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Abstract

In this short article, we consider estimates of the ratio

∥f∥BMO(w)/∥f∥BMO

from above and below, where w belongs to Muckenhoupt class A∞. The upper bound of the ratio was proved
by Hytönen and Pérez in [6] with the optimal power. We establish the lower bound of the ratio and give
two other proofs of the upper bound.
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1 Introduction

In this paper, we are interested in estimates of the ratio

∥f∥BMO(w)/∥f∥BMO

with respect to the weight w belonging to Muckenhoupt class A∞. Our purposes are to establish the lower
bound of the ratio and to give two other proofs of the upper bound due to Hytönen and Pérez in [6].
In [9], Muckenhoupt and Wheeden proved that for any w ∈ A∞, it holds BMO(w) = BMO. Recently, Hytönen
and Pérez [6] gave the upper bound of the ratio;

∥f∥BMO(w) ≤ cn∥w∥A∞∥f∥BMO, (1)

where ∥w∥A∞ is Wilson’s A∞ constant, see Definition 2.4. Moreover, they [6] proved that the power 1 of ∥w∥A∞
cannot be replaced by any smaller quantity. Main result in this paper is the following lower bound of the ratio.

Theorem 1.1. There exists cn > 0 such that for any w ∈ A∞,

∥f∥BMO ≤ cn log(2[w]A∞)∥f∥BMO(w). (2)

Remark 1.1. 1. We do not know whether the order log(2[w]A∞) is optimal or not.

2. If the inequality
∥f∥BMO ≤ cn∥f∥BMO(w)

is true, the exponent 0 of [w]A∞ is optimal. In fact, for w(x) = tχE(x) + χEc(x) ∈ A1 with a compact set
E ⊂ Rn and large t, it follows

∥ logw∥BMO = ∥ logw∥BMO(w) =
1

2
log t.

We will give two other proofs of the upper bound (1). To verify (1) in [6], they used the reverse Hölder
inequality;

⟨wrw⟩1/rwQ ≤ 2⟨w⟩Q,

for a cube Q ⊂ Rn and rw = 1+ (cn∥w∥A∞)−1. Our proofs of (1) are not based on this type inequality. Our main
tools are a dual inequality with the sharp maximal operator M ♯

λ due to Lerner [7] and another representation
of ∥w∥A∞ .
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These estimates are related to the sharp weighted inequalities for Calderón-Zygmund operators. The sharp
weighted inequality for an operator T means the inequality

∥Tf∥Lp(w) ≤ cn,p,TΦ([w]Ap)∥f∥Lp(w) (3)

with the optimal growth function Φ on [1,∞) in the sense that Φ cannot be replaced by any smaller function.
Recently, Hytönen [5] solved so-called A2 conjecture i.e. for any Calderón-Zygmund operator T (3) holds
with Φ(t) = t. By combining this with the extrapolation theorem in [1], we can see that for p ∈ (1,∞) (3)
with Φ(t) = tmax(1,1/(p−1)) holds and the exponent max(1,1/(p − 1)) is optimal. From the upper bound (1), it
immediately follows

∥Tf∥BMO(w) ≤ cn∥T ∥L∞→BMO∥w∥A∞∥f∥L∞(w)
which corresponds to(3) with p =∞. Further, they [6] showed the optimality of the exponent 1 of ∥w∥A∞ . On
the other hand, our lower bound (2) yields that

∥T ∥BMO(w)→BMO(w) ≤
cn∥T ∥BMO→BMO∥w∥A∞ log(2[w]A∞).

2 Preliminaries

We say w a weight if w is a non-negative and locally integrable function. For a subset E ⊂ Rn, χE means the
characteristic function of E and ∣E∣ denotes the volume of E. By a “ cube ” Q we mean a cube in Rn with sides

parallel to the coordinate axes. Throughout this article we use the following notations; w(Q) = ∫
Q
wdx, ⟨f⟩Q =

1

∣Q∣ ∫Q
fdx and ⟨f⟩Q;w =

1

w(Q) ∫Q
fwdx.

Firstly, we recall definitions of Muckenhoupt classes Ap and BMO spaces.

Definition 2.1. A weight w is said to be in the Muckenhoupt class if the following Ap constant [w]Ap is finite;

[w]A1 ∶= sup
Q
⟨w⟩Q∥w−1∥L∞(Q),

[w]Ap ∶= sup
Q
⟨w⟩Q⟨w1−p′⟩p−1Q , for p ∈ (1,∞)

and
[w]A∞ ∶= sup

Q
⟨w⟩Q exp(⟨logw−1⟩Q).

Remark 2.1. 1. [w]Ap ≥ 1 and p < q⇒ Ap ⊂ Aq.

2. Because lim
r↘0
⟨∣f ∣r⟩1/rQ = exp⟨log ∣f ∣⟩Q, it follows lim

p↗∞
[w]Ap = [w]A∞ .

Definition 2.2. With a weight w, one defines BMO(w) as the space of locally integrable functions f with
respect to w such that

∥f∥BMO(w) = sup
Q
⟨∣f − ⟨f⟩Q;w ∣⟩Q;w <∞.

Remark 2.2. There is another weighted BMO, BMOw, which is defined by

∥f∥BMOw = sup
Q

inf
c∈C

1

w(Q) ∫
Q

∣f − c∣dx <∞.

It is known that for w ∈ A∞, this space is the dual space of the weighted Hardy space H1(w), i.e. BMOw =
(H1(w))∗, see [3].

The definition of Wilson’s constant ∥w∥A∞ uses the restricted Hardy-Littlewood maximal operator.

Definition 2.3. For any measurable subset E ⊂ Rn, Hardy-Littlewood maximal operator ME restricted to E is
defined by

MEf(x) = sup
E⊃R∋x

⟨∣f ∣⟩R,

where the supremun is taken over all cubes R containing x and included in E. When E = Rn, we write M =ME.
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Definition 2.4.

∥w∥A∞ = sup
Q

1

w(Q) ∫
Q

MQwdx.

Remark 2.3. 1. w ∈ A∞ ⇐⇒ ∥w∥A∞ <∞, and ∥w∥A∞ ≤ cn[w]A∞ .

2. There are several equivalent quantities to ∥w∥A∞ ;

∥w∥A∞ ≈ sup
Q

1

w(Q) ∫
Q

w log(e + 1

⟨w⟩Q
)dx

≈ sup
Q

1

⟨w⟩Q
∥w∥L logL(Q)

≈ sup
Q

1

w(Q) ∫
2Q

M(χQw)dx

≈ sup
Q

1

w(Q) ∫
2Q

∣Rj(χQw)∣dx,

where j = 1,⋯, n, ∥f∥L logL(Q) is defined by

inf

⎧⎪⎪⎨⎪⎪⎩
λ > 0; ⟨ ∣f ∣

λ
log(e + ∣f ∣

λ
)⟩

Q

≤ 1
⎫⎪⎪⎬⎪⎪⎭

and Rj is the j-th Riesz transformation. The first and second equivalences are proved by L logL theory
due to Stein [10]. The third and fourth ones were proved by Fujii [2]. From the third representation, we
obtain an inequality

M(χQw)(2Q) ≤ cn∥w∥A∞w(Q),

which should be compared with the doubling inequality with [w]A∞ ;

w(2Q) ≤ 22
n

[w]2
n

A∞w(Q),

see for example [4].

3 Lower bound

Owing to a version of John-Nirenberg inequality in the context of non-doubling measures in [8], one obtains a
variant of the equivalence

∥f∥BMO ≈ sup
Q
∥f − ⟨f⟩Q∥expL(Q) (4)

with constants independent of weights.

Lemma 3.1. There exist constants c1, c2 > 0 such that for any w ∈ A∞, it follows

c1 sup
Q
∥f−⟨f⟩Q;w∥expL(Q;w) ≤ ∥f∥BMO(w)

≤ c2 sup
Q
∥f − ⟨f⟩Q;w∥expL(Q;w),

where ∥f∥expL(Q;w) is defined by

inf

⎧⎪⎪⎨⎪⎪⎩
λ > 0; ⟨exp( ∣f ∣

λ
) − 1⟩

Q;w

≤ 1
⎫⎪⎪⎬⎪⎪⎭
.

With this lemma, we give a proof of our lower bound, Theorem 1.1.

Proof of Theorem 1.1. From the definition of ∥f∥expL(Q;w) above, it follows

⟨exp( ∣f ∣
∥f∥expL(Q;w)

)⟩
Q;w

≤ 2.
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By using the version of Jensen’s inequality

exp⟨g⟩Q ≤ [w]A∞⟨exp(g)⟩Q;w, (5)

one obtains
⟨∣f ∣⟩Q ≤ log(2[w]A∞)∥f∥expL(Q;w).

The proof is completed by this inequality and Lemma 3.1 as follows:

⟨∣f − ⟨f⟩Q∣⟩Q ≤ 2⟨∣f − ⟨f⟩Q;w ∣⟩Q
≤ 2 log(2[w]A∞)∥f − ⟨f⟩Q;w∥expL(Q;w)

≤ cn log(2[w]A∞)∥f∥BMO(w).

Remark 3.1. The inequality (5) is equivalent to

exp⟨log ∣f ∣⟩Q ≤ [w]A∞⟨∣f ∣⟩Q;w, (6)

which should be compared with (7). (6) can be verified by taking p↗∞ in

⟨∣f ∣1/p⟩pQ ≤ [w]Ap⟨∣f ∣⟩Q;w,

see 2 in Remark 2.1.

4 Two other proofs of the upper bound

Here, we give two other proofs of the upper bound without reverse Hölder inequality.

4.1 Method based on a dual inequality

The key inequality in this method is the following dual inequality with local sharp maximal operator due to
Lerner [7];

Proposition 4.1. There exists cn > 0 so that for any λ < cn

1

∣Q∣ ∫
Q

∣f − ⟨f⟩Q∣gdx ≤ cn ∫
Q

M ♯
λfMQgdx,

where M ♯
λf(x) = sup

Q∋x
inf
c∈C
(χQ(f − c))∗ (λ∣Q∣), (0 < λ < 1) and g∗ means the non-increasing rearrangement of g.

Using this proposition, we can immediately show the optimal upper bound (1) as follows:
Proof of (1).

⟨∣f − ⟨f⟩Q;w ∣⟩Q;w ≤ 2⟨∣f − ⟨f⟩Q∣⟩Q;w

≤ cn
1

w(Q) ∫
Q

M ♯
λfMQwdx

≤ cn∥f∥BMO∥w∥A∞ .
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4.2 Method based on another representation of ∥w∥A∞
Next, we give a proof of (1) by using another representation of ∥w∥A∞ .

Proposition 4.2.

∥w∥A∞ ≈ sup
Q,f

⟨∣f ∣⟩Q;w

∥f∥expL(Q)
,

where ∥f∥expL(Q) is defined by

inf

⎧⎪⎪⎨⎪⎪⎩
λ > 0; ⟨exp( ∣f ∣

λ
) − 1⟩

Q

≤ 1
⎫⎪⎪⎬⎪⎪⎭
.

Remark 4.1. This form should be compared with

[w]A∞ = sup
Q,f

exp⟨log ∣f ∣⟩Q
⟨∣f ∣⟩Q;w

,

see for example [3].

We show this proposition and then give a proof of (1).

Proof. By Hölder inequality in the context of Orlicz spaces, we have

⟨∣f ∣⟩Q;w ≤ cn
∣Q∣

w(Q)
∥f∥expL(Q)∥w∥L logL(Q)

≤ cn∥w∥A∞∥f∥expL(Q).

On the other hand, for a cube Q, from the duality, we can find a function g ∈ expL(Q) such that

∥w∥L logL(Q)∥g∥expL(Q) ≤ cn
1

∣Q∣
∣∫
Q

wgdx∣

≤ cn⟨w⟩Q⟨∣g∣⟩Q;w,

and then, by using the representation of ∥w∥A∞ in Remark 2.3, one obtains

∥w∥A∞ ≤ cn sup
Q

1

⟨w⟩Q
∥w∥L logL(Q)

≤ cn sup
Q

⟨∣g∣⟩Q;w

∥g∥expL(Q)

≤ cn sup
Q,f

⟨∣f ∣⟩Q;w

∥f∥expL(Q)
.

Proof of (1). From Proposition 4.2, it holds

⟨∣f ∣⟩Q;w ≤ cn∥w∥A∞∥f∥expL(Q). (7)

Therefore,

⟨∣f − ⟨f⟩Q;w ∣⟩Q;w ≤ 2⟨∣f − ⟨f⟩Q∣⟩Q;w

≤ cn∥w∥A∞∥f − ⟨f⟩Q∥expL(Q)

≤ cn∥w∥A∞∥f∥BMO.
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