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Abstract

In R3, a div - curl lemma with critical exponents in terms of Hardy spaces associated to Herz spaces is
given.
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1 Introduction

Div-curl lemma means an inequality of the form: for two vector-valued functions F and G

∥F ⋅G∥Z ≤ c∥F ∥X∥G∥Y

under the assumption divF = curl G = 0 with some quasi-Banach spaces X,Y and Z. Coifman, Lions, Meyer
and Semmes [5] investigated the type of inequalities and gave several applications. Their study was motivated
from the theory of compensated compactness due to Murat and Tataru [15].

One of examples of the form above is (u ⋅ ∇)v with divu = 0:

(u ⋅ ∇)v =
⎛
⎝

3

∑
j=1

uj∂jv1,
3

∑
j=1

uj∂jv2,
3

∑
j=1

uj∂jv3
⎞
⎠

=
⎛
⎝

3

∑
j=1

∂j(ujv1),
3

∑
j=1

∂j(ujv2),
3

∑
j=1

∂j(ujv3)
⎞
⎠
= ∇ ⋅ (u⊗ v)

where u = (u1, u2, u3), v = (v1, v2, v3) and u ⊗ v is a 3 × 3 matrix, whose (i, j) component is uivj . This term
appears in the incompressible viscous Navier-Stokes equation with v = u:

(N-S)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂tu −∆u + (u ⋅ ∇)u +∇π = 0,
div u = 0,
u(0) = a.

In this article, we focus on this non linear, but bilinear term. From Hölder inequality, if u ∈ Lp(R3)3 and

∇v ∈ Lp′(R3)3×3 where p ∈ (1,∞) and p′ = p/(p − 1), then (u ⋅ ∇)v ∈ L1(R3)3. With the help of the cancellation
property:

∫
R3

3

∑
j=1

uj∂jvkdx = 0 for all k ∈ {1,2,3},

the term belongs to a better function space, Hardy space H1(R3)3 ⊂ L1(R3)3. This interesting result was found
by Coifman-Lions-Meyer-Semmes [5] as the following form: let 3/4 < p, q < ∞ and 1/r = 1/p + 1/q < 4/3. For
vector fields u and v, it follows that

∥(u ⋅ ∇)v∥Hr ≤ c∥u∥Hp∥∇v∥Hq (1)

provided that div u = 0. Here Hp(R3) =Hp is the Hardy space.

Their result has several generalizations. Because the moment of order one;

∫
R3

xα(u ⋅ ∇)v(x)dx (∣α∣ = 1)
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does not vanish in general, there is no hope that the term belongs to the Hardy space H3/4(R3)3. However,
with a modification, the endpoint inequality holds:

∥(u ⋅ ∇)v∥H3/4,∞ ≤ c∥u∥Lp∥∇v∥Lq

for p ∈ (1,∞) and q ∈ (1,3), where H3/4,∞(R3) is the weak Hardy space, see [5] and also [13]. Although, (1)
cannot also deal with the case p =∞, Auscher-Russ-Tchamitchian [1] gave the endpoint bound:

∥(u ⋅ ∇)v∥H1 ≤ c∥u∥L∞∥∇v∥H1 .

It is not allowed to replace L∞(R3) by BMO(R3), because if u is a constant vector field the left hand side is
not zero in general, but ∥u∥BMO = 0. Bonami-Feuto-Grellier [2] established a version of [1] as follows:

∥(u ⋅ ∇)v∥HΦ ≤ c∥u∥bmo∥∇v∥H1

where HΦ(R3) is a Hardy-Orlicz space related to the Orlicz function Φ(t) = t

log(e + t)
and bmo(R3) is the

local BMO space, introduced by Goldberg [8]. (1) with power weights was established by Lu and Yang [11]
and Miyachi [12] in terms of Herz spaces K̇α

p,q(R3), which is a generalization of Lebesgue spaces with weights,
see Remark 1.1 below. In the previous paper [17], we proved a similar result, in which weights belong to
Muckenhoupt classes Ap(R3): let 3/4 < p, q <∞, w ∈ A4p/3(R3) and σ ∈ A4q/3(R3).

(i): Suppose that 1/r = 1/p + 1/q < 4/3 and there exist p̃ ∈ (1,4p/3) and q̃ ∈ (1,4q/3) so that w ∈ Ap̃(R3), σ ∈
Aq̃(R3) and p̃/p + q̃/q < 4/3. Then,

∥(u ⋅ ∇)v∥Hr(µ) ≤ c∥u∥Hp(w)∥∇v∥Hq(σ)

where div u = 0 and µ1/r = w1/pσ1/q.
(ii): It follows

∥(u ⋅ ∇)v∥Hq(σ) ≤ c∥u∥L∞∥∇v∥Hq(σ) (2)

where div u = 0.

See Remark 1.1 below for the definition of weighted Hardy spaces Hp(w) =Hp(R3;w). When σ(x) = ∣x∣αq, the
range of α, for which (ii) can be applied, is

−3/q < α < 3(1 − 1/q) + 1 =∶ αq.

The purpose of this article is to establish the same estimate at the end-point case α = αq in 3-D case. Hq(σ)
norm with σ(x) = ∣x∣αqq is related to the optimal decay of L2(R3) energy of solutions to (N.-S.). Before we see
the relation, we shall recall a result by Wiegner [19] for the decay rate of L2(R3) energy of weak solutions to
(N.-S.). He [19] proved that if L2(R3) initial data a satisfies

∥et∆a∥L2 ≤ ct−θ (i.e. a ∈ Ḃ−2θ2,∞(R3)) ,

then the corresponding weak solution u fulfills ∥u(t)∥L2 ≤ ct−γ where γ =min(θ,5/4). It is well known that the
order 5/4 is optimal in general. More precisely, if

lim
t→∞

t5/4∥u(t)∥L2 = 0,

then the initial data and solution have to satisfy some symmetric conditions, see [14] for the detail. It seems
that (2) with σ(x) = ∣x∣αqq is relevant to this order 5/4, because we have that for q ∈ (0,2]

∥et∆a∥L2 ≤ ct−5/4∥a∥Hq(σ) where σ(x) = ∣x∣αqq,

see [17] for the proof. The present author [17] investigated the L2(R3) decay of mild solutions by Kato [10] and
constructed solutions whose decay order of L2(R3) energy is γ < 5/4. One of reasons why the order γ in [17]
did not reach to the optimal order 5/4 is that (ii) cannot allow us to take σ(x) = ∣x∣αqq in (2). As mentioned in
Remark 7.3 in [12], the bilinear term (u ⋅ ∇)v does not belong to Hp(w) with w(x) = ∣x∣αpp. This observation
tells us that if we try to establish (2) with σ(x) = ∣x∣αqq, we has to replace Hq(σ) in the left hand side by some
larger spaces. For the purpose, we use Hardy spaces associated to Herz spaces, as in [11] and [12]. Although,
the author does not know whether or not it is possible to construct global solutions having optimal L2(R3)
decay from the similar argument as the previous paper [17], by using a critical div-curl lemma established in
this article.
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We explain notations. S(R3) and S ′(R3) denote the Schwartz spaces of rapidly decreasing smooth functions
and tempered distributions on R3, respectively. For a measurable subset E ⊂ R3, ∣E∣ and χE are the volume and
the characteristic function of E, respectively. For any integers j, Aj denotes a annulus {x ∈ R3; 2j−1 ≤ ∣x∣ < 2j},
and χj is the characteristic function of Aj . B(x, r) is a ball in R3, centered at x of radius r. ⟨g⟩B means the

average ∣B∣−1 ∫
B
g(x)dx. Also, A ≈ B means c1B ≤ A ≤ c2B with positive constants c1 and c2. In what follows,

c denotes a constant that is independent of the functions involved, which may differ from line to line.

Definition 1.1. Let p, q ∈ (0,∞] and α ∈ R. Define Herz spaces K̇α
p,q(R3) as

K̇α
p,q(R3) ∶= {f ∈ Lp(R3/{0}); ∥f∥K̇α

p,q
∶= ∥{2jα ∥fχj∥Lp}j∈Z∥lq <∞} .

To define Hardy spaces, we fix a radial function ϕ ∈ C∞(R3) supported on B(0,1) satisfying 0 ≤ ϕ ≤ 1, ϕ ≡ 1
on B(0,1/2) and ∫ ϕ(x)dx = 1. For f ∈ S ′, we define

Mϕf(x) ∶= sup
t>0
∣⟨f, ϕt(x − ⋅)⟩∣, where ϕt(x) = t−3ϕ(x/t).

Definition 1.2. Let p, q ∈ (0,∞] and α ∈ R. Define Hardy spaces associated with Herz spaces HK̇α
p,q(R3) as

HK̇α
p,q(R3) ∶= {f ∈ S ′; ∥f∥HK̇α

p,q
∶= ∥Mϕf∥K̇α

p,q
<∞} .

Remark 1.1. 1. These spaces cover Lebesgue spaces and Hardy spaces with power weight:

K̇α
p,p(R3) = Lp(w) and HK̇α

p,p(R3) =Hp(w)

when w(x) = ∣x∣αp with 0 < p < ∞, where ∥f∥Lp(w) ∶= ∥fw1/p∥Lp . Here, for w ∈ A∞(R3), ∥f∥Hp(w) ∶=
∥Mϕf∥Lp(w). If w ≡ 1, then we use Hp instead of Hp(1).

2. For 1 < p <∞, it is well known that

w(x) = ∣x∣αp ∈ Ap(R3) ⇐⇒ −3/p < α < 3(1 − 1/p).

Here Ap is the Muckenhoupt class. From this, we can see that HK̇α
p,q(R3) = K̇α

p,q(R3) with such α.

Hardy spaces are characterized in terms of the the grand maximal function f∗m. This maximal function is
defined as follows: for m ∈ N ∪ {0}, x ∈ R3 and t ∈ (0,∞), Im(x, t) denotes a space of all smooth functions
ψ ∈ C∞(R3) supported in B(x, t) with

∥∂αψ∥L∞ ≤ t−(3+∣α∣) for ∣α∣ ≤m.

The grand maximal function f∗m is then defined by

f∗m(x) ∶= sup
⎧⎪⎪⎨⎪⎪⎩
∣⟨f,ψ⟩∣ ;ψ ∈ ⋃

t∈(0,∞)
Im(x, t)

⎫⎪⎪⎬⎪⎪⎭
.

Uchiyama [18] showed an inequality between Mϕf and f∗m:

f∗m(x) ≤ cM3/(3+m)(Mϕf)(x),

whereMrf(x) ∶= sup
B∋x
⟨∣f ∣r⟩1/rB where the supremum is taken over all balls B containing x. We also writeM1 =M .

From this, we can see that
∥f∥HK̇α

p,q
= ∥Mϕf∥K̇α

p,q
≈ ∥f∗m∥K̇α

p,q

for 0 < p, q ≤∞, −3/p < α <∞ and m > 3(1/p − 1) +max(0, α).
We denote by D̂0(R3) the set of all f ∈ S(R3) with f̂ belonging to D(R3) and vanishing in a neighborhood

of ξ = 0, where f̂ means the Fourier transform of f . Strömberg and Torchinsky [16] proved that D̂0(R3) is a
dense subspace of Hp(w) for p ∈ (0,∞) and doubling measures w. Miyachi [12] showed that D̂0 is also a dense
subspace of HK̇α

p,q(R3) for 0 < p, q <∞ and −3/p < α <∞.
To give (u ⋅ ∇)v a definition as a tempered distribution, we define Y by a space of all locally integrable

functions f satisfying that there exist cf > 0 and a seminorm ∣ ⋅ ∣S of S so that ∫ ∣f(x)φ(x)∣dx ≤ cf ∣φ∣S , for all
φ ∈ S. Obviously, Lp(w) ⊂ Y when 1 ≤ p ≤∞ and w ∈ Ap.

The main result reads as follows.
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Theorem 1.1. For 3/4 < p <∞, it holds

∥(u ⋅ ∇)v∥HK̇
αp
p,∞
≤ c∥u∥L∞∥∇v∥HK̇

αp

p,3/4
,

for u ∈ L∞(R3)3 with div u = 0 and v ∈ (Y ∩W 1,r
loc (R

3))
3
for some r ∈ (1,∞).

Remark 1.2. Using the same argument as in Section 4, we can also show a weak type estimate:

∥(u ⋅ ∇)v∥H3/4,∞ ≤ c∥u∥L∞∥∇v∥H3/4 .

Here, for f ∈ S ′(R3), f ∈ H3/4,∞(R3) if and only if Mϕf ∈ L3/4,∞(R3), where Lp,∞(R3) is the Lorentz space.
This can be also regarded as an endpoint case of the original div-curl lemma of [5]. It is enough to show

∥N∞v∥L3/4,∞ ≤ c∥∇v∥H3/4

instead of (4). This is achieved from the pointwise estimate (7) and a Fefferman-Stein’s vector valued inequality,
(2) of Theorem 1 in [7].

Our proof of Theorem 1.1 follows the argument of Auscher, Russ and Tchamitchian [1]. We recall notations
that were used in [1]. For x ∈ R3 and 1 ≤m ≤∞, let Fm(x) be a set of all vector-valued functions Ψ = (ψ1, ψ2, ψ3)
and the supports of them are included in a ball BΨ = B(x, rΨ) so that there exists a function gΨ ∈ Lm(R3) such
that divΨ = gΨ in S ′, supp gΨ ⊂ BΨ and ∥Ψ∥Lm + rΨ∥gΨ∥Lm ≤ ∣BΨ∣−1/m

′
. The maximal operator Nm is defined

by for any locally integrable function v as

Nmv(x) ∶= sup
Ψ∈Fm(x)

∣∫ v(y)gΨ(y)dy∣ .

The reason why we can deal with the critical exponent αp is the pointwise estimate for Nmv, (6) in Section 4.

Let ∇v =
∞
∑
j=1

aj be an atomic decomposition with atoms {aj}∞j=1 ⊂ L∞(R3) satisfying

supp aj ⊂ Bj and ∫ xαaj(x)dx = 0 (∣α∣ ≤ N)

with a large N ∈ N. In [1], the following pointwise estimate was used to obtain the div - curl lemma:

Nmv(x) ≤ c
∞
∑
j=1
∥aj∥L∞Ms(χBj)(x)

for all x ∈ Rn with m ∈ (1,∞) and s = 3m′/(3 +m′). On the other hand, our main estimate (7) in Section 4,
corresponds to the case m =∞. The proof of the pointwise estimate above in [1] relies on the solvability for the
divergence equation

div Ψ = g in B,

see Lemma 10 in [1]. In there, the solution Ψ belongs to the class Fm(x) with m <∞. Bourgain and Brezis [3],

[4] studied this equation in bounded domains with g ∈ L3(R3) fulfilling ∫ g(x)dx = 0. It is a way for finding

the solution Ψ to consider the Poisson equation

−∆h = g in B.

If h is a solution of this equation, Ψ = ∇h solves the divergence equation. In particular, we apply the solution h
with the Neumann condition ∂νh = 0 on the boundary ∂B(x, r). Fortunately, we need to consider this problem
on balls and the Green/Neumann function G is known, see [6] and [20]. It is well known the equivalence between
the existence of the Helmholtz decomposition and the solvability of the Neumann problem in a weak sense. This
additional argument yields the our pointwise estimate (7) in Section 4.

In next chapter, we investigate the C2(R3/{0}) regularity of the solutions to the Neumann problem by using
the Green/Neumann function G. In Section 3, we establish a vector-valued inequality for the Hardy-Littlewood
maximal operator on Herz spaces with the critical weights. Using the regularity property and the vector valued
inequality, we give a proof of Theorem 1.1 in Section 4.
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2 Neumann problem for the Poisson equation in unit ball of R3

Let B0 = B(0,1) ⊂ R3. We consider

(NP)

⎧⎪⎪⎨⎪⎪⎩

−∆h = g in B0

∂νh = 0 on ∂B0,

where g ∈ C∞0 (B0) satisfying ∫
B0

gdx = 0 and ν(y) = (ν1(y), ν2(y), ν3(y)) is the outer normal vector at y ∈ S2.
The Green/Neumann function G for the problem (NP) is already known: for example see [6] or [20],

G(x, y) = (4π)−1 (Γ(x − y) −D(x, y) +N(x, y))

where
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Γ(x − y) = 1

∣x − y∣
,

D(x, y) = 1

∣x∣∣x∗ − y∣
,

N(x, y) = logn(x, y) and

n(x, y) = ∣x∗ − y∣ (1 + x

∣x∣
⋅ x
∗ − y
∣x∗ − y∣

) with x∗ = x

∣x∣2

Remark 2.1. The following identity is important in this section: let x, y /= 0, if x∗ /= y and y∗ /= x, then

∣x∣∣x∗ − y∣ = ∣y∣∣y∗ − x∣,

which implies D(x, y) =D(y, x) and ∣x∣n(x, y) = ∣y∣n(y, x).

We define

h(x) = ∫
B0

G(x, y)g(y)dy

= (4π)−1
⎡⎢⎢⎢⎢⎢⎣
∫
B0

Γ(x − y)g(y)dy − ∫
B0

D(x, y)g(y)dy + ∫
B0

N(x, y)g(y)dy
⎤⎥⎥⎥⎥⎥⎦

= (4π)−1 [hΓ(x) + hD(x) + hN(x)] .

From Lemma 4.2 in [9], we know hΓ ∈ C2(B0). Further, it holds ∂νhΓ = 0 on ∂B0, see [6]. Main purpose of
this section is to show the C2 regularity of h outside B0. We show the following.

Proposition 2.1. (i) hΓ ∈ C2(R3) and −∆hΓ(x) = g(x) for all x ∈ R3.
(ii) hD ∈ C2(R3/{0}) and

−∆hD(x) =
⎧⎪⎪⎨⎪⎪⎩

0 for 0 < ∣x∣ ≤ 1
g(x∗)ψD(x) for ∣x∣ > 1,

where ψD(x) = c(
1

∣x∣R
)
2

∫
∂B∗

x∗ − y
∣x∗ − y∣

⋅ y
∗ − x
∣y∗ − x∣

dσ(y) and B∗ = B(x∗,R) is an arbitrary ball so that B0 ⊂⊂ B∗.

(iii) hN ∈ C2(R3/{0}) and −∆hN(x) = 0 for all x /= 0.
As a consequence, we have that h ∈ C2(R3/{0}), ∂νh = 0 on ∂B0,

−∆h(x) =
⎧⎪⎪⎨⎪⎪⎩

g(x) for 0 < ∣x∣ ≤ 1
g(x∗)ψD(x) for ∣x∣ > 1,

and then ∥∆h∥L∞(R3) ≤ c∥g∥L∞ . Moreover, ∥∇h∥L2(B0) ≤ c∥g∥L2(B0).

We divide the proof into several steps. We fix a cut-off function φ ∈ C∞0 (R3) satisfying

0 ≤ φ ≤ 1, φ ≡ 1 on B0 and φ ≡ 0 on B(0,2)c,

and then, define for small ε > 0
φε(x, y) = φ(

x − y
ε
) .

Fix i, j ∈ {1,2,3}.
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2.1 The proof of (i)

Let

uεΓ(x) = ∫
B0

Γ(x − y) (1 − φε(x, y)) g(y)dy,

vεΓ(x) = ∫
B0

(∂xiΓ(x − y)) (1 − φε(x, y)) g(y)dy,

w1
Γ(x) = ∫

B0

(∂xiΓ(x − y)) g(y)dy

and define w2
Γ(x) by

∫
B

(∂xi,xjΓ(x − y)) (g(y) − g(x))dy + g(x)∫
∂B

(∂xiΓ(x − y)) νj(y)dσ(y),

where B is an arbitrary ball so that B0 ⊂⊂ B. Remark that for ∣x∣ > 1, this function equals

∫
B0

(∂xi,xjΓ(x − y)) g(y)dy.

Since
sup
x∈R3

∣hΓ(x) − uεΓ(x)∣ ≤ cε2∥g∥L∞ and sup
x∈R3

∣w1
Γ(x) − ∂xiu

ε
Γ(x)∣ ≤ cε∥g∥L∞ ,

we see that ∂xih = w1
Γ ∈ C(R3).

2.1.1 Continuity of ∂xi,xjhΓ

It is not hard to see that vεΓ ∈ C∞(R3) and each integrals in the definition of w2
Γ absolutely converge. Observe

that if ε ≤ 1/2, then for x ∈ B̄0, ∂xjv
ε
Γ(x) equals

∫
B

∂xj {(∂xiΓ(x − y)) (1 − φ(
x − y
ε
))}(g(y) − g(x))dy + g(x)∫

∂B

(∂xiΓ(x − y)) νj(y)dσ(y).

On the other hand, in the case x /∈ B̄0, one can see

∂xjv
ε
Γ(x) = ∫

B0

(∂xi,xjΓ(x − y)) g(y)dy

for all ε ≤ dist (Bc
0, suppg) /2. From these expressions, one obtains

sup
x∈R3

∣w2
Γ(x) − ∂xjv

ε
Γ(x)∣ ≤ cε∥∇g∥L∞ .

Because it also holds sup
x∈R3

∣∂xihΓ(x) − vεΓ(x)∣ ≤ cε∥g∥L∞ , we have ∂xi,xjhΓ = w2
Γ and fΓ ∈ C2(R3).

2.2 The proof of (ii)

Denote for small ε > 0
φ∗ε(x, y) = φ(

x∗ − y
ε
) ,

then it holds ∣∇xφ
∗
ε(x, y)∣ ≤ cε−1∣x∣−2. Let for x /= 0,

uεD(x) = ∫
B0

D(x, y) (1 − φ∗ε(x, y)) g(y)dy

vεD(x) = ∫
B0

(∂xiD(x, y)) (1 − φ∗ε(x, y)) g(y)dy

w1
D(x) = ∫

B0

(∂xiD(x, y)) g(y)dy,
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and define w2
D(x) as

∫
B∗

(∂xi,xjD(x, y)) (g(y) − g(x∗))dy + g(x∗) ∫
∂B∗

(∂xiD(x, y)) νj(y)dσ(y).

Remark that for 0 < ∣x∣ ≤ 1,
w2

D(x) = ∫
B0

∂xi,xjD(x, y)g(y)dy.

Since it holds that

∣hD(x) − uεD(x)∣ ≤ c
ε2

∣x∣
∥g∥L∞ and ∣w1

D(x) − ∂xiu
ε
D(x)∣ ≤ cε(

1

∣x∣2
+ 1

∣x∣3
)∥g∥L∞ ,

we can see that hD ∈ C(R3/{0}) and ∂xihD = w1
D ∈ C(R3/{0}).

2.2.1 Continuity of ∂xi,xjhD

From
∣∂xi,xjD(x, y)∣ ≤ c (∣x∣−3 + ∣x∣−5) (∣x∗ − y∣−1 + ∣x∗ − y∣−3) ,

one can check the absolute convergences of the each integral of vεD and w2
D. vεD ∈ C∞(R3/{0}) and has the

following expressions for small ε > 0; in the case x ∈ B̄0/{0},

∂xjv
ε
D(x) = ∫

B0

∂xi,xjD(x, y)g(y)dy

for all ε < dg/2 where dg ∶= inf
x∈B̄0/{0},y∈suppg

∣x∗ − y∣ > 0, and in the other case x /∈ B̄0, ∂xjv
ε
D(x) equals

∫
B∗

∂xj {(∂xiD(x, y)) (1 − φ∗ε(x, y))} (g(y) − g(x∗))dy + g(x∗) ∫
∂B∗

(∂xiD(x, y)) νj(y)dσ(y),

for all ε < R/2. Hence, we can get that for small ε > 0,

∣w2
D(x) − ∂xjv

ε
D(x)∣ ≤ cε(

1

∣x∣2
+ 1

∣x∣5
)∥∇g∥L∞ for all x /= 0.

Since ∣∂xihD(x) − vεD(x)∣ ≤ cε∣x∣−2∥g∥L∞ , we see ∂xi,xjhD = w2
D.

2.2.2 The equality for −∆hD
For all x /= 0, ∆xD(x, y) = 0 a.e y ∈ B0. Thus, −∆hD(x) = 0 when 0 < ∣x∣ ≤ 1. On the other hand, when ∣x∣ > 1,

−∆hD(x) = g(x∗) ∫
∂B∗

∇xD(x, y) ⋅ ν(y)dσ(y) = g(x∗)ψD(x)

and ∣ψD(x)∣ ≤ c∣x∣−2 ≤ c.

2.3 The proof of (iii)

For x /= 0 and ε > 0, define

Ex ∶= {y ∈ R3; 1 + x

∣x∣
⋅ x
∗ − y
∣x∗ − y∣

= 0} and Eε
x ∶= {y ∈ R3; cos−1 ( x

∣x∣
⋅ x
∗ − y
∣x∗ − y∣

) 1 < ε} .

Remark that ∣Eε
x∣ ≤ c sin2 ε ≈ ε2. Fix a cut-off function ψ ∈ C∞0 (R) so that 0 ≤ ψ ≤ 1, ψ ≡ 1 on (−1,1) and ψ ≡ 0

on (−2,2). Then, let

ψ†
ε(x, y) = ψ

⎛
⎜⎜⎜⎜
⎝

π − cos−1 ( x
∣x∣
⋅ x
∗ − y
∣x∗ − y∣

)

ε

⎞
⎟⎟⎟⎟
⎠

.

1We regard the function cos−1(⋅) as a decreasing function from (−1,1) to (0, π).
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Observe that

ψ†
ε(x, y) = ψ†

ε(y, x) and ∣∇xψ
†
ε(x, y)∣ ≤ c

∣y∣
ε∣x∣∣x∗ − y∣ sin ε

∥ψ′∥L∞ ≈
∣y∣

ε2∣x∣∣x∗ − y∣
∥ψ′∥L∞ .

For x /= 0, let

uεN(x) = ∫
B0

N(x, y) (1 − φ∗ε(x, y)) (1 − ψ†
ε(x, y)) g(y)dy,

vεN(x) = ∫
B0

(∂xiN(x, y)) (1 − φ∗ε(x, y)) (1 − ψ†
ε(x, y)) g(y)dy,

w1
N(x) = ∫

B0

(∂xiN(x, y)) g(y)dy and

w2
N(x) = ∫

B0

(∂xi,xjN(x, y)) g(y)dy.

The kernel N and its derivatives have an additional singularity on lines. Integrals around there are estimated
by the following lemmas.

Lemma 2.1. If −∞ < α < 2 and x = rθ /= 0, then

∫
B0

∣1 + x

∣x∣
⋅ x
∗ − y
∣x∗ − y∣

∣
−α

dy = ∫
B(x∗,1)

∣1 + x

∣x∣
⋅ y
∣y∣
∣
−α

dy ≤ c∫
S2

∣1 + θ ⋅ θ̃∣
−α
dθ̃ ≤ c.

Lemma 2.2. For any θ ∈ S2 and large integer j,

∫
{θ̃∈S2;0≤1+θ⋅θ̃≤2−j}

dθ̃ ≤ c2−2j .

Proof. Let ∠(θ̃) be an angle between −θ and θ̃. When 1 + θ ⋅ θ̃0 = 2−j ,

∠(θ̃0) = cos−1(1 − 2−j) = cos−1((1 − aj)1/2) where aj = 2−j+1 − 2−2j .

Here, using sin ε ≈ ε for ε ∈ (0, π/2), we can find cos−1((1 − ε)1/2) ≈ ε. Hence, one obtains ∠(θ̃0) ≈ aj ≈ 2−j ,
which implies the assertion.

2.3.1 Continuity of hN

For any s1 ∈ (0,2) and s2 ∈ (0,∞), we decompose

∣hN(x, y) − uεN(x)∣ ≤ c
⎡⎢⎢⎢⎢⎣

∫
B0∩B(x∗,2ε)

(∣n(x, y)∣s1 + ∣n(x, y)∣−s1)dy

+ ∫
B0∩E2ε

x

(∣n(x, y)∣s2 + ∣n(x, y)∣−s2)dy
⎤⎥⎥⎥⎥⎦
∥g∥L∞ = c[I + II]∥g∥L∞ .

I and II are controlled by positive powers of ε;

I ≤ cε3−s1 and II ≤ c (1 + ∣x∣−1)3+s2 ε4−2s2 .

As a consequence, we can conclude hN ∈ C(R3/{0}) from the estimate; for τ ∈ (0,4)

∣hN(x) − uεN(x)∣ ≤ c(1 + ∣x∣−1)4ετ∥g∥L∞ .
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2.3.2 Continuity of ∂xihN

An elementary equality: 2(1 + θ ⋅ θ̃) = ∣θ + θ̃∣
2
for θ, θ̃ ∈ S2 yields

∣ yi
∣y∣
+ y

∗
i − xi
∣y∗ − x∣

∣ ≤ (2n(x, y)
∣x∗ − y∣

)
1/2

(3)

for all i ∈ {1,2,3}. Therefore, one has

∣∂xiN(x, y)∣ = ∣−
∣y∣

∣x∣n(x, y)
( yi
∣y∣
+ y

∗
i − xi
∣y∗ − x∣

) − xi
∣x∣2
∣ ≤ c ∣y∣
∣x∣∣x∗ − y∣1/2n(x, y)1/2

+ 1

∣x∣
.

For the purpose, we decompose with s1 ∈ (1,∞) and s2 ∈ (0,2),

∣w1
N(x) − ∂xiu

ε
N(x)∣ ≤ c

∥g∥L∞
∣x∣

⎡⎢⎢⎢⎢⎣
∫

B0∩B(x∗,2ε)

( 1

∣x∗ − y∣1/2n(x, y)1/2
+ 1)dy

+ ∫
B0∩E2ε

x

( 1

∣x∗ − y∣1/2n(x, y)1/2
+ 1)dy

+ 1

ε∣x∣ ∫
B0∩{ε≤∣x∗−y∣≤2ε}

(∣n(x, y)∣s1 + ∣n(x, y)∣−s2)dy

+ 1

ε2
∫

B0∩{−cos ε≤
x

∣x∣
⋅
x∗ − y
∣x∗ − y∣

≤− cos(2ε)}

(∣n(x, y)∣s1 + ∣n(x, y)∣−s2) ∣y∣
∣x∗ − y∣

dy

⎤⎥⎥⎥⎥⎦

= c

∣x∣
[I + II + III + IV ] ∥g∥L∞ .

The four terms have bounds as follows: for any τ ∈ (0,2)

I ≤ cε3/2, II ≤ cε2, III ≤ cετ ∣x∣−1 and IV ≤ cετ ,

which ensure that ∂xihN = w1
N and hN ∈ C1(R3/{0}).

2.3.3 Continuity of ∂xi,xjhN

To see this, we need a bound of the second derivatives of N with respect to x. Observe that

•

∂xi,xjn(x, y)
n(x, y)

= ∣y∣
n(x, y)

∂xi,xj (
n(y, x)
∣x∣

)

= ∣y∣
n(x, y)

⎡⎢⎢⎢⎢⎣

1

∣x∣∣y∗ − x∣
+ xi
∣x∣3
(
yj

∣y∣
+
y∗j − xj
∣y∗ − x∣

)

+
xj

∣x∣3
( yi
∣y∣
+ y

∗
i − xi
∣y∗ − x∣

) −
(y∗i − xi)(y∗j − xj)
∣x∣∣y∗ − x∣3

⎤⎥⎥⎥⎥⎦
+ 3

xixj

∣x∣4
and

•

∂xin(x, y)
n(x, y)

∂xjn(x, y)
n(x, y)

= 1

n(x, y)2
[ ∣y∣

2

∣x∣2
( yi
∣y∣
+ y

∗
i − xi
∣y∗ − x∣

) (
yj

∣y∣
+
y∗j − xj
∣y∗ − x∣

)]

+ ∣y∣
∣x∣3n(x, y)

[xi (
yj

∣y∣
+
y∗j − xj
∣y∗ − x∣

) + xj (
yi
∣y∣
+ y

∗
i − xi
∣y∗ − x∣

)] +
xixj

∣x∣4
.

From this and (3), we see that ∂xi,xjN(x, y) can be controlled without the violent term ∣n(x, y)∣−2:

∣∂xi,xjN(x, y)∣ ≤ c
∣y∣

∣x∣2∣n(x, y)∣
(1 + ∣y∣

∣x∗ − y∣
) + 1

∣x∣2
.
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Using this, we have

∣w2
N(x) − ∂xjv

ε
N(x)∣ ≤ c

1

∣x∣2

⎡⎢⎢⎢⎢⎣
∫

B0∩B(x∗,2ε)

1

n(x, y)
(1 + 1

∣x∗ − y∣
)dy

+ ∫
B0∩E2ε

x

1

n(x, y)
(1 + 1

∣x∗ − y∣
)dy

+ 1

ε∣x∣ ∫
B0∩{ε≤∣x∗−y∣≤2ε}

1

∣x∗ − y∣1/2n(x, y)1/2
dy

+ 1

ε2
∫

B0∩
⎧⎪⎪⎪⎨⎪⎪⎪⎩
− cos ε≤

x

∣x∣
⋅
x∗ − y
∣x∗ − y∣

≤− cos(2ε)
⎫⎪⎪⎪⎬⎪⎪⎪⎭

1

∣x∗ − y∣3/2n(x, y)1/2
dy

⎤⎥⎥⎥⎥⎦
∥g∥L∞

= c 1

∣x∣2
(I + II + III + IV ) ∥g∥L∞ .

Each term is estimated as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

I ≤ c∫
2ε

0
t(1 + t−1)∫

S2
∣1 + θ ⋅ θ̃∣

−1
dθ̃dt ≤ cε

II ≤ c∫
2

0
t(1 + t−1)∫

{−1≤θ⋅θ̃≤− cos(2ε)}
∣1 + θ ⋅ θ̃∣

−1
dθ̃dt ≤ cε2

III ≤ cε−1∣x∣−1 ∫
2ε

0
t2 ∫

S2
∣1 + θ ⋅ θ̃∣

−1/2
dθ̃dt ≤ cε2∣x∣−1

IV ≤ cε−3 ∫
2

0
∫
{− cos ε≤θ⋅θ̃≤− cos(2ε)}

dθ̃dt ≤ cε.

As a consequence, we have that,

∣w2
N(x) − ∂xjv

ε
N(x)∣ ≤ c

ε

∣x∣2
(1 + 1

∣x∣
) ∥g∥L∞ .

Since we have also ∣∂xihN(x)−vεN(x)∣ ≤ cε3/2∣x∣−1∥g∥L∞ , we can conclude ∂xi,xjhN = w2
N , thus hN ∈ C2(R3/{0}).

2.3.4 The equality for −∆hN
Observe that ∆xN(x, y) =∆x {log ∣y∣ − log ∣x∣ +N(y, x)} =∆xN(y, x) − ∣x∣−2. Since

∂2yi
N(x, y) = 1

∣x∗ − y∣n(x, y)
(1 − (x

∗
i − yi)2

∣x∗ − y∣2
) − 1

n(x, y)2
( xi
∣x∣
+ x

∗
i − yi
∣x∗ − y∣

)
2

,

one has ∆yN(x, y) = 0, and then ∆xN(x, y) = −∣x∣−2. Therefore,

−∆xhN(x) = −∫
B0

∆xN(x, y)g(y)dy =
1

∣x∣2 ∫
g(y)dy = 0.

2.4 The boundary condition

Next, we see that f enjoys the boundary condition; ∂νh(x) = 0 for x ∈ ∂B0. First, for any x ∈ S2

∂ν(x) (Γ(x − y) −D(x, y)) =
1

∣x − y∣
.

On the other hand, we see that for the same x, ∂ν(x)N(x, y) = −
∣y∣

n(x, y)
x ⋅ ( y
∣y∣
+ y∗ − x
∣y∗ − x∣

) − 1. Since

x ⋅ ( y
∣y∣
+ y∗ − x
∣y∗ − x∣

) = −n(x, y)
∣y∣

+ n(x, y)
∣y∣∣x − y∣

,

we obtain ∂ν(x)N(x, y) = −
1

∣x − y∣
, and then ∂νh(x) = 0 for any x ∈ S2.
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2.5 L2-estimate

To complete the proof of Proposition 2.1, we check the L2 estimate for ∇h. For simplicity, we give only a proof
of ∥∇hN∥L2(B0) ≤ c∥g∥L2(B0). From a pointwise estimate of ∇N in Section 2.3.2, it is sufficient to show

∫
B0

∣y∣∣x∗ − y∣−1 (1 + x

∣x∣
⋅ x
∗ − y
∣x∗ − y∣

)
−1/2

∣g(y)∣dy ≤ c∥g∥L2(B0).

Applying Cauchy-Schwarz inequality and changing variables, we see that the left hand side is controlled by

∥g∥L2(B0)

⎛
⎜
⎝
∫

x∗−B0

∣y∣−2 (1 + x

∣x∣
⋅ y
∣y∣
)
−1

dy
⎞
⎟
⎠

1/2

.

Because x∗−B0 ⊂ {y;
1

∣x∣
− 1 ≤ ∣y∣ ≤ 1

∣x∣
+ 1}, this integral is uniformly bounded for x ∈ B0. Therefore, the desired

L2 estimate is verified, and then the proof of Proposition 2.1 is completed.

3 Vector-valued inequality

The proof of main result uses a version of vector-valued inequalities for Hardy-Littlewood maximal operator.
The following is a generalization of the result of Fefferman and Stein [7]. The argument in this section can be
applied to other dimensional cases.

Proposition 3.1. For 1 < r, p <∞ and α = 3(1 − 1/p),

XXXXXXXXXXXX
(
∞
∑
l=1
(Mfl)r)

1/rXXXXXXXXXXXXK̇α
p,∞

≤ c
XXXXXXXXXXXX
(
∞
∑
l=1
∣fl∣r)

1/rXXXXXXXXXXXXK̇α
p,1

.

Because Herz spaces have the property

∥fr∥K̇α
p,q
= ∥f∥r

K̇
α/r
pr,qr

,

Proposition 3.1 can be rewritten as follows

Corollary 3.1. For 0 < r < 1, r < p <∞ and α = 3(1/r − 1/p),

∥
∞
∑
l=1
Mrfl∥

K̇α
p,∞

≤ c∥
∞
∑
l=1
∣fl∣∥

K̇α
p,r

.

This inequality with r = 3/4 is applied in the proof of Theorem 1.1. Note that α3/4 = 0.

We give a proof of Proposition 3.1.

Proof.

L.H.S. = sup
k∈Z

2kα
XXXXXXXXXXXX
(
∞
∑
l=1
Mfrl )

1/rXXXXXXXXXXXXLp(Ak)

≤ sup
k∈Z

2kα
XXXXXXXXXXXX
∑
j∈Z
(
∞
∑
l=1
M(flχj)r)

1/rXXXXXXXXXXXXLp(Ak)

≤ sup
k∈Z

2kα
k−2
∑

j=−∞

XXXXXXXXXXXX
(
∞
∑
l=1
M(flχj)r)

1/rXXXXXXXXXXXXLp(Ak)

+ sup
k∈Z

2kα
k+1
∑

j=k−1

XXXXXXXXXXXX
(
∞
∑
l=1
M(flχj)r)

1/rXXXXXXXXXXXXLp(Ak)

+ sup
k∈Z

2kα
∞
∑

j=k+2

XXXXXXXXXXXX
(
∞
∑
l=1
M(flχj)r)

1/rXXXXXXXXXXXXLp(Ak)

=∶ I + II + III.

From [7], we can see that II ≤ c
XXXXXXXXXXXX
(
∞
∑
l=1
∣fl∣r)

1/rXXXXXXXXXXXXK̇α
p,∞

.
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Since if x ∈ Ak and j ≤ k − 2,

(
∞
∑
l=1
M(flχj)(x)r)

1/r

≤ c2−3k23j(1−1/p)
XXXXXXXXXXXX
(
∞
∑
l=1
∣fl∣r)

1/rXXXXXXXXXXXXLp(Aj)

,

we can see that I ≤ c
XXXXXXXXXXXX
(
∞
∑
l=1
∣fl∣r)

1/rXXXXXXXXXXXXK̇α
p,1

. On the other hand, if x ∈ Ak and k + 2 ≤ j, it holds that

(
∞
∑
l=1
M(flχj)(x)r)

1/r

≤ c2−3j/p
XXXXXXXXXXXX
(
∞
∑
l=1
∣fl∣r)

1/rXXXXXXXXXXXXLp(Aj)

,

which implies that III ≤ c
XXXXXXXXXXXX
(
∞
∑
l=1
∣fl∣r)

1/rXXXXXXXXXXXXK̇α
p,∞

and the proof is completed.

4 Proof of Main theorem

Proof. Because

∥(u ⋅ ∇)v∥HK̇
αp
p,∞
=

3

∑
k=1

XXXXXXXXXXX

3

∑
j=1

uj∂jvk

XXXXXXXXXXXHK̇
αp
p,∞

=
3

∑
k=1

XXXXXXXXXXX
Mϕ

⎛
⎝

3

∑
j=1

uj∂jvk
⎞
⎠

XXXXXXXXXXXK̇αp
p,∞

,

it is enough to show the inequality

XXXXXXXXXXX
Mϕ

⎛
⎝

3

∑
j=1

uj∂jv
⎞
⎠

XXXXXXXXXXXK̇αp
p,∞

≤ c∥u∥L∞∥∇v∥HK̇
αp

p,3/4
,

for all divergence free vector fields u and functions v ∈ Y ∩W 1,r
loc (R

3). Firstly, we give a definition of
n

∑
j=1

uj∂jv

as a tempered distribution as follows; for φ ∈ S(R3)

⟨
3

∑
j=1

uj∂jv,φ⟩ ∶= −
3

∑
j=1
∫ uj(y)v(y)∂jφ(y)dy.

Our assumption ensures that the integral in the right hand side absolutely converges. Then, it follows

3

∑
j=1

uj∂jv ∗ ϕt(x) = −Cϕ∥u∥L∞ ∫ v(y)
⎡⎢⎢⎢⎣

3

∑
j=1

ũj(y)∂yjϕt(x − y)
⎤⎥⎥⎥⎦
dy,

where Cϕ is a large constant depending on ϕ, and ũj(y) =
uj(y)

Cϕ∥u∥L∞
. Owing to the divergence free condition on

u, we see that for every x ∈ R3

3

∑
j=1

ũj(y)∂yjϕt(x − y) =
3

∑
j=1

∂yj (ũj(y)ϕt(x − y)) in S ′(R3
y).

Hence, we obtain the pointwise estimate

Mϕ

⎛
⎝

3

∑
j=1

uj∂jv
⎞
⎠
(x) ≤ Cϕ∥u∥L∞Nmv(x),

for all m ∈ [1,∞]. In particular, we use this estimate with m =∞ and get

XXXXXXXXXXX
Mϕ

⎛
⎝

3

∑
j=1

uj∂jv
⎞
⎠

XXXXXXXXXXXK̇αp
p,∞

≤ c∥u∥L∞∥N∞v∥K̇αp
p,∞
.

It is enough to prove that
∥N∞v∥K̇αp

p,∞
≤ c∥∇v∥HK̇

αp

p,3/4
. (4)
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We derive this inequality from a pointwise estimate. To prove this, we fix Ψ ∈ F∞(x). Since the support of gΨ
is a compact subset in BΨ = B(x, rΨ), there exist a small ε0 > 0 and a smooth positive function η so that for all
ε ∈ (0, ε0),

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

supp(gΨ ∗ ϕε) ∪ suppΨ ⊂⊂ suppη ⊂⊂ BΨ

η ≡ 1 on supp(gΨ ∗ ϕε) ∪ suppΨ
∥η∥Lq = cq ∣BΨ∣1/q for all q ∈ [1,∞].

Define αε ∶= ∥η∥−1L1 ∫
BΨ

gΨ ∗ ϕε(y)dy. Remark that αε → 0 as ε → 0. In fact, for a test function ρ ∈ C∞0 (2BΨ)
with ρ ≡ 1 on BΨ, we have

∥η∥L1αε = −⟨Ψ,∇ρ ∗ ϕε⟩→ −⟨Ψ,∇ρ⟩ = 0.

For simplicity, let gεΨ ∶= gΨ ∗ ϕε − αεη. Since gε0(y) ∶= gεΨ(x − rΨy) ∈ C∞0 (B0) and ∫
B0

gε0dy = 0, from Section 2,

we see that for ε < ε0,
hε0(y) ∶= ∫

B0

G(y, z)gε0(z)dz

is a function in C2(R3/{0}) and solves the Neumann problem; −∆hε0 = gε0 in B0/{0} with ∂νh
ε
0 = 0 on ∂B0.

Therefore,

hεΨ(y) ∶= r2Ψhε0 (
x − y
rΨ
)

is in C2(R3/{x}) and enjoys the Neumann problem:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

−∆hεΨ = gεΨ in BΨ/{x},
∂hεΨ
∂ν

= 0 on ∂BΨ.

Further, hεΨ fulfills the following estimates: for all j,

∥∂jhεΨ∥L2(BΨ) ≤ c∣BΨ∣−1/2 and ∥∆hεΨ∥L∞(R3) ≤ c∣BΨ∣−4/3. (5)

The former follows from the L2 estimate in Proposition 2.1. Now we can see that

∫ vgΨdy = − lim
ε→0
∫ ∇v ⋅ ∇hεΨdy.

Indeed, from Theorem 7.25 in [9], we can find a sequence {vm}m∈N ⊂ C∞(BΨ) so that vm → v in W 1,r(BΨ) as
m→∞. From divergence theorem,

∫ vgΨdy = lim
m→∞

lim
ε→0
∫ vmg

ε
Ψdy = lim

ε→0
∫ ∇v ⋅ ∇hεΨdy.

Thus we obtain

∣∫ vgΨdy∣ ≤ lim sup
0<ε<ε0

3

∑
k=1
∣∫ ∂kv∂kh

ε
Ψdy∣ .

Since ∂kv ∈HK̇
αp

p,3/4, following Miyachi [12], it can be decomposed as

∂kv =
∞
∑
j=1

a
(k)
j

where supp a
(k)
j ⊂ Bj = B(xj , rj), a(k)j ∈ L∞(R3) and ∫ xαa

(k)
j (x)dx = 0 for α with ∣α∣ ≤ 1, also

⎛
⎝

∞
∑
j=1
∥a(k)j ∥

s
L∞χBj(x)

⎞
⎠

1/s

≤ cs(∂kv)∗2(x) for all s ∈ (0,∞).

Therefore, we have

∣∫ vgΨdy∣ ≤ lim sup
0<ε<ε0

3

∑
k=1

∞
∑
j=1
∣∫ a

(k)
j ∂kh

ε
Ψdy∣ .

From (5), we immediately see that

∣∫ a
(k)
j ∂kh

ε
Ψdy∣ ≤ ∥a

(k)
j ∥L∞ ∣Bj ∩BΨ∣1/2∥∂khεΨ∥L2(BΨ) ≤ c∥a

(k)
j ∥L∞ .
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When x /∈ 4Bj , if CrΨ < ∣x − xj ∣ with C > 8/3, then it holds Bj ∩BΨ = ∅ and ∫ a
(k)
j ∂kh

ε
Ψdy = 0. On the other

hand, if CrΨ ≥ ∣x − xj ∣, then we can derive the decay estimate

lim sup
0<ε<ε0

∣∫ a
(k)
j ∂kh

ε
Ψdy∣ ≤ c∥a

(k)
j ∥L∞ (

rj

∣x − xj ∣
)
4

. (6)

We may assume x /= xj . Using the moment condition on a
(k)
j twice, one has

∫ a
(k)
j (y)∂kh

ε
Ψ(y)dy = ∫ a

(k)
j (y) (∂kh

ε
Ψ(y) − ∂khεΨ(xj))dy

=
3

∑
s=1

1

∫
0

∫ a
(k)
j (y)(y − xj)s(∂s∂kh

ε
Ψ)(θy + (1 − θ)xj)dydθ

=
3

∑
s=1

1

∫
0

∫ a
(k)
j (y)(y − xj)s [(∂s∂kh

ε
Ψ)(θy + (1 − θ)xj) − ⟨∂s∂khεΨ⟩B(xj ,θrj)]dydθ.

From this, the decay estimate (6) is derived as follows;

∣∫ a
(k)
j (y)∂kh

ε
Ψ(y)dy∣ ≤ crj∥a

(k)
j ∥L∞

3

∑
s=1

1

∫
0

θ−3 ∫
B(xj ,θrj)

∣∂s∂khεΨ(y) − ⟨∂s∂khεΨ⟩B(xj ,θrj)∣dydθ

≤ cr4j ∥a
(k)
j ∥L∞

3

∑
s=1
∥∂s∂khεΨ∥BMO(R3)

≤ cr4j ∥a
(k)
j ∥L∞∥∆h

ε
Ψ∥L∞(R3)

≤ c(
rj

rΨ
)
4

∥a(k)j ∥L∞

≤ c(
rj

∣x − xj ∣
)
4

∥a(k)j ∥L∞ .

Here, we have used the boundedness of RjRk from L∞(R3) to BMO(R3) in the third inequality, where Rj is
the jth Riesz transform, and (5) in the fourth inequality.

As mentioned in [12], because ( 1

1 + ∣x − xj ∣/rj
)
4

≈ M3/4(χBj)(x), as a consequence it follows that for all

x ∈ R3,

N∞v(x) ≤ c
3

∑
k=1

∞
∑
j=1
∥a(k)j ∥L∞M3/4(χBj)(x). (7)

Now, we apply Corollary 3.1 with r = 3/4 and obtain

∥N∞v∥K̇αp
p,∞
≤ c

3

∑
k=1

XXXXXXXXXXX

∞
∑
j=1
∥a(k)j ∥L∞χBj

XXXXXXXXXXXK̇αp

p,3/4

≤ c
3

∑
k=1
∥(∂kv)∗2∥K̇αp

p,3/4
≈ ∥∇v∥HK̇

αp

p,3/4
.

Here we have used 3(1 − 1/p) + 3(4/3 − 1) = 3(1 − 1/p) + 1 = αp. The proof is completed.
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