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1 Introduction

This note is based on [11]. But, the proof of the main result in [11] is not correct,

though the result is true. Aim of this note is to give a proof of it, along the talk. It

applies Bogovskĭi formula instead of the Green function for the Neumann problem of

Poisson equation, which was used in [11]. I learned this formula from Professor Hideo

Kozono, and would like to thank him for teaching me it. It is should be emphasize

that thanks to the formula, the result on 3-dimension in [11] is generalized to all

dimension.

Div - curl estimate is a inequality of the form, which was firstly studied by Coifman-

Linons-Meyer-Semmes [2]: for p, q ∈ (n/(n+ 1),∞) and 1/r = 1/p+ 1/q < 1 + 1/n,

∥(u · ∇)v∥Hr ≲ ∥u∥Hq∥∇v∥Hp , (1)

where u and v are vector valued functions; u = {uj}nj=1, v = {vj}nj=1, and div u =

∇ · u = 1. Here

(u · ∇)v =

(
n∑

j=1

uj∂jv1, · · · ,
n∑

j=1

uj∂jvn

)
.

Hp, (p ∈ (0,∞)) is the Hardy spaces: for any ϕ ∈ C∞
0 (Rn) with supp ϕ ⊂⊂ B(0, 1)

and

∫
φdx = 0,

∥f∥Hp := ∥Mϕ[f ]∥Lp , where Mϕ[f ](x) := sup
t>0

|f ∗ ϕt(x)| ,

where gt(x) := t−ng(x/t). In the case p = ∞, define H∞ := L∞.

As we mentioned in [11], we make use of a real interpolation spaces between

weighted Hardy spaces.

Definition 1.1. Let p, q ∈ (0,∞] and α ∈ R. Define Hardy spaces associated with

Herz spaces Hp,q
α (Rn) as

Hp,q
α (Rn) :=

{
f ∈ S ′; ∥f∥Hp,q

α
:= ∥Mϕf∥ Lp,q

α
< ∞

}
,

where

∥f∥Lp,q
α

:=
∥∥{2αk∥f∥Lp(Ak)}k∈Z

∥∥
lq
.
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We explain notations. S(Rn) and S ′(Rn) denote the Schwartz spaces of rapidly

decreasing smooth functions and tempered distributions on Rn, respectively. For a

measurable subset E ⊂ Rn, |E| and χE are the volume and the characteristic function

of E, respectively. For any integers j, Aj denotes a annulus {x ∈ Rn; 2j−1 ≤ |x| < 2j},
and χj is the characteristic function of Aj. B(x, r) is a ball in Rn, centered at x of

radius r. ⟨g⟩B := |B|−1
∫
B
fdy. Also, A ≲ B means A ≤ cB with positive constant

c, and A ≈ B means A ≲ B and B ≲ A.

To give (u · ∇)v a definition as a tempered distribution, we define Y by a space of

all locally integrable functions f satisfying that there exist cf > 0 and a seminorm

| · |S of S so that

∫
|f(x)φ(x)|dx ≤ cf |φ|S , for all φ ∈ S.

The main result reads as follows.

Theorem 1.1. For n/(n+ 1) < p < ∞, it holds

∥(u · ∇)v∥Hp,∞
α(p)

≤ c∥u∥L∞∥∇v∥
H

p,n/(n+1)
α(p)

,

for u ∈ L∞(Rn)n with div u = 0 and v ∈
(
Y ∩W 1,r

loc (Rn)
)n

for some r ∈ (1,∞),

where α(p) := n(1− 1/p) + 1.

Remark 1.1. The same argument as the proof of Theorem 1.1, we can also show a

weak type estimate:

∥(u · ∇)v∥H(n/(n+1),∞) ≲ ∥u∥L∞∥∇v∥Hn/(n+1) , (2)

because α(n/(n + 1)) = 0. Here, f ∈ H(p,q) ⇐⇒ Mϕ[f ] ∈ L(p,q), where L(p,q) is

the Lorentz spaces. Similar estimates were established by Miyakawa [8]. This can be

regarded as an endpoint case with p = n/(n+1) and q = ∞ of [2]. The ingredient of

the proof of (2) is the pointwise estimate:

∥N [v]∥L(n/(n+1),∞) ≲ ∥∇v∥Hn/(n+1)

instead of (4). This is achieved from the pointwise estimate (7) and a Fefferman-

Stein’s vector valued inequality (2) of Theorem 1 in [3].

Motivation of this research comes from the optimal L2-energy decay for the incom-

pressible Navier-Stokes equations. Wiegner [12] constructed global weak solutions u

having

∥u(t)∥L2 ≲ t−(n+2)/4,

assuming that initial data a ∈ L2 satisfying ∥et∆a∥L2 ≲ t−(n+2)/4. By Miyakawa-

Schonbek [9], it is well-known that the decay order (n + 2)/4 is optimal. Hp
α(p) is

relevant to this order (n+ 2)/4, because one has that for p ∈ (0, 2],

∥et∆a∥L2 ≲ t−(n+2)/4∥a∥Hp
α(p)

,
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see [10] for the proof. The present author [10] investigated the L2 decay of mild

solutions by Kato [5] and constructed solutions whose decay order of L2 energy is

γ < (n + 2)/4. One of reasons why the order γ in [10] did not reach to the optimal

order (n+2)/4 is that div-curl estimate in [10] cannot allow us to deal with the critical

exponent α = α(p). As mentioned in Remark 7.3 in [7], the bilinear term (u · ∇)v

does not belong to Hp
α(p). This observation tells us that if we try to establish div-curl

estimate with α = α(p), we has to replace Hp
α(p) in the left hand side by some larger

spaces. For the purpose, we use Hardy spaces associated to Herz spaces, as in [6] and

[7]. Although, a critical div - curl lemma is proved in this article, the author does

not know whether or not it is possible to construct global solutions having optimal

L2 decay from the similar argument as the previous paper [10].

2 Proof

Before we start the proof of Theorem 1.1, we point out the mistake in [?]. In [?],

the Green function for the Neumann problem of Poisson equation:

−∆h = g in B, g = 0 on ∂B

for g ∈ C∞
0 (B) with

∫
gdx = 0, is applied. I treated the solution h as a C2

0(B)

function in [11]. Although h ∈ C2(Rn), this is not true in general. To overcome this

difficulty, as we mentioned above, we apply Bogovskĭi formula. This is a representa-

tion, with a kernel function, of solutions to the divergence equation.

2.1 Bogovskĭi formula

Let B be a ball in Rn and g ∈ C∞
0 (B) with

∫
gdx = 0. We refer Lemma III.3.1 in

[4] for next lemma.

Lemma 2.1. There exists a vector function K = {Kj}nj=1 on Rn×Rn\{(x, y) : x = y}

so that GB(x) :=

∫
K(x, y)g(y)dy ∈ C∞

0 (B)n is a solution to the divergence equation

∇ ·GB = g on B satisfying that for q ∈ (1,∞)

∥GB∥Lq ≲ |B|1/n∥g∥Lq and ∥∇ ·GB∥BMO ≲ ∥g∥L∞ .

Remark 2.1. The L∞ − BMO estimate above is deduced from the fact that the

operator g 7→ GB is a Calderón-Zygmund operator.
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2.2 Vector valued restricted weak type inequality

Another ingredient for the proof of Theorem 1.1 is a vector-valued “restricted weak”

type inequality for Hardy-Littlewood maximal operator; for r ∈ (0,∞)

Mrf(x) := sup
B∋x

⟨|f |r⟩1/rB , ,

where the supremum is taken over all ball B containing x. Define Mf(x) := M1f(x).

The following is a generalization of the result of Fefferman-Stein [3], and the proof is

found in [11].

Proposition 2.1. For 1 < r, p < ∞ and α = n(1− 1/p),∥∥∥∥∥∥
(

∞∑
l=1

(Mfl)
r

)1/r
∥∥∥∥∥∥
Lp,∞
α

≲

∥∥∥∥∥∥
(

∞∑
l=1

|fl|r
)1/r

∥∥∥∥∥∥
Lp,1
α

.

This can be rewritten as the following form.

Corollary 2.1. For 0 < r < 1 < p < ∞ and α = n(1/r − 1/p),∥∥∥∥∥
∞∑
l=1

Mrfl

∥∥∥∥∥
Lp,∞
α

≲
∥∥∥∥∥

∞∑
l=1

|fl|

∥∥∥∥∥
Lp,r
α

.

2.3 Complete of the proof of Theorem 1.1

The proof is almost same as that in [11] except for applying Lemma 2.1 instead of

the Green function for the Neumann problem of Poisson equations.

Because

∥(u · ∇)v∥Hp,∞
α(p)

=
n∑

k=1

∥∥∥∥∥
n∑

j=1

uj∂jvk

∥∥∥∥∥
Hp,∞

α(p)

=
n∑

k=1

∥∥∥∥∥Mϕ

(
n∑

j=1

uj∂jvk

)∥∥∥∥∥
Lp,∞
α(p)

,

it is enough to show the inequality∥∥∥∥∥Mϕ

(
n∑

j=1

uj∂jv

)∥∥∥∥∥
Lp,∞
α(p)

≲ ∥u∥L∞∥∇v∥
H

p,n/(n+1)
α(p)

,

for all divergence free vector fields u and functions v ∈ Y ∩W 1,r
loc . Firstly, we give a

definition of
n∑

j=1

uj∂jv as a tempered distribution as follows; for φ ∈ S

⟨
n∑

j=1

uj∂jv, φ

⟩
:= −

n∑
j=1

∫
uj(y)v(y)∂jφ(y)dy.
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Our assumption ensures that the integral in the right hand side absolutely converges.

Then, it follows

n∑
j=1

uj∂jv ∗ ϕt(x) = −Cϕ∥u∥L∞

∫
v(y)

[
n∑

j=1

ũj(y)∂yjϕt(x− y)

]
dy,

where Cϕ is a constant depending on ϕ, and ũj(y) =
uj(y)

Cϕ∥u∥L∞
. Owing to the

divergence free condition on u, we see that for every x ∈ Rn

n∑
j=1

ũj(y)∂yjϕt(x− y) =
n∑

j=1

∂yj (ũj(y)ϕt(x− y)) in S ′(Rn
y ). (3)

Hence, we obtain the pointwise estimate

Mϕ

(
n∑

j=1

uj∂jv

)
(x) ≤ Cϕ∥u∥L∞N [v](x),

where

N [v](x) := sup
t>0

∣∣∣∣∫ v(y)g(y)dy

∣∣∣∣ and g(y) = g(y; x, t) :=
n∑

j=1

ũj(y)∂yjϕt(x− y).

It is enough to prove that

∥N [v]∥Lp,∞
α(p)

≲ ∥∇v∥
H

p,n/(n+1)
α(p)

. (4)

To show this from a pointwise estimate, we make use of Bogovskĭi formula Lemma

2.1 and the atomic decomposition in H
p,n/(n+1)
α(p) due to Miyachi [7].

Fix x ∈ Rn and t ∈ (0,∞). There exists ε0 > 0 so that for all ε ∈ (0, ε0), supp

g∗ϕε ⊂⊂ B(x, t). Take η0 ∈ C∞
0 (Rn) such that η(y) = η(y;x, t) := η0

(
y − x

t

)
satisfies that 0 ≤ η ≤ 1 and for ε ∈ (0, ε0)

supp g ∗ ϕε ⊂⊂ supp η ⊂⊂ B(x, t), and η ≡ 1 on supp g ∗ ϕε

Remark that ∥η∥Lp = ctn/p for all p ∈ [1,∞] with c independent of x, t and ε. Next

we see that

σε := ∥η∥−1
L1

∫
g ∗ ϕεdy → 0 as ε ↘ 0.

In fact, for a test function ρ ∈ C∞
0 (B(x, 2t)) with ρ ≡ 1 on B(x, t), we have from (3)

∥η∥L1σε = ⟨g, ρ ∗ ϕε⟩ → ⟨g, ρ⟩ = 0.
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For ε ∈ (0, ε0), letting gε := g ∗ ϕε − σεη ∈ C∞
0 (B(x, t)), we obtain

∫
gεdy = 0.

From Lemma 2.1,

Gε(y) :=

∫
K(y, z)gε(z)dz ∈ C∞

0 (B(x, t))

solves the Drichlet problem of Poisson equation:

∇ ·Gε = gε in B(x, t), Gε = 0 on ∂B(x, t).

Further, Gε fulfills the following estimates: for all q ∈ (1,∞),

∥Gε∥Lq ≲ t−n+n/q and ∥∂jGε∥BMO ≲ t−(n+1). (5)

Indeed, these follows that ∥gε∥Lq ≲ t−1−n+n/q and ∥gε∥L∞ ≲ t−(n+1), respectively.

Integration by parts yields∫
vgdy = − lim

ε→0

∫
∇v ·Gεdy.

Therefore, one obtains ∣∣∣∣∫ vgdy

∣∣∣∣ ≤ n∑
k=1

lim sup
0<ε<ε0

∣∣∣∣∫ ∂kvG
ε
kdy

∣∣∣∣ .
Since ∂kv ∈ H

p,n/(n+1)
α(p) , following Miyachi [7], it can be decomposed as

∂kv =
∞∑
j=1

a
(k)
j

where supp a
(k)
j ⊂ Bj = B(xj, rj), a

(k)
j ∈ L∞ and

∫
xβa

(k)
j (x)dx = 0 for |β| ≤ 1, also

∥∥∥∥∥
∞∑
j=1

∥a(k)j ∥L∞χBj

∥∥∥∥∥
L
p,n/(n+1)
α(p)

≲ ∥∂kv∥Hp,n/(n+1)
α(p)

.

and one obtains ∣∣∣∣∫ vgdy

∣∣∣∣ ≤ n∑
k=1

∞∑
j=1

lim sup
0<ε<ε0

∣∣∣∣∫ a
(k)
j Gε

kdy

∣∣∣∣ .
From (5), we immediately see that∣∣∣∣∫ a

(k)
j Gε

kdy

∣∣∣∣ ≤ ∥a(k)j ∥L∞|B(x, t)|1−1/q∥Gε
k∥Lq ≲ ∥a(k)j ∥L∞ .
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When x ̸∈ 4Bj, if Ct < |x− xj| with C > 8/3, then it holds Bj ∩ B(x, t) = ∅ and∫
a
(k)
j Gε

kdy = 0. On the other hand, if Ct ≥ |x− xj|, then we can derive the decay

estimate

lim sup
0<ε<ε0

∣∣∣∣∫ a
(k)
j Gε

kdy

∣∣∣∣ ≲ ∥a(k)j ∥L∞

(
rj

|x− xj|

)n+1

. (6)

We may assume x ̸= xj. Using the moment condition on a
(k)
j twice, one has∫

a
(k)
j (y)Gε

k(y)dy =

∫
a
(k)
j (y) (Gε

k(y)−Gε
k(xj)) dy

=
n∑

s=1

∫ 1

0

∫
a
(k)
j (y)(y − xj)s(∂sG

ε
k)(θy + (1− θ)xj)dydθ

=
n∑

s=1

∫ 1

0

∫
a
(k)
j (y)(y − xj)s

[
(∂sG

ε
k)(θy + (1− θ)xj)− ⟨∂sGε

k⟩B(xj ,θrj)

]
dydθ.

From this representation, the decay estimate (6) is derived as follows from (5);∣∣∣∣∫ a
(k)
j (y)Gε

k(y)dy

∣∣∣∣ ≲ rj∥a(k)j ∥L∞

n∑
s=1

∫ 1

0

θ−n

∫
B(xj ,θrj)

∣∣∂sGε
k(y)− ⟨∂sGε

k⟩B(xj ,θrj)

∣∣ dydθ
≲ rn+1

j ∥a(k)j ∥L∞

n∑
s=1

∥∂sGε
k∥BMO

≲
(rj
t

)n+1

∥a(k)j ∥L∞

≲
(

rj
|x− xj|

)n+1

∥a(k)j ∥L∞ .

As mentioned in [7], because

(
1

1 + |x− xj|/rj

)n+1

≈ Mn/(n+1)(χBj
)(x), as a con-

sequence it follows that for all x ∈ Rn,

N [v](x) = sup
t>0

∣∣∣∣∫ v(y)g(y;x, t)dy

∣∣∣∣ ≲ n∑
k=1

∞∑
j=1

∥a(k)j ∥L∞Mn/(n+1)(χBj
)(x). (7)

Now, we apply Corollary 2.1 with r = n/(n+ 1) and obtain

∥N [v]∥Lp,∞
α(p)

≲
n∑

k=1

∥∥∥∥∥
∞∑
j=1

∥a(k)j ∥L∞χBj

∥∥∥∥∥
L
p,n/(n+1)
α(p)

≲
n∑

k=1

∥∂kv∥Hp,n/(n+1)
α(p)

= ∥∇v∥
H

p,n/(n+1)
α(p)

.

Here we have used n(1− 1/p)+n((n+1)/n− 1) = n(1− 1/p)+ 1 = α(p). The proof

is completed.

Remark 2.2. In [1], the pointwise estimate (6) with n+1− ε replaced by n+1 was

proved.
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