 in his unpublished paper. For
convenience for readers, we give his proof.

Lemma 3.1. Let 0 < r < ∞ and l ∈ N0 Then, there exist B = B(n, r, l) > 1, C0 = C0(n, r, l) > 0

so that for each Q ∈ Q, f ∈ Lr(Q), λ >
(∫
−

Q

|f |rdy
)1/r

and 0 < δ ≤ 1

|{x ∈ Q; M̃Q
r f(x) > Bλ, f̃

](r),Q
l,0 ≤ δλ}| ≤ C0

( δ

B

)r

|{x ∈ Q; M̃Q
r f(x) > λ}|. (1)

Proof. The constant B > 1 will be chosen later. We put

Eλ := {x ∈ Q; M̃Q
r f(x) > Bλ, f̃

](r),Q
l,0 ≤ δλ}

and
Ωλ := {x ∈ Q; M̃Q

r f(x) > λ}.
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We may assume that both Eλ and Ωλ are not empty. Then we can find a family of dyadic cubes

R = {R} satisfying R 6= Q and
(∫
−

R

|f |rdy
)1/r

> λ. We collect maximal dyadic cubes {Rj}j∈N

from R. It is clear that
⋃
j∈N

Rj = Ωλ. Therefore, it suffices to prove

|{x ∈ Q; M̃Q
r f(x) > Bλ} ∩ Rj | ≤ C0

( δ

B

)r

|Rj | (2)

assuming Xj := {x ∈ Q; f̃ ](r),Q
l,0 (x) ≤ δλ} ∩ Rj 6= ∅.

Let R̃j be the dyadic double of Rj and we take π ∈ Πl(f, Lr(R̃j)) and x ∈ Rj such that M̃Q
r f(x) >

Bλ. Hölder’s inequality yields that

Bλ < M̃Q
r f(x) ≤ max(1, 31/r−1)

×
(
M̃Q

r ((f − π)χR̃j
)(x) + M̃Q

r (fχRn\R̃j
)(x) + M̃Q

r (πχR̃j
)(x)

)
.

Because of the maximal property of Rj , we have that

M̃Q
r (fχRn\R̃j

)(x) = sup
x∈I⊂Q

I∈Q

(∫
−

I

|fχRn\R̃j
|rdy

)1/r

= sup
x∈I,R̃j⊂I⊂Q

I∈Q

(∫
−

I

|fχRn\R̃j
|rdy

)1/r

≤ λ,

and by σ < n/r and by (ii) of Lemma 2.2,

M̃Q
r (πχR̃j

)(x) = sup
x∈I⊂Q

I∈Q

|I|−1/r‖πχR̃j
‖Lr(I)

= sup
x∈I⊂R̃j

I∈Q

|I|−1/r‖π‖Lr(I)

≤ ‖π‖L∞(R̃j)

≤ c
(∫
−

R̃j

|f |rdy
)1/r

≤ cλ.

Hence we obtain
M̃Q

r ((f − π)χR̃j
)(x) >

( B

max(1, 31/r−1)
− 1 − c

)
λ.

Here if B satisfies ( B

max(1, 31/r−1)
− 1 − c

)
λ >

B

31/r−1 + 1
λ,

then we have

{x ∈ Q; M̃Q
r f(x) > Bλ} ∩ Rj ⊂ {x ∈ Q; M̃Q

r ((f − π)χR̃j
)(x) > B/(31/r−1 + 1)λ}.

From this inclusion and the Lr − Lr,∞ boundedness of Mr, we have

|{x ∈ Q; M̃Q
r f(x) > Bλ} ∩ Rj | ≤ c

( ‖(f − π)χR̃j
‖Lr

B/(31/r−1 + 1)λ

)r

≤ c

( |R̃j |1/r inf
ξ∈R̃j

f̃
](r),Q
l,0 (ξ)

Bλ

)r

≤ C0

( δ

B

)r

|Rj |,
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which is exactly the inequality (2). Here we have used the assumption Xj 6= ∅ for the above last
inequality.

Remark 3.1. By using (2) and the reverse doubling inequality, we can obtain that for all j and
w ∈ A∞ ∩ RH1+ε,

w({x ∈ Q; M̃Q
r f(x) > Bλ} ∩ Rj) ≤ c(C0

( δ

B

)r

)ε/(1+ε)w(Rj)

with a constant c independent of j. Here, A∞ is the Muckenhoupt weight class and RHε the reverse
Hölder class, that is, for a positive locally integrable function w, w ∈ A∞ if and only if

sup
Q

(
∫
−

Q

wdx) exp(
∫
−

Q

log w−1dx) < ∞

and w ∈ RHε if and only if (
∫
−

Q

wεdx)1/ε ≤ c

∫
−

Q

wdx for all cubes Q ⊂ Rn. Therefore, we have

the weighted version of (1);

w(Eλ) ≤ c(C0

( δ

B

)r

)ε/(1+ε)w(Ωλ).

3.1 Proof of Theorem 1.1

In this subsection, we prove Theorem 1.1 by using Lemma 3.1. But, since it is clear that Corollary
3.1 and Proposition 3.1 below imply Theorem 1.1, we omit the details of the proof of Theorem 1.1.

Corollary 3.1. Let 0 < p, r < ∞, 0 < q ≤ ∞, α ∈ R and l ∈ N0. Then, there exists a constant c
such that for every f ∈ Lr

loc(Rn\{0}),

‖f‖K̇α
p,q

≤ c
(
‖f ](r),Q∗

·
l,0 ‖K̇α

p,q
+ ‖f‖

K̇
α+n(1/q−1/r)
p,r

)
.

Proof. Once we prove the following inequality, the proof is completed;

‖M̃Qk
r f‖Lp(Qk) ≤ c

(
‖f̃ ](r),Qk

l,0 ‖Lp(Qk) + |Qk|1/p
(∫
−

Qk

|f |rdy
)1/r)

. (3)

Let λ > (2n(2n − 1))1/r
(∫
−

Qk

|f |rdy
)1/r

. We decompose Qk into 2n(2n − 1) disjoint congruent

cubes whose sidelengths are 2k−1. We denote by {Qj
k}

2n(2n−1)
j=1 these disjoint cubes. Since the

volume of each Qj
k equals to 2−n(2n − 1)−1|Qk|, we see that λ >

(∫
−

Qj
k

|f |rdy
)1/r

for all j. Then,

from Lemma 3.1 there exist constants B > 1 and C0 > 0 so that for all j the inequality (1) with

Q = Qj
k holds. Now we remark that M̃

Qj
k

r f coincides with M̃Qk
r f , and f̃

](r),Qj
k

l,0 coincides with

f̃
](r),Qk

l,0 on Qj
k. Hence, we obtain that

|{x ∈ Qj
k; M̃Qk

r f(x) > Bλ, f̃
](r),Qk

l,0 (x) ≤ δλ}|

≤ C0

( δ

B

)r

|{x ∈ Qj
k; M̃Qk

r f(x) > λ}|

for all j. By taking the sum of these inequalities over j, we have the following good λ-inequality
for Qk:

|{x ∈ Qk; M̃Qk
r f(x) > Bλ, f̃

](r),Qk

l,0 (x) ≤ δλ}|

≤ C0

( δ

B

)r

|{x ∈ Qk; M̃Qk
r f(x) > λ}|.

The same computation as [35, Theorem 1.3] gives us the norm inequality (3). The rest of the proof
is easy.
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Remark 3.2. By the last inequality in Remark 3.1, we have the weighted version of (3);

‖M̃Qk
r f‖Lp

w(Qk) ≤ c
(
‖f̃ ](r),Qk

l,0 ‖Lp
w(Qk) + w(Qk)1/p

(∫
−

Qk

|f |rdy
)1/r)

,

where, of course, the constant c is independent of k. Then, it is easy to see that for wi ∈ A∞, (i =
1, 2),

‖f‖K̇α
p,q(w1,w2)

≤ c

(
‖f ](r),Q∗

·
l,0 ‖K̇α

p,q(w1,w2)

+
(∑

k∈Z

w1(Qk)qα/nw2(Qk)q/p
(∫
−

Qk

|f |rdy
)q/r)1/q

)
,

where K̇α
p,q(w1, w2) is the weighted Herz space, see [24], for the definition of weighted Herz spaces.

Proposition 3.1. Let 0 < p, r < ∞, 0 < q ≤ ∞, −n/p < α and l ∈ N0. Then, there exists a

constant c so that for f ∈ Lr
loc(Rn\{0}) satisfying that

(∫
−

Qj

|f |rdy
)1/r

→ 0 as j → ∞,

‖f‖K̇
α0
p,r

≤ c‖f ](r),Q∗
·

l,0 ‖K̇α
p,q

,

where α0 = α + n(1/p − 1/r).

Proof. From the same decomposition as Corollary 3.1, we can write

‖f‖K̇
α0
p,r

≤ c

2n(2n−1)∑
j=1

(
∑
k∈Z

2kα0q‖f‖q

Lr(Qj
k)

)1/q.

Then it suffices to prove

(
∑
k∈Z

2kα0q‖f‖q

Lr(Qj
k)

)1/q ≤ c‖f ](r),Q∗
·

l,0 ‖K̇α
p,q

.

We take polynomials πk belonging to Πl(f, Lr(Qj
k)) for every j and k. From a chain of inequalities

‖f − πk‖Lr(Qj
k) = inf

P∈Pl

‖f − P‖Lr(Qj
k)

≤ |Qj
k|

1/r inf
ξ∈Qj

k

f
](r),Qk

l,0 (ξ)

≤ |Qj
k|

1/r−1/p‖f ](r),Q∗
k

l,0 ‖Lp(Qj
k),

we have (∑
k∈Z

2kα0q‖f − πk‖q

Lr(Qj
k)

)1/q

≤ c‖f ](r),Q∗
·

l,0 ‖K̇α
p,q

.

Therefore, we have only to show the inequality

(
∑
k∈Z

2kα0q‖πk‖q

Lr(Qj
k)

)1/q ≤ c‖f ](r),Q∗
·

l,0 ‖K̇α
p,q

. (4)

From our assumption, for every integer k, we can take a sufficiently large integer Nk > k + 1
satisfying

|Qj
k|

(α0+n/r±1)/n
(∫
−

Qj
Nk

|f |rdy
)1/r

≤ ‖f ](r),Q∗
·

l,0 ‖K̇α
p,q

.
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We decompose in the following way;

‖πk‖Lr(Qj
k) ≤ |Qj

k|
1/r‖πk‖L∞(Qj

k)

≤ |Qj
k|

1/r
Nk−1−k∑

i=0

‖πk+i − πk+i+1‖L∞(Qj
k) + |Qj

k|
1/r‖πNk

‖L∞(Qj
k)

=: I + II.

We shall prove
(
∑
k∈Z

2kα0q Iq)1/q ≤ c‖f ](r),Q∗
·

l,0 ‖K̇α
p,q

. (5)

A geometric observation shows that

Qj
k+i ⊂ 2Qj

k+i+1 ⊂ Qk+i ∪ Qk+i+1 ∪ Qk+i+2 =: Q∗
k+i+1, and

Qj
k ⊂ 3Qj

k+i+1,

for every k ∈ Z and i = 0, · · · , Nk − 1 − k. Then, by using (ii) in Lemma 2.1 we have

‖P‖L∞(Qj
k) ≤ ‖P‖L∞(3Qj

k+i+1)

≤ c‖P‖L∞(2Qj
k+i+1)

,

for any polynomial P, k ∈ Z and i = 0, · · · , Nk − 1 − k. From this inequality and (iii) in Lemma
2.2, we obtain

‖πk+i − πk+i+1‖L∞(Qj
k) ≤ c‖πk+i − πk+i+1‖L∞(2Qj

k+i+1)

≤ c inf
P∈Pl

(∫
−

2Qj
k+i+1

|f − P |rdy
)1/r

≤ c inf
ξ∈Qj

k+i+1

f
](r),2Qj

k+i+1
l,0 (ξ)

≤ c|Qj
k+i+1|

−1/p‖f ](r),2Qj
k+i+1

l,0 ‖Lp(Qj
k+i+1)

≤ c2−(k+i)n/p‖f ](r),Q∗
k+i+1

l,0 ‖Lp(Qj
k+i+1)

.

Hence in order to prove (5), it suffices to prove that

(∑
k∈Z

2k(α0+n/r)q(
∞∑

i=k

2−in/p‖f ](r),Q∗
i

l,0 ‖Lp(Qj
i )

)q
)1/q

≤ c
(∑

k∈Z

2kαq‖f ](r),Q∗
k

l,0 ‖q
Lp(Qk)

)1/q

. (6)

If 0 < q ≤ 1, then (6) can be shown as follows

(∑
k∈Z

2k(α0+n/r)q(
∞∑

i=k

2−in/p‖f ](r),Q∗
i

l,0 ‖Lp(Qj
i )

)q
)1/q

≤
(∑

i∈Z
2iαq‖f ](r),Q∗

i

l,0 ‖q

Lp(Qj
i )

2−i(α+n/p)q
i∑

k=−∞

2k(α0+n/r)q
)1/q

≤ c
(∑

k∈Z

2kαq‖f ](r),Q∗
k

l,0 ‖q
Lp(Qk)

)1/q

.

Here we have used the assumption −n/p < α. If q = ∞, then (6) can be seen immediately as
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follows;

2k(α0+n/r)
∞∑

i=k

2−in/p‖f ](r),Q∗
i

l,0 ‖Lp(Qj
i )

≤
(
sup
i∈Z

2iα‖f ](r),Q∗
i

l,0 ‖Lp(Qi)

)
2k(α0+n/r)

∞∑
i=k

2−i(α+n/p)

≤ c sup
k∈Z

2kα‖f ](r),Q∗
k

l,0 ‖Lp(Qk).

Here we have again used the assumption −n/p < α. Finally, the case 1 < q < ∞ can be proved
by the use of interpolation.

Next, we shall prove
(
∑
k∈Z

2kα0q IIq)1/q ≤ c‖f ](r),Q∗
·

l,0 ‖K̇α
p,q

.

Since Qj
k ⊂ 3Qj

Nk
, we obtain

‖πNk
‖L∞(Qj

k) ≤ ‖πNk
‖L∞(3Qj

Nk
)

≤ c‖πNk
‖L∞(Qj

Nk
)

≤ c
(∫
−

Qj
Nk

|f |rdy
)1/r

≤ c2−k(α0+n/r±1)‖f ](r),Q∗
·

l,0 ‖K̇α
p,q

,

which imply the inequality above and completes the proof of Proposition 3.1.

Remark 3.3. From the last inequality in Remark 3.2, we obtain the following result. We omit the
detail of the calculation.

Let p, q, α, α0, r, s, τ be the same as in Proposition 3.1 and σ = 0. Let wi ∈ Aρi , (i = 1, 2) with
1 ≤ ρi < ∞ and w1 ∈ RH1+ε. And we put δ(α) = ρ1 if α ≥ 0, = ε/(1 + ε) if −n/p < α < 0. In
the case w1 = w2, we have that(∑

k∈Z

w1(Qk)qα/nw2(Qk)q/p
(∫
−

Qk

|f |rdy
)q/r)1/q

≤ c‖f ](r),Q∗
·

l,0 ‖K̇α
p,q(w1,w2)

.

On the other hand, in the case w1 6= w2, if αδ(α) > −nρ2/p, then we have the same inequality.

3.2 Proof of Theorem 1.2

In the subsection, we consider Theorem 1.2. Sawano and Tanaka proved similar results to Corollary
3.2 and Proposition 3.2 with 1 < q and r = 1. It is trivial that Corollary 3.2 and Proposition 3.2
complete the proof of Theorem 1.2. The arguments in this subsection are similar to those in [35]
and are more simple than the one in the case Herz space. But we shall give the proof of Corollary
3.2 and Proposition 3.2 for the sake of completeness.

Corollary 3.2. Let 0 < q ≤ p < ∞, 0 < r < ∞ and l ∈ N0. Then, there exists a constant c so
that for any f ∈ Lr

loc,

‖f‖Mp
q
≤ c

(
‖f ](r),I·

l,0 ‖Mp
q

+ ‖f‖Mp
r

)
.
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Proof. Since we have a “ locally ” good λ-inequality in Lemma 3.1, the argument in [35, Theorem
1.3] implies that for all dyadic cubes I,

‖M̃ I
r f‖Lq(I) ≤ c

(
‖f ](r),I

l,0 ‖Lq(I) + |I|1/q
(∫
−

I

|f |rdy
)1/r)

,

which says that the required inequalities hold. Here we have used the equivalence of the norm of
Morrey space mentioned after Definition 2.3.

Proposition 3.2. Let 0 < q ≤ p < ∞, 0 < r ≤ p and l ∈ N0. Then, there exists a constant c so

that for f ∈ Lr
loc satisfying

(∫
−

Ik

|f |rdy
)1/r

→ 0 as k → ∞, Ik = 2kI, for some cube I ∈ Rn,

‖f‖Mp
r
≤ c‖f ](r),I·

l,0 ‖Mp
q
.

Proof. As a mentioned in Remark 1.2, it follows from the decay condition that for all cubes I, we
have (∫

−
Ik

|f |rdy
)1/r

→ 0 as k → ∞.

Let πR ∈ Πl(f, Lr(R)) for any cubes R. Going through a similar argument as the proof of Propo-
sition 3.1, we obtain

|R|1/p
(∫
−

R

|f − πR|rdy
)1/r

≤ c‖f ](r),I·
l,0 ‖Mp

q
,

for every cube R. Then it only remains to verify for each R

|R|1/p
(∫
−

R

|πR|rdy
)1/r

≤ c‖f ](r),I·
l,0 ‖Mp

q
.

To do this, we decompose(∫
−

R

|πR|rdy
)1/r

≤
N−1∑
i=1

‖πRi − πRi+1‖L∞(R) + ‖πRN
‖L∞(R),

with a large integer N satisfying

|R|1/p
(∫
−

RN

|f |rdy
)1/r

≤ ‖f ](r),I·
l,0 ‖Mp

q
.

Now because that R ⊂ Ri ⊂ Ri+1, it readily follows that

‖πRi − πRi+1‖L∞(R) ≤ inf
P∈Pl

(∫
−

Ri+1

|f − P |rdy
)1/r

≤ c|Ri+1|−1/q‖f ](r),Ri+1
l,0 ‖Lq(Ri+1).

Therefore, we can conclude the desired inequality as follows;

|R|1/p
N−1∑
i=1

‖πRi − πRi+1‖L∞(R) ≤ c|R|1/p
N−1∑
i=1

|Ri+1|−1/q‖f ](r),Ri+1
l,0 ‖Lq(Ri+1)

≤ c‖f ](r),I·
l,0 ‖Mp

q

and

|R|1/p‖πRN
‖L∞(R) ≤ c|R|1/p

(∫
−

RN

|f |rdy
)1/r

≤ c‖f ](r),I·
l,0 ‖Mp

q
.
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4 Proof of Theorems 1.3 and 1.4

In this section, we prove the bilinear estimates in Theorems 1.3 and 1.4 by using Theorems 1.1
and 1.2 and the following pointwise estimate for the sharp maximal function of f∇mg. Miyachi
showed the inequality (ii) of Proposition 4.1 with m = 1 in his unpublished paper. The statement
(iii) is an analogy of (ii) which is not used in the present paper. Let p+ = max(p, 1).

Proposition 4.1. Let 0 < r < s < ∞, 1/r = 1/s + 1/s′, m ∈ N and β be a multi-index with
|β| = m. Then, there exists a constant c such that the following (i), (ii) and (iii) hold.
(i): If f ∈ Ls

loc(Ω) and g ∈ Ls′

loc(Ω), then for x ∈ Ω,

(fg)](r),Ω
0,0 (x) ≤ c

(
MΩ

s f(x)g](s′),Ω
0,0 (x) + f

](s),Ω
0,0 (x)MΩ

s′g(x)
)
.

(ii): If f ∈ Ls
loc(Ω) and g ∈ D ′ with ∂βg ∈ L

s′
+

loc(Ω), then for x ∈ Ω and k ∈ N0,

(f∂βg)](r),Ω
m,0 (x) ≤ c

(
MΩ

s f(x)(∂βg)
](s′

+),Ω

0,0 (x) + f ](r),Ω
m,m (x)g∗k(x)

)
.

(iii): If f ∈ Ls
loc(Ω), g ∈ L1

loc(Ω) with ∂βg ∈ Ls′

loc(Ω) and ∇m+1g ∈ BMO, and s′ ≤ 1, then for
x ∈ Ω,

(f∂βg)](r),Ω
m+1,0(x) ≤ c

(
M1,Ω

s f(x)‖∇m+1g‖BMO(Ω) + f ](s),Ω
m,m (x)MΩ

s′g(x)
)
.

Proof. (i): Let Q be a cube in Ω with x ∈ Q. Let πQ(f) ∈ Π0(f, Ls(Q)) and πQ(g) ∈ Π0(g, Ls′
(Q)).

From the estimate(∫
−

Q

|fg − πQ(f)πQ(g)|rdy
)1/r

≤ c

((∫
−

Q

|f−πQ(f)|sdy
)1/s(∫

−
Q

|g|s
′
dy

)1/s′

+
(∫
−

Q

|f |sdy
)1/s(∫

−
Q

|g − πQ(g)|s
′
dy

)1/s′)1/p

,

we see that

sup
x∈Q⊂Ω

(∫
−

Q

|fg − πQ(f)πQ(g)|rdy
)1/r

≤ c
(
MΩ

s f(x)g](s′),Ω
0,0 (x) + f

](s),Ω
0,0 (x)MΩ

s′g(x)
)
.

(ii): Let Q be such a cube. For any polynomial P ∈ Pm, we shall estimate
(∫
−

Q

|f∂βg −

AQP |rdy
)1/r

where AQ is the constant appearing in Lemma 2.6. Hölder’s inequality and the
properties of AQ give us that(∫
−

Q

|f∂βg − AQP |rdy
)1/r

≤
(∫
−

Q

|f |sdy
)1/s(∫

−
Q

|∂βg − AQ|s
′
dy

)1/s′

+
(∫
−

Q

|f − P |rdy
)1/r

|AQ|

≤ c
(
MΩ

s f(x) inf
c∈C

|Q|−1/s′
+‖∂βg − c‖

L
s′+ (Q)

+
(∫
−

Q

|f − P |rdy
)1/r

|Q|−m/ng∗k(x)
)
.

Therefore, we have

(f∂βg)](r),Ω
m,0 (x) ≤ c

(
MΩ

s f(x)(∂βg)
](s′

+),Ω

0,0 (x) + f ](r),Ω
m,m (x)g∗k(x)

)
.

(iii): Let Q be a cube in Ω with x ∈ Q. We take π ∈ Πm+1(g, Ls′
(Q)). Remark that, in this

setting, we see that

g
](1),Q
m,m+1 ∈ L1(Q) and

g
](s′),Q
m+1,m+1(x) < ∞ a.e. x ∈ Q.

(7)

16



In fact, by Theorem 6.2 in [10], we have a chain of inequalities

‖g](1),Q
m,m+1‖L1(Q) ≤ c|Q|1/2‖g](1),Q

m,m+1‖L2(Q)

≤ c|Q|1/2‖∇m+1g‖L2(Q) < ∞.

On the other hand, because g
](s′),Q
m+1,m+1 is dominated by g

](1),Q
m,m+1, the second assertion follows from

the first one. (7) imply the inequality

|∂βg(y) − ∂βπ(y)| ≤ c|Q|1/ng
](s′),Q
m+1,m+1(y), a.e. y ∈ Q. (8)

For the proof of this estimate, see [10, Lemma 5.2 and Corollary 5.7].
Hence, (ii) in Lemma 2.2, Lemma 2.3, (8) and Markov’s inequality yield that for any P ∈ Pm,(∫
−

Q

|f∂βg − P∂βπ|rdy
)1/r

≤
(∫
−

Q

|f |sdy
)1/s(∫

−
Q

|∂βg − ∂βπ|s
′
dy

)1/s′

+
(∫
−

Q

|f − P |sdy
)1/s(∫

−
Q

|∂βπ|s
′
dy

)1/s′

≤ c
(
M1,Ω

s f(x)
∑

|α|=m+1

‖(∂αg)
](s′

+),Q

0,0 ‖L∞(Q) + |Q|−m/n
(∫
−

Q

|f − P |sdy
)1/s

MΩ
s′g(x)

)
.

Thus, we obtain

(f∂βg)](r),Ω
m+1,0(x) ≤ c

(
M1,Ω

s f(x)‖∇m+1g‖BMO(Ω) + f ](s),Ω
m,m (x)MΩ

s′g(x)
)
.

This is what we desired.

4.1 Proof of Theorem 1.3

Proof. (i): Let 0 < r < min(1/2, p/2). Since(∫
−

Qj

|f2|rdy
)1/r

≤ 2−2j(α+n/p)‖f‖2
K̇α

p,q
→ 0, as j → ∞,

we can use Theorem 1.1 and hence, we have

‖f2‖K̇α
p,q

≤ c‖(f2)](r),Q∗
·

0,0 ‖K̇α
p,q

,

‖g2‖K̇α
p,q

≤ c‖(g2)](r),Q∗
·

0,0 ‖K̇α
p,q

.

Then we obtain the required inequality in the following way;

‖fg‖K̇α
p,q

≤ ‖f2‖1/2

K̇α
p,q

‖g2‖1/2

K̇α
p,q

≤ c‖(f2)](r),Q∗
·

0,0 ‖1/2

K̇α
p,q

‖(g2)](r),Q∗
·

0,0 ‖1/2

K̇α
p,q

≤ c‖M2rf f
](2r),Q∗

·
0,0 ‖1/2

K̇α
p,q

‖M2rg g
](r),Q∗

·
0,0 ‖1/2

K̇α
p,q

≤ c‖f‖1/2

K̇α
p,q

‖f‖1/2

K̇0
BMO,∞

‖g‖1/2

K̇α
p,q

‖g‖1/2

K̇0
BMO,∞

≤ c
(
‖f‖K̇α

p,q
‖g‖K̇0

BMO,∞
+ ‖f‖K̇0

BMO,∞
‖g‖K̇α

p,q

)
.

(ii): Firstly we shall show that if h ∈ K̇0
∞,BMO, then we have∫

−
Qk

|h|dx = O(k), as k → ∞, (9)
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We remark the equivalence ∫
−

Qk

|h|dx ≈ max
1≤j≤2n(2n−1)

∫
−

Qj
k

|h|dx.

Recall that each of Qj
k is a subcube of Qk, appearing in the proof of Corollary 3.1 and Proposition

3.1. Let πi ∈ Π0(h,L1(Qj
i )). Since Qj

i , Qj
i+1 ⊂ 2Qj

i+1 ⊂ Q∗
i+1, we obtain

∫
−

Qj
k

|h − π1|dx ≤
∫
−

Qj
k

|h − πk|dx +
k−1∑
i=1

|πi − πi+1|

≤ c inf
P∈Pl

∫
−

Qj
k

|h − P |dx + c
k−1∑
i=1

inf
P∈Pl

∫
−

2Qj
i+1

|h − P |dx

≤ ck‖h‖K̇0
BMO,∞

,

which imply (9). Applying (9) to ∇mg one obtains that for any ε > 0, 2−εk

∫
−

Qk

|∇mg|dy → 0 as

k → ∞, and as a consequence, we have(∫
−

Qk

|f∇mg|rdy
)1/r

→ 0

as k → ∞ for all 0 < r < p/(p + 1). Hence, from Theorem 1.1, we obtain Fefferman-Stein’s
inequality;

‖f∇mg‖K̇α
p,q

≤ c‖(f∇mg)](r),Q∗
·

m,0 ‖K̇α
p,q

with sufficiently small r. Combining the above inequality with (ii) of Proposition 4.1 and Lemma
2.3 leads us to the following estimate; for sufficiently large k,

‖f∇mg‖K̇α
p,q

≤ c
(
‖f‖K̇α

p,q
‖∇mg‖K̇0

BMO,∞
+ ‖∇mf‖K̇0

BMO,∞
‖g∗k‖K̇α

p,q

)
.

Finally, the estimate ‖g∗k‖K̇α
p,q

≤ c‖g‖HK̇α
p,q

follows from Uchiyama’s pointwise estimate in [41];

g∗k(x) ≤ cMn/(n+k)(φ+(g))(x).

Remark 4.1. As we mentioned in 4 of Remark 1.1, Remarks 3.2, 3.3 and Proposition 4.1 yield
the weighted version of Theorem 1.3. See [24] for the boundedness of M on the weighted Herz
spaces.

4.2 Proof of Theorem 1.4

Proof. (i): Let 0 < r < min(1/2, q/2). Since f, g ∈ Mp
q , f2 and g2 satisfy the decay assumption in

Thoerem 1.2. Then we obtain

‖f2‖Mp
q
≤ c‖(f2)](r),I·

0,0 ‖Mp
q

‖g2‖Mp
q
≤ c‖(g2)](r),I·

0,0 ‖Mp
q
.
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By these inequalities and (i) of Proposition 4.1, we have

‖fg‖Mp
q
≤ ‖f2‖1/2

Mp
q
‖g2‖1/2

Mp
q

≤ c‖(f2)](r),I·
0,0 ‖1/2

Mp
q
‖(g2)](r),I·

0,0 ‖1/2

Mp
q

≤ c‖f ](2r),I·
0,0 M2rf‖1/2

Mp
q
‖g](2r),I·

0,0 M2rg‖1/2

Mp
q

≤ c‖f‖1/2

Mp
q
‖f‖1/2

BMO ‖g‖1/2

Mp
q
‖g‖1/2

BMO

≤ c
(
‖f‖Mp

q
‖g‖BMO + ‖f‖BMO ‖g‖Mp

q

)
.

(ii), (iii): The same arguments as the proof of Theorem 1.4 complete the proof.

Remark 4.2. In the proof of Theorems 1.3 and 1.4, we showed the following interpolation in-
equalities;

‖f‖
K̇

α/2
2p,2q

≤ c‖f‖1/2

K̇α
p,q

‖f‖1/2

K̇0
BMO,∞

,

‖f‖M2p
2q

≤ c‖f‖1/2

Mp
q
‖f‖1/2

BMO.
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