NUMBER OF RIGHT-ANGLE TRIANGLES (PAPER BY
PACH-SHARIR)

ABSTRACT.

1. SET UP AND NOTATIONS

(1) P = {p} denotes a set of finite points in R%. We often write N := #P.
Also, £ = {¢} denotes a set of finite lines in R2.

(2) Given p1,pa,p3 € R2, we denote a triangle spanned by these points by
A(p1,p2,p3). Note that A(py, p2, p3) may be degenerate.

(3) We are especially interested in a right-angled triangle and

T(T) = {(plap2ap3) € (CP)3 : A<p17p2>p3) is the right—angle triangle}

The main result of Pach—Sharir is as follows.
Theorem 1.1 (Pach-Sharir '92). For any P C R?,

(1.1) #T(P) < C(#P)* log #P.

We next aim to exhibit the actual estimate, proved by Pach—Sharir, that yields (1.1).
The reason of doing this is because it may be interpreted as a certain (discrete) X-
ray estimate. For this purpose, we need to introduce the discrete X-ray transform.
Suppose we are given a finite points P.

(1) For a line ¢ € R?, define
X[P](0) := #(PNL).
(2) Let © = O(P) be a set of directions that spanned by two points of P: by
denoting 8, v := ﬁ,
O(P) :={b,p :p#p €P}.
Note that

2
(3) For 6 € S! and p € R?, we set

e:NumberDirections| (1.2) #O6(P) < (#?> = %#T(#‘P —1) < (#P)2

%(p) :={th 4+ p:t € R} = a line in direction # and passing through p.
We will consider a set of parallel lines in a fixed direction § € ©(P) whose
centre runs over P: for each § € ©(P),
£ = L9P) = {%p) :p e P}.
1
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Note that ¢/ (p) = £°(p’) may happen even if p # p’. Thus,
I9 = I9(P) := #L%(P) < #7.
We will often label £(P) by

LOPy =146, 00y ={0 :i=1,....1%.
Similarly, we will also consider a set of vertical lines:

L =L@ = ) p e P,
and label this set by
P =y = =1, 0, T = LY ().
(4) Finally, for each ¢¢ € £9(P) and EQL e Lo (P), we denote
pl =00 el

which is a (unique) crossing point of two lines ¢/ and E?L.

With these notations, the main estimate of Pach—Sharir may be stated as follows.

Theorem 1.2 (Pach-Sharir '92). For any P C R?,

i

e:PachSharir-Xray| (1.3) XY X[ (E)X[P(€97 )15 (pl) < C(#P)? log (#P).

0cO(P) i=1 j=1

~ A continuous analogue to (1.3) ~

Let us try to catch a sense of (1.3). Use our familiar notation X f(6,v) :=
fR f(t0 4+ v) dt. Then the continuous analogue to LHS of (1.3) is as follows:

/ / / 0 V1 Xf( )K(’Ul,'l}g;e) d)\<9>i(Ul)d)\<9>(’l)2)d0(9),
St Jvie(0 v2 €(6
where K(vl, V2; 9) is some integral kernel®.

“maybe something like

K(v1,v2;0) = 1gupp £ (£ (’Ul) ne (Ug))???

- )

We will see how (1.3) implies their main result (1.1) later.
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2. PROOF OF THEOREM OF PACH-SHARIR

Let us give a proof of (1.1). We take arbitrary P C R? and fix it below. We thus
sometimes abbreviate the dependence of P.

2.1. Implication of (1.3) = (1.1). In this subsection, we give an interpretation
of the problem about the number of right-angle triangles in terms of the X-ray
transform. A goal here is to show the following representation:

Claim 2.1. By using above notations,

0 go*
e:NumberRightangle-Xray| (2.1) 17(P) = Z Z Z (X[7] () — 1) (X[T](EfL) -1) 1509 N E?L).
0cO(P) i=1 j=1

Once one could see this claim, then it in particular follows that

0 g0t
berRightangle-Xray(Ineq) | (2.2) @) < S0 ST S TXPIE) XD )1 N el
0€e(P) i=1 j=1

Thus, their main result (1.1) would follow from their X-ray estimate (1.3).

Proof of (2.1). Fix a direction § € ©(P) and create a grid
L0 L0 = {00, 0y x {657, 00, )

We then focus on right-angle triangles with an ‘orientation’ at 6 or 8+, (equivalently

those created from the grid £9 x Lel). In order to give more precise definition, let
us fist introduce a subset of T defined by

. . . L .
‘J'e(pfj) = {A(pfj,p?,j,pfj/) il e {1, 1PN\ {i}, 7 e {1,..., % \{j}st. pf,j,pfj/ € P},

for each (i,5) € {1,...,1%} x {1,...,J0L} such that p?j =10 ﬂé?L € P. What
does this subset mean? In one word, this is a set of all right-angle triangles in T
whose ‘orthogonal vertex’ is at pfj; see my hand-written picture for more instinct!

We then define
7= U 76
(i.4):p%; €P

This is a collection of all right-angle triangles whose shortest edge is oriented at
either § or §+. Thus, T, all right-angle triangles, may be decomposed into
r=Ur-U U 7
0ce €0 (i,5):pf; €P
As an important remark, we note that J¢ (pfj) and T (pl‘?,/j,) are ‘independent’ in
the sense that

Tl )N T (ph,) =0
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whenever (0,14,7) # (0',4,5") (that is, either one of the following holds true: 6 # ¢’,
i £, or j #j'). Therefore, we have that

10 g0t
#T =" #T0!)1e()).

0cO i=1 j=1

Finally, for fixed (i, ) such that pf; € P, we notice from the definition of T%(pf,)
that

#T00) = #{ € (L N\ (i} phy € P x #{ € (L I7 1\ () oy €9
= (X[P)(0) — 1) (X[P)(0) - 1).

This concludes the proof of (2.1). O

2.2. Szemerédi—Trotter in X-ray language.

Theorem 2.2 (Szemerédi-Trotter for lines). Let £ be a finite collection of lines in
R2, and k € N. Then

#{k-rich points of L} = #{p €R? : 3y,... by € L st.x €l N---N L}

2
(23 < Omax{ IS 23,

According to the well-known point-line duality, (2.3) is equivalent to the following:

Theorem 2.3 (Szemerédi—Trotter for points). Let £ be a finite collection of lines
in R2, P be a finite collection of points in R%, and k € N. Then

2
(2.4) Bt 3y, e < Omax{ TS HT

The inequality (2.4) may be described in terms of the X-ray transform as follows:

Corollary 2.4 (Szemerédi-Trotter in terms of X-ray transform). Let £ be a finite
collection of lines in R?, P be a finite collection of points in R?, and k € N. Then

(2.5) B0 L X[P(0) > k) < Cmax] (i‘zy, % .

Proof. Clearly, Ip1,...,pr € PN L is equivalent to X[P](£) > k. O
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o Szemerédi-Trotter = weak-type estimate of the X-ray transform —

The threshold of k in (2.5) is given by k = /#P.
(1) In the case of k > /#P, (2.5) becomes

#P

#te L X[P(0) =k <CT=

This may be manifestly read as
[ X[Lo]ll 1oy <7 CllLp|L
(2) In the case of k < /#%P, (2.5) becomes

e:ST-L3/2-weakL3 |

e:ST-StrongX-ray |

#P)?
#{le L : X[P|) >k} < C< k3) .
This may be manifestly read as
(2.6) X[l Zo. ) <7 ClL2 N2 5
- J

In particular, (2.6) suggests a strong type estimate of X[P] by loosing some loga-
rithmic factor. This is indeed the case as follows:

Corollary 2.5 (Strong L3-L3 bound of the X-ray transform). Let £ be a finite
collection of lines in R?, P be a finite collection of points in R2, and N = #%P.
Then

(2.7) 11 xp1<vmy X [PUI7a(c) < Clog N||19>H:Zg = C(#%)*log #P.

Proof. This is perhaps standard argument to upgrade some weak-type estimate to
the strong one by allowing logarithmic loss.

11 xp1<vmy X [Pll7acc) = > X[P)(0)?
LeL:X[P](0)<VN

VN
=> > X[PIe

k=0 £€ £: X [P](£)=k

where

Ly :=#{te L : X[P|(¢) =Ek}.
By introducing

Lowi=#{0 € £: X[P)(0) = k),
we readily see that

Loy =L>k — L>k+1.
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Thus,
VN
11 xprevmy X P Zacey = 2 K (Lok = Lakta)
k=0
VN VN
=0+ KLsp—Y (k—1)Lox — (VN)’Ly vy
k=1 k=1
VN
= 3k =3k + 1)Lk — (VN Ly /iy
k=1
VN
<4Y KLy
k=1

We now then apply Szemerédi—Trotter in terms of the X-ray transform (2.5) to
conclude that

= C(#%)* log (#7).

1 xp1<vm X Pl e) < CZkQ
|
2.3. Conclude the proof of (1.3). Given above preparation, we are now at the

stage of doing something trivial, that is Cauchy—Schwarz. First, we separate three
cases

I
L
DD D XIFIEHXPIE )1 ()
0€0 i=1 j=1
(2.8) =y > X[Pe) > X[P1(€5 ) 1p(pf;)
0€0 i X[P](¢))<VN 3 X[P1(8)<VN
+ term involving Z +term involving Z

=X [P](¢0)>VN 3 X [P0 >VN

As we will see in the end, the main contribution comes from the first term. So, we
will focus on how to deal with the first term. We fix § € © and estimate

Z Z X[PIE)X [P )19(pY;)
X [P1(E)<SVN j:X[P) (0 ) VN
(2.9)
% 0+ 0 \\%
< (Z l{zX[?](Zf)S\/ﬁ}X[:PKE 13’ pzj Z l{j )([g:o]([eL [?](Ej )21?(])13))
2,7

(X XEPETY 6l Y menzlﬂp?j))?

X[P|(£)<VN P X[PI9)<VN
Notice that
. L 1
S e(l) =#{ief{1,..., 7 Yl el e P} = X[P)(E)),
J
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and similarly

L
Z 1p( pm ](59 ).
Therefore,

> > X [P X [P )1 (pE))
X [PI)SVN G X[P)(04)<VN

1 L 1
<( ) X Y. X))
X [P](t)<VN FX[P1E0T)
By taking a summation in 6 and applying CS again,
First term

=> > S XPIEXP)E )1 ()

0€0 i X[P](¢9)<VN j:X[P](£0 )< VN

<SS (Y xP@HE S X))

0€0 i:x[P](¢)<VN JX[P)(8T)<VN
@10)  <(Y Y XEENNYC Y XPeHY)
0 i X[P|(8)<VN 0 5:X[PI(00T)<VN

= Z Z me?)?) = ||1{X[?](Z)§\/N}X[T]”i?’(ﬁ)

0 i X[P](4)<VN

where £ denotes all lines spanned by two points of P. We conclude the desired
estimate for the first term of (2.8) from Lz-L3(£) boundedness of X[P] (2.7).

We are left to handle other terms in (2.8). However, these terms will be bounded
by #Plog #P, and thus it is an error term; see original paper by Pach—Sharir for
details.



