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Abstract
In this short article, we consider estimates of the ratio
[ £l Barocny /| flBMO

from above and below, where w belongs to Muckenhoupt class Ae. The upper bound of the ratio was proved
by Hytonen and Pérez in [6] with the optimal power. We establish the lower bound of the ratio and give
two other proofs of the upper bound.
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1 Introduction

In this paper, we are interested in estimates of the ratio

£l rcoy /I flBro

with respect to the weight w belonging to Muckenhoupt class A.,. Our purposes are to establish the lower
bound of the ratio and to give two other proofs of the upper bound due to Hyténen and Pérez in [6].

In [9], Muckenhoupt and Wheeden proved that for any w € A, it holds BMO(w) = BMO. Recently, Hytonen
and Pérez [6] gave the upper bound of the ratio;

| FlBrroqw) < enllwlaslfl a0, (1)

where |w]|| 4., is Wilson’s A constant, see Definition 2.4. Moreover, they [6] proved that the power 1 of |w] 4.
cannot be replaced by any smaller quantity. Main result in this paper is the following lower bound of the ratio.

Theorem 1.1. There exists ¢, >0 such that for any w € Aeo,

IflBro < enlog(2[w]a ) flBaroqw)- (2)
Remark 1.1. 1. We do not know whether the order log(2[w]a_,) is optimal or not.
2. If the inequality
IflBro < enlflBrrow)

is true, the exponent 0 of [w]a
E cR™ and large t, it follows

is optimal. In fact, for w(zx) =txg(x) + xpc(x) € A1 with a compact set

oo

1
logw| saro = [logw| parow) = 3 log t.

We will give two other proofs of the upper bound (1). To verify (1) in [6], they used the reverse Holder
inequality;
wr)g"™ < 2w,

for a cube Q c R™ and r,, = 1+ (¢, |w| a..)~!. Our proofs of (1) are not based on this type inequality. Our main
tools are a dual inequality with the sharp maximal operator M )”\ due to Lerner [7] and another representation
of |w]a.-

*Department of Mathematics, Faculty of Science and Engineering, Waseda University, Okubo 3-4-1, Shinjyuku-ku, Tokyo, 169-
8555, Japan.

e-mail: y.tsutsui@kurenai.waseda.jp



These estimates are related to the sharp weighted inequalities for Calderén-Zygmund operators. The sharp
weighted inequality for an operator 7' means the inequality

ITf 2wy < enp e @([wla,) [ f] e w) 3)

with the optimal growth function ® on [1,00) in the sense that ® cannot be replaced by any smaller function.
Recently, Hytonen [5] solved so-called As conjecture i.e. for any Calderén-Zygmund operator 7' (3) holds
with ®(t) = t. By combining this with the extrapolation theorem in [1], we can see that for p € (1,00) (3)
with ®(t) = t™x(11/(P=1) holds and the exponent max(1,1/(p—1)) is optimal. From the upper bound (1), it
immediately follows

ITflBrow) € enl T L=-Brolwlanl L)

which corresponds to(3) with p = co. Further, they [6] showed the optimality of the exponent 1 of |w]4.. On
the other hand, our lower bound (2) yields that

1T Brro(w)—>BMO(w) <
cn| Tl Baro—paolw| ., log(2[w]a., ).

2 Preliminaries

We say w a weight if w is a non-negative and locally integrable function. For a subset E c R™, xp means the
characteristic function of E and |E| denotes the volume of E. By a “ cube ” () we mean a cube in R™ with sides

parallel to the coordinate axes. Throughout this article we use the following notations; w(Q) = /Q wdz, (f)g =
1 f 1
Z | fdr and (f)ow = 7f Fwds.
@l Jo < w(Q) Jo
Firstly, we recall definitions of Muckenhoupt classes A, and BMO spaces.

Definition 2.1. A weight w is said to be in the Muckenhoupt class if the following A, constant [w]a, is finite;

[w]a, = Sgp(w)QHw_lHLw(Q)v

[w]a, = sup(w)Q(wl"")gl, for pe (1,00)
Q

and
[w]a. =supfw) exp({logw™)q).
Remark 2.1. 1. [w]a, 21 andp<q= A, cA,.
2. Because liil(l)(|f|r)gT = exp{log|f|)q, it follows li]m [w]a, =[w]a,-
T p /oo

P

Definition 2.2. With a weight w, one defines BMO(w) as the space of locally integrable functions f with
respect to w such that

Ifl Brro(w) = Sgpﬂf —(f)oswl)w < oo.

Remark 2.2. There is another weighted BM O, BMO,,, which is defined by

1
|f|BMow=sgpicrel(£w(Q)Qf|f—c|daﬁ<oo.

It is known that for w € Ao, this space is the dual space of the weighted Hardy space H'(w), i.e. BMO,, =
(Hl(w))*, see [3].
The definition of Wilson’s constant |w| 4., uses the restricted Hardy-Littlewood maximal operator.

Definition 2.3. For any measurable subset EE c R"™, Hardy-Littlewood maximal operator Mg restricted to E is
defined by

Mgf(z) = sup (|f])r,
EbR>x

where the supremun is taken over all cubes R containing x and included in E. When E =R", we write M = Mg.



Definition 2.4. 1
HwHAmzsupifM wdz.
Q w(Q) ©

oo

Remark 2.3. 1. we A, < ||w|a, <oo, and |w|a, < culw]a,-
2. There are several equivalent quantities to |w|a..;

1 1
|w|Awwsgpw(Q)walog(e+<w)Q)dx

1
~ sup ——||lw]| £10g (@
Q (wg o8 (@)

1
~ sup

~ SUp

1
—— | |Rj(xqw)l|dx,
Q w(Q)Qé

where Jj=1n, “fHLlogL(Q) is deﬁned by

inf {)\ > 0; <|§|log (e+ |§|)>Q < 1}

and R; is the j-th Riesz transformation. The first and second equivalences are proved by LlogL theory
due to Stein [10]. The third and fourth ones were proved by Fujii [2]. From the third representation, we
obtain an inequality

M(xqw)(2Q) < cnfw]a.w(@Q),
which should be compared with the doubling inequality with [w]a

oo/

w(2Q) < 2% [w]}_w(Q),

see for example [4].

3 Lower bound

Owing to a version of John-Nirenberg inequality in the context of non-doubling measures in [8], one obtains a
variant of the equivalence
I1msi0 =51 17 = (Halloxp (@) )

with constants independent of weights.

Lemma 3.1. There exist constants c1,co >0 such that for any w € A, it follows
C1 Sgp Hf‘(f)Q;w Hexp L(Qyw) < ”fHBMO(w)

6 Slclgp If- (f)Q;wHexp L(Q;w)>

inf{)\>0;<exp(|§|)—1> Sl}.
Qsw

With this lemma, we give a proof of our lower bound, Theorem 1.1.

where | flexp L(0sw) 15 defined by

Proof of Theorem 1.1. From the definition of | f|exp .(;w) above, it follows

. 'f')> 2
(e p(|f|expL(Q;w) Qw ==



By using the version of Jensen’s inequality

exp(9)q < [w]a.(exp(9)) @, (5)

one obtains
(I/q <log(2[w]a) [ f lexp L(@suw)-
The proof is completed by this inequality and Lemma 3.1 as follows:

(If =(Hehe <2(f - (Haowle
< 2log(2[w]a ) f = (F)@uwlexp L(@iw)
< e log(2[w]a )| fll Brrow)-

Remark 3.1. The inequality (5) is equivalent to

exp(log|fl)q < [w]an (I, (6)

which should be compared with (7). (6) can be verified by taking p » oo in

(F177)e < [w]a, 1D Quws

see 2 in Remark 2.1.

4 Two other proofs of the upper bound

Here, we give two other proofs of the upper bound without reverse Holder inequality.

4.1 Method based on a dual inequality

The key inequality in this method is the following dual inequality with local sharp maximal operator due to
Lerner [7];

Proposition 4.1. There ezists ¢, >0 so that for any A < ¢y,

& [ 1F~Nalade s e, [ 2} arggd
Q Q

where MY f(x) = sup iné (xo(f-¢))"(NQ), (0<A<1) and g* means the non-increasing rearrangement of g.
Q>az C€

Using this proposition, we can immediately show the optimal upper bound (1) as follows:

Proof of (1).
(If - (f)Q;w|)Q;w <2(|f - <f>Q|>Q;w
L f M f Mowdz
Q

<cp

w(Q)

< el flBaolw]a-



4.2 Method based on another representation of |w| 4.,
Next, we give a proof of (1) by using another representation of |w]| ...
Proposition 4.2.

{1/ @:w

|w]a. »sup — ==,
Q.f Hf“expL(Q)

oefolt) )

Remark 4.1. This form should be compared with

where | f|exp L(Q) 5 defined by

_ o exp(log|fl)e
[l = =

see for example [3].
We show this proposition and then give a proof of (1).

Proof. By Holder inequality in the context of Orlicz spaces, we have

(1w <o) s o1 |0l 10 10

< CnHwHAw Hf”exp L(Q)-

On the other hand, for a cube @, from the duality, we can find a function g € exp L(Q) such that
1
[0l 108 260 |9llex (@) < i | [ wgdal
Q')

< en(w)o(l9l) Qs

and then, by using the representation of |w| 4., in Remark 2.3, one obtains

1
w <cpsup ——||lw
” HAee n Qp (w>Q H HLlogL(Q)

o sup ol
Q HchxpL(Q)
<o sup e

Q.f Hf”expL(Q).

Proof of (1). From Proposition 4.2, it holds

(/D@ < callwlac [ fllexp (@)

Therefore,

(If = (Nawhaw <2(f = (Hallomw
<cpllwlallf = (Felexp @
<cplwlallflBrmo-
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