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The Weyl’s lemma

Consider the simplest equation

∆u = 0 in R
n.

Weyl’s lemma tells us that any distributional solution is smooth.
Quantitatively,

‖∇αu‖L∞(Br )
≤ C

r |α|+n
‖u‖L1(B2r )

.

That was the beginning of regularity theory!
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The standard CZ theory

Next consider the equation

∆u = f in R
n.

Then CZ theory tells us that

f ∈ Lq =⇒ ∇2u ∈ Lq, 1 < q < ∞.

Note that this fails at the end-point cases q = 1 and q = ∞.
Consequently, Sobolev embedding implies

∇u ∈ L
nq

n−q , q < n,

u ∈ L
nq

n−2q , q < n/2.
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Pointwise representations

The bottom of the matter is

u(x) = c(n)

ˆ

Rn

G (x , y)f (y)dy ,

where

G (x , y =

{

|x − y |2−n if n > 2
−log(|x − y |) if n = 2.

Then differentiating twice

∇2u(x) =

ˆ

Rn

K (x , y)f (y)dy = [RiRj(f )]

where K (x , y) is a singular integral kernel of CZ type. Hence the
conclusion follows. Here Rj is the j-th Riesz transform.
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Gradient estimates: Fractional integral approach

The pointwise representation says that

u(x) = I2f (x), n > 2,

and
|∇u(x)| ≤ c I1|f |(x),

where Iα, α ∈ (0, n) is a fractional integral

Iαµ(x) = c(n, α)

ˆ

Rn

dµ(y)

|x − y |n−α

= c

ˆ ∞

0

µ(Bt)(x)

tn−α

dt

t
.

Then
Iα : Lq → L

nq
n−αq , q > 1, αq < n.

This gives the desired Lp control of u and ∇u.
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Fractional integrals v.s. singular integrals

To bound u and ∇u we do not need to pass to ∇2u and thus
CZ theory can be avoided. We work only with fractional
integrals instead. This has an advantage when dealing with
equations with bad coefficients over irregular domains.

The theory of fractional integrals is different from the theory of
singular integrals in that whereas the latter is based on
cancellation properties of the kernel, the former only use the
size of the kernel.

In particular, the embedding

Iα : Lq → L
nq

n−αq , αq < n,

fails as α → 0+.
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A gradient estimate where singular integrals are needed

Now consider the equation

∆u = div F in R
n.

We want to get the following bound

‖∇u‖Lq . ‖F‖Lq , 1 < q < ∞,

i.e. the solution operator maps Ẇ−1,q into Ẇ 1,q.
Integrating by parts and differentiating the pointwise representation

∇u(x) =

ˆ

Rn

∇x∇yG (x , y)F (y)dy = −[RiRj]F .

Hence CZ theory applies and yields the above bound.
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Warning

• This Lq gradient estimate should not be expected to hold when
the coefficients are not good or when the domain is irregular.

• Bad coefficient example and bad domain example will be
discussed later on.
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Capacities

• Sobolev capacity: Let α > 0, s > 1, and let K be a compact set.
Define

Cap(K , W α,s(Rn)) := inf{‖u‖W α,s(Rn) : u ∈ SK},
where

SK = {u ∈ C∞
0 (Rn), u ≥ 1 on K}.

• Functions in W α,s(Rn) are generally not continuous. One can
think of Cap(·, W α,s(Rn)) is a device to measure the discontinuity of
functions in W α,s(Rn), especially when αs ≤ n.

• Example (Lusin type theorem). If f ∈ W α,s(Rn), then f has a
quasi-continuous representative f̃ . That is, f = f̃ a.e. and for any
ε > 0 there exists an open set G such that Cap(G , W α,s(Rn)) < ε
and f̃ is continuous in R

n \ G .
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Capacities
• Bessel capacity:

Capα, s(K ) = inf
{

‖f ‖s
Ls : f ≥ 0,Gαf ≥ 1 on K

}

,

where Gα = F−1[(1 + |ξ|2)α
2 ] (Bessel kernel), and

Gαf (x) =

ˆ

Rn

Gα(x − y)f (y)dy .

• Note that

Gα(x) ≤ A

{

1
|x |n−α , 0 < |x | ≤ 1

e−a|x |, |x | > 1.

• By Calderón-Zygmund theory

W α,s(Rn) = {Gαf : f ∈ Ls(Rn)},
and thus

Capα,s(K ) ' Cap(K , W α,s(Rn)).
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Capacities

• Riesz capacity: α ∈ (0, n), s > 1,

capα, s(K ) = inf
{

‖f ‖s
Ls : f ≥ 0, Iαf ≥ 1 on K

}

,

where recall that

Iαf (x) =

ˆ

Rn

f (y)

|x − y |n−α
dy .

• capα, s(·) is associated to the homogeneous Sobolev space Ẇ α,s .

• Locally we also have the equivalence: For αs < n,

capα, s(K ) ≤ Capα, s(K ) ≤ C (R)capα, s(K ), ∀K ⊂ BR .
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Capacities

• For αs > n, Capα, s(K ) ≥ c > 0 provided K is nonempty. But
• For αs ≥ n, capα, s(K ) = 0 for any K .

• Capacity of a ball: capα, s(Br ) ' |Br |1−αs/n, αs < n.
• A lower estimate for general sets:

capα, s(K ) & |K |1−αs/n, αs < n.

This follows from the Sobolev’s inequality.
• Relation to Hausdorff measure:

capα, s(K ) ≤ cHn−αs
∞ (K ),

and moreover Hn−αs(K ) < ∞ =⇒ capα, s(K ) = 0.
On the other hand, capα, s(K ) = 0 =⇒ Ht(K ) = 0 for all t > n − αs.
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Capacities

Capacities play an important role in analysis and PDEs. For
example, they are used to study:

• Pointwise behaviors of Sobolev functions (mentioned above).
• Removable singularities of solutions to PDEs. Example: Let E be
a closed subset of Ω and u ∈ Har(Ω \ E )∩ L∞(Ω \ E ). If cap1,2(E ) = 0
then u ∈ Har(Ω).
• Dirichlet problems on arbitrary domains (Wiener’s criterion), etc.

We are interested in capacities mainly because of their relation to
trace inequalities.
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Capacities and trace inequalities

Theorem (Maz’ya-Adams-Dahlberg)

Let ν ∈ M+(Rn), 0 < α < n, and 1 < s < ∞. Then

ˆ

Rn

(Iαf )sdν ≤ A1

ˆ

Rn

f sdx , ∀f ∈ Ls(Rn), f ≥ 0.

m
ν(K ) ≤ A2 capα,s(K ), ∀K ⊂ R

n.

• If α ∈ N then they are equivalent to the following weighted
Poincaré-Sobolev’s inequality:

ˆ

Rn

|ϕ|sdν ≤ A1

ˆ

Rn

|∇αϕ|sdx , ∀ϕ ∈ C∞
0 (Rn).
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Capacities and trace inequalities
• For example, for α = 1 we have

ˆ

Rn

|ϕ|sdν ≤ A1

ˆ

Rn

|∇ϕ|sdx , ∀ϕ ∈ C∞
0 (Rn).

m
ˆ

Rn

(I1f )sdν ≤ A1

ˆ

Rn

f sdx , ∀f ∈ Ls(Rn), f ≥ 0.

m
ν(K ) ≤ A2 cap1,s(K ), ∀K ⊂ R

n.

• For α = 2, one has a similar result for I2 and ∆.
• Also, we have the inhomogeneous version

ˆ

Rn

|ϕ|sdν ≤ C1

ˆ

Rn

(|∇ϕ|s + |ϕ|s)dx , ∀ϕ ∈ C∞
0 (Rn).

m
ν(K ) ≤ C2 Cap1,s(K ), ∀K ⊂ R

n.
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Capacities and trace inequalities

Balls versus sets:
• Necessary condition:

ν(Br ) ≤ C capα,s(Br ) = C rn−αs ∀Br ⊂ R
n.

• Sufficient condition: ν = gdx and for some ε > 0

ˆ

Br

g1+εdy ≤ C rn−(1+ε)αs ∀Br ⊂ R
n.

This is known as Fefferman-Phong condition (a Morrey space
condition).
• Another equivalent condition: Kerman-Sawyer’s testing condition

ˆ

Br

(IανBr
)s

′

dx ≤ C ν(Br ) ∀Br ⊂ R
n.

N. C. Phuc (LSU) August 28, 2016 17 / 110



What does the condition ν(K ) ≤ C capα,s(K ) tell us?
• Since

|K |1−αs
n ≤ C capα, s(K )

we see that if ν = f ∈ L
n

αs
,∞(Ω) then ν(K ) ≤ C capα,s(K ) and hence

the trace inequality follows. Recall that for p > 1,

f ∈ Lp,∞ ⇔ tp|{x ∈ Ω : |f (x)| ≥ t}| ≤ C ∀t > 0.

⇔
ˆ

K

|f |dx ≤ C |K |1−1/p.

• Strong type ⇐⇒ weak type:
ˆ

Rn

(Iαf )sdν ≤ C

ˆ

Rn

f sdx , ∀f .

m

tsν({Iαf ≥ t}) ≤ C

ˆ

Rn

f sdx , ∀f .
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Capacities and trace inequalities

• Capacitary weak type inequality:

capα,s({Iαf ≥ t}) ≤ 1

ts

ˆ

Rn

f sdx , ∀f .

This is obvious from the definition of capacity.
• Capacitary strong type inequality:

ˆ ∞

0
capα,s({Iαf ≥ t}) dts ≤ C

ˆ

Rn

f sdx , ∀f .

This is by no means obvious!
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Capacities and trace inequalities

Theorem (Maz’ya-Verbitsky 1995)

Let ν ∈ M+(Rn), 0 < α < n, and 1 < s < ∞. Then

ν(K ) ≤ A3 capα,s(K ), ∀K ⊂ R
n.

m
ˆ

K

(Iαν)s
′

dx ≤ As′

4 capα, s(K ), ∀K ⊂ R
n.

m

Iα[(Iαν)s
′

](x) ≤ A
1

s−1

5 Iαν(x) a.e. x ∈ R
n.

Remark:
• The constants Ai , i = 1, . . . , 5, are comparable.
• A similar result holds for Gα and Bessel capacity Capα,s .
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Formulation by function spaces

• Morrey space: Lp,λ, p ≥ 1, 0 < λ ≤ n

‖f ‖p

Lp,λ := sup
Br

´

Br
|f |pdx

rn−λ
.

When p = 1, we replace functions f with measures.
• Maz’ya space: Mp,α,s , p ≥ 1, 0 < αs < n

‖f ‖p
Mp,α,s := sup

K

´

K
|f |pdx

capα,s(K )
.

When p = 1, we replace functions f with measures.
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Formulation by function spaces

• Adams embedding: Iα : Lp,λ → L
λp

λ−αp
,λ

holds for p > 1 and αp < λ.
But it fails for p = 1. Here λ acts like the dimension.
• Maz’ya-Verbitsky embedding:

Iα : M1,α,s → Ms′,α,s .

Iβ : Mp,α,s → M
αsp

αs−βp
,α,s

, p ≥ 1, βp < αs.

P.-Phan 2014.
• Maz’ya versus Morrey:

L1+ε,(1+ε)αs ⊂ M1,α,s ⊂ L1,αs , ε > 0.

The first inclusion follows from Fefferman-Phong condition.
• ν ∈ M1,α,s and Iαµ ≤ C Iαν a.e. =⇒ µ ∈ M1,α,s .
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Capacities and trace inequalities

The Hardy-Littlewood maximal function M and standard CZO are
bounded on Mp,α,s , p > 1 (Verbitsky).

Theorem (Verbitsky)

Let f ∈ Mp,α,s , where p ≥ 1 and αs < n. Suppose that for all weights
w ∈ A1,

ˆ

Rn

|g |pwdx ≤ K

ˆ

Rn

|f |pwdx ,

where K depends only on n, p, and the A1 constant of w. Then

‖g‖Mp,α,s ≤ C ‖f ‖Mp,α,s .

• A weight function w ∈ A1 if ∃A > 0 s.t. Mw ≤ A w a.e.
• Application: Take g = Mf or g = Tf , where T = CZO.
• The weighted estimate here is a substitute for pointwise estimate.
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Capacities and trace inequalities

The proof of the above theorem uses the following features of
compact sets with positive capacity:

Lemma (Meyers 1970, Havin-Maz’ya 1972, Verbitsky 1985)

For any compact set K ⊂ R
n with capα,s(K ) > 0, there exists a measure

µ = µK (called capacitary measure of K) such that

(i) supp(µ) ⊂ K, µ(K ) = capα,s(K ) = ‖Iαµ‖s′

Ls′ .

(ii) Vα,sµ ≥ 1 quasi-everywhere on K. Here Vα,sµ = Iα(Iαµ)
1

s−1 .

(iii) Vα,sµ ≤ C (n, α, s) in R
n.

(iv) capα,s{Vα,sµ ≥ t} ≤ At−min{1,s−1}capα,s(K ).

(v) (Vα,sµ)δ ∈ A1, where 0 < δ < n
n−α if 1 < s ≤ 2 − α/n and

0 < δ < (s−1)n
n−αs

if 2 − α/n < s < ∞.
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Morrey space version

Theorem

Let f ∈ Lp,λ, where p ≥ 1 and 0 < λ ≤ n. Suppose that for all weights
w ∈ A1,

ˆ

Rn

|g |pwdx ≤ K

ˆ

Rn

|f |pwdx ,

where K depends only on n, p, and the A1 constant of w. Then

‖g‖Lp,λ ≤ C ‖f ‖Lp,λ .

• Idea (Mengesha-P. 2010): Fix 0 < ε < λ and apply the inequality
with the weight

w(x) = min{|x − z |−n+λ−ε, r−n+λ−ε},

where Br (z) is the ball on which we want to control g .
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Trace inequalities with different exponents

Consider inequality of the the more general form

ˆ

Rn

|u|qdν ≤ C

ˆ

Rn

|∇αu|sdx , ∀u ∈ C∞
0 (Rn).

• q = s > 1: discussed above.
• q > s > 1: the characterization is

ν(K ) ≤ C capα,s(K )
q
s , ∀K ⊂ R

n.

m
ν(Br ) ≤ C capα,s(Br )

q
s = C r (n−αs)q/s , ∀ balls Br ⊂ R

n.

This is known as Adams’ Theorem. This also holds for q ≥ s = 1.
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Trace inequalities with different exponents

• s > 1, s > q > 0: a characterization is due to
Cascante-Ortega-Verbitsky

Wα,sν ∈ L
q(s−1)
s−q (dν),

where Wα,sν is the Wolff’s potential of ν

Wα,sν(x) =

ˆ ∞

0

(

ν(Br (x))

rn−αs

)
1

s−1 dt

t
, x ∈ R

n.

• Another characterization is due to Maz’ya-Netrusov:

ˆ ∞

0

(

ts/q

Ψ(t)

)
q

s−q dt

t
,

where Ψ(t) = inf{cap1,s(A) : A ⊂ R
n, ν(A) ≥ t}.
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Trace inequalities with different exponents

• The special case s > 1 and q = 1:

⇐⇒ ν ∈ (Ẇ α,s)∗

m
Iαν ∈ Ls′(dx)

m
Wα,sν ∈ L1(dν)

• The last equivalence is known as Wolff’s inequality:

ˆ

Rn

(Iαν(x))s
′

dx '
ˆ

Rn

Wα,sν(x)dν(x).
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Connection to Lane-Emden equation with measure data

Consider the equation

− ∆u = uq + µ in R
n. (1)

Here u ≥ 0, u ∈ Lq
loc

(Rn), and µ ∈ M+(Rn). In integral form, this
reads

u = I2(u
q) + I2µ a.e.

Here we assume that I2µ < +∞ a.e.

Theorem (Baras-Pierre 1983, 1985)

Let q > 1 and n > 2. Then (1) has a nonnegative solution u ∈ Lq
loc

(Rn) if
and only if

ˆ

Rn

I2(φ)dµ ≤ (q − 1)q−q′

ˆ

Rn

φq′

I2(φ)1−q′

dx ∀φ ≥ 0.

• The proof makes use of duality and the linear nature of I2 (or ∆).
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Connection to Lane-Emden equation with measure data

Theorem (Adams-Pierre 1991)

Let q > 1 and n > 2.
(i) If (1) has a nonnegative solution u ∈ Lq

loc
(Rn) then

µ(K ) ≤ C cap2,q′(K ) (2)

for all compact sets K ⊂ R
n, with C independent of K.

(ii) There exists a constant C0 = C0(n, q) such that if (2) holds with
C ≤ C0, then (1) has a nonnegative solution u ∈ Lq

loc
(Rn).

• Note that (2) ⇒ When µ is nonzero, the Hausdorff dimension of
Supp(µ) ≥ n − 2q′. That is µ has to be “soft” enough.
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Connection to Lane-Emden equation with measure data

Equations on bounded domains:

Theorem (Adams-Pierre 1991)

Suppose that suppµ b Ω, q > 1.
• If the equation







−∆u = uq + µ in Ω,
u ≥ 0 in Ω,
u = 0 on ∂Ω,

(3)

has a solution then

µ(K ) ≤ C Cap2,q′(K ), ∀K ⊂ Ω. (4)

• Conversely, ∃C0 = C0(n, q) > 0 such that if (4) holds with C ≤ C0 then
(3) has a solution.

N. C. Phuc (LSU) August 28, 2016 31 / 110



Connection to Lane-Emden equation with measure data

The proof of these two theorems were based Baras-Pierre’s result
and the following characterization: For s > 1,

ν(K ) ≤ C cap2,s(K )

m
ˆ

Rn

|ϕ|sdν ≤ C

ˆ

Rn

|∆ϕ|sdx , ∀ϕ ∈ C∞
0 (Rn)

m
ˆ

Rn

|ϕ|dν ≤ C

ˆ

Rn

|∆ϕ|s |ϕ|1−sdx

m
ˆ

Rn

|ϕ|qdν ≤ C

ˆ

Rn

|∆ϕ|s |ϕ|q−sdx , q ∈ [1, s].
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A proof of (1) ⇒ (2) (Verbitsky-Wheeden 1995):

(1) =⇒ I2(u
q) ≤ u < +∞ a.e.

m
I2[I2(u

q)q] ≤ I2(u
q)

m
ˆ

Rn

(I2f )q
′

uqdx ≤ C

ˆ

Rn

f q′

dx , ∀f .

m
ˆ

K

uqdx ≤ Ccap2,q′(K ), ∀K .

⇓ (u ≥ I2µ)
ˆ

K

I2(µ)qdx ≤ Ccap2,q′(K ), ∀K .
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Connection to Lane-Emden equation with measure data

• Intrinsic space of solutions: Mq,2,q′

• Simple sufficient condition: Let µ = fdx.

f ∈ L
n

2q′
,∞

(Ω) (with small norm).

• Fefferman-Phong sufficient condition: Let µ = fdx. For some ε > 0

ˆ

Br

f 1+εdx ≤ C r
n−

(1+ε)2q

(q−1) , ∀balls Br .

Here one checks only over balls, but a small bump on f is needed.
• Liouville type theorem: If 1 < q ≤ n

n−2 (i.e. 2q′ ≥ n) then (1) has
no nonnegative global solution provided µ 6= 0.
• On the other hand, if 1 < q < n

n−2 then (4) is satisfied for some
C > 0 provided µ is finite in Ω. In this case a solution exists in Ω
provided ‖µ‖ is small enough.
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Removable Singularities for −∆u = uq

Theorem (Adams-Pierre 1991)

Let E ⊂ Ω be compact. Then

Cap2, q′(E ) = 0

is necessary and sufficient in order that:

{

u ∈ Lq
loc

(Ω \ E ), u ≥ 0,
−∆u = uq in D′(Ω \ E ).

⇓
{

u ∈ Lq
loc

(Ω), u ≥ 0,
−∆u = uq in D′(Ω).

• Remark: No information of u near E is needed.
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Removable Singularities for −∆u = uq

Proof of the necessity part: By contradiction, suppose that
Cap2, q′(E ) > 0. Let µE be the capacitary measure for E . It is known

that µE satisfies the capacitary condition. Thus there is a positive
solution u ∈ Lq

loc
to

−∆u = uq + ε µE in Ω,

provided ε is sufficiently small. As supp(µE ) ⊂ E and µE 6= 0, we
reach a contradiction!
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Connection to Riccati type equation with measure data

Consider an equation with super-linear growth in the gradient

− ∆u = |∇u|q + µ in R
n. (5)

Here u ∈ W 1,q
loc

(Rn) and µ ∈ M+(Rn).

Theorem (Hansson-May’za-Verbitsky 1999)

Let q > 1 and n ≥ 2.
(i) If (5) has a solution u ∈ W 1,q

loc
(Rn) then

µ(K ) ≤ C cap1,q′(K ) (6)

for all compact sets K ⊂ R
n, with C independent of K.

(ii) There exists a constant C0 = C0(n, q) such that if (6) holds with
C ≤ C0, then (5) has a solution u ∈ W 1,q

loc
(Rn).
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Connection to Riccati type equation with measure data

Necessary conditions

Lemma (Hansson-Maz’ya-Verbitsky 1999)

Let q > 1 and µ ∈ M+(Rn). If (5) has a solution u ∈ W 1,q
loc

(Rn), then

ˆ

Rn

ϕq′

dµ ≤ (q′ − 1)q
′−1

ˆ

Rn

|∇ϕ|q′

dx

and
ˆ

Rn

ϕq′ |∇u|qdx ≤ (q′)q
′

ˆ

Rn

|∇ϕ|q′

dx

for all ϕ ∈ C∞
0 (Rn), ϕ ≥ 0.

• Idea of the proof: Use ϕq′

as a test function for (5).
• Liouville exponent: q0 = n

n−1 .

• A priori estimate ∇u ∈ Mq,1,q′

.
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Necessary conditions

Lemma (Hansson-Maz’ya-Verbitsky 1999)

Let q > 1 and µ ∈ M+(Rn). If (5) has a solution u ∈ W 1,q
loc

(Rn), then

ˆ

Rn

ϕq′

dµ ≤ (q′ − 1)q
′−1

ˆ

Rn

|∇ϕ|q′

dx
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ˆ

Rn
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dx
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Nonlinear setting: The three model equations

Lane-Emden type:

−∆pu = uq + µ, u ≥ 0.

Fk [−u] = uq + µ, u ≥ 0.

Riccati type:
−∆pu = |∇u|q + µ.

Stationary Navier-Stokes:

{

−∆U + U · ∇U + ∇P = F ,
divU = 0.

U = (U1, U2, . . . ,Un), F = (F1, F2, . . . ,Fn).

• Here µ is a non-negative measure or even a signed distribution for
Riccati type equations.
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The p-Laplacian

∆pu := div(|∇u|p−2∇u), p > 1.

• In most cases it can be replaced by a more general quasilinear
operator

Lp[u] := divA(x ,∇u),

where A = (A1,A2, . . .An) satisfies certain growth and monotonicity
conditions:

A(x , ξ) · ξ ≈ |ξ|p, [A(x , ξ1) −A(x , ξ2)] · (ξ1 − ξ2) > 0

for all x , ξ, and ξ1 6= ξ2 in R
n.

• For equations of Riccati type stronger monotonicity and regularity
conditions on A are needed.
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The k-Hessian

Let k = 1, 2, . . . , n. It is defined that

Fk [u] = the sum of k × k principal minors of the Hessian matrix ∇2u.

That is,
Fk [u] =

∑

i1<···<ik

λi1 · · ·λik ,

where λ1, . . . , λn are eigenvalues of ∇2u. In particular,

F1[u] = ∆u, Fn[u] = det(∇2u).

det(λIn −∇2u) =

n
∑

k=0

Fk [−u]λn−k .
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Pointwise estimates for −∆pu = µ

Theorem (Kilpeläinen-Malý 1994)

Let r = dist(x , ∂Ω). If −∆pu = µ ∈ M+(Ω), u ≥ 0 in Ω then

c1W
r
3
1, pµ(x) ≤ u(x) ≤ c2W

r
1, pµ(x) + inf

Br/3(x)
u,

where

Wr
1, pµ(x) =

ˆ r

0

[µ(Bt(x))

tn−p

]
1

p−1 dt

t
.

For Ω = R
n and infRn u = 0 we have neater bounds

c1W1, pµ(x) ≤ u(x) ≤ c2W1, pµ(x).

• For p = 2 we go back to the classical Newtonian potential since

W1, 2µ(x) = c(n) I2µ(x).
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Characterization of Hölder continuity for −∆pu = µ

Corollary (Kilpeläinen-Malý 1994)

Let u be a solution of −∆pu = µ ≥ 0 in Ω.
(i) If there exists ε > 0 such that µ(Br (x)) ≤ C rn−p+ε whenever
B2r (x) ⊂ Ω, then u ∈ Cγ

loc
(Ω) for some γ > 0.

(ii) Conversely, if u ∈ Cγ
loc

(Ω) for some γ > 0 then

µ(Br (x)) ≤ M rn−p+γ(p−1)

for all B2r (x) ⊂ Ω.

• Wiener’s criterion for p-Laplace equation (Kilpeläinen-Malý,
Maz’ya).
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Characterization of Hölder continuity for −∆pu = µ

Corollary (Kilpeläinen-Malý 1994)
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Maz’ya).

N. C. Phuc (LSU) August 28, 2016 43 / 110



Pointwise estimates for −∆pu = µ

Global estimate on bounded domains with zero boundary data:

Theorem (P.-Verbitsky 2008)

Let µ be a finite signed measure in Ω. Suppose that u is a renormalized
solution to

{

−∆pu = µ in Ω,
u = 0 on ∂Ω.

Then
|u(x)| ≤ C W

2diam(Ω)
1, p |µ|(x), ∀x ∈ Ω.

• One can replace ∆p with Lp[·] := divA(x ,∇·).
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Notion of renormalized solutions

For each integer k > 0 the truncation

Tk(u) := max{−k , min{k , u}}

belongs to W 1, p
0 (Ω) and satisfies

−divA(x ,∇Tk(u)) = µk

in the sense of distributions in Ω for a finite measure µk in Ω.
Moreover, if we extend both µ and µk by zero to R

n \ Ω then

|µk | → |µ|

weakly as measures in R
n.

• Fundamental solution: u(x) = c |x |
p−n
p−1 for p 6= n, and

u(x) = −c log |x | for p = n.
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Pointwise estimates for Fk [−u] = µ

Recall that for α > 0, s > 1

Wr
α, sµ(x) =

ˆ r

0

[µ(Bt(x))

tn−αs

]
1

s−1 dt

t
.

k-Hessian equations: α = 2k
k+1 , s = k + 1.

Theorem (Labutin 2002)

Let r = dist(x , ∂Ω). If Fk [−u] = µ ∈ M+(Ω), u ≥ 0 in Ω then

W
r
3
2k

k+1
, k+1

µ(x) . u(x) . Wr
2k

k+1
, k+1

µ(x) + inf
Br/3(x)

u.

For Ω = R
n and infRn u = 0 we have neater bounds

c1W 2k
k+1

,k+1µ(x) ≤ u(x) ≤ c2W 2k
k+1

,k+1µ(x).
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Global estimate in bounded domains

Theorem (P.-Verbitsky 2008)

Let µ ∈ M+(Ω). Suppose that u is a k-convex solution to

{

Fk [−u] = µ in Ω,
u = 0 on ∂Ω.

Then
u(x) ≤ C W

2diam(Ω)
2k

k+1
, k+1

µ(x), ∀x ∈ Ω.

• Here the boundary condition is understood in the classical sense,
and we assume that µ ∈ Ls , s > n

2k , near ∂Ω.

• Fundamental solution: u(x) = c |x | 2k−n
k for k 6= n/2, and

u(x) = −c log |x | for k = n/2.
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Notion of k-convexity (k-subharmonicity)

Definition

A function v : Ω → [−∞,∞) is k-convex if v is USC and if whenever the
graph of a quadratic polynomial q touches the graph of v from above at
some point in Ω then Fk [q] ≥ 0.

Remark: 1-convexity is subharmonicity and n-convexity is the
convexity in the usual sense.

A function v ∈ C 2(Ω) is k-convex in Ω if and only if Fj [v ] ≥ 0 in Ω
for all j = 1, 2, . . . , k.

Trudinger-Wang 1999: If v is k-convex in Ω then Fk [v ] can be
understood as a Borel measure µk [v ] in Ω. Moreover, if v ∈ C 2(Ω)
then µk [v ] = Fk [v ].
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Relation to Riesz’s potentials: Wolff type inequalities

Original Wolff’s inequality: 1 < α < n, s > 1,

ˆ

Rn

(Iαµ)
s

s−1 dx '
ˆ

Rn

Wα, sµ(x)dµ(x).

A variant of Wolff’s inequality (P-Verbitsky 2008): For
q > s − 1 > 0, 1 < αs < n,

‖Wα,sµ‖q
Lq ' ‖Iαsµ‖q/(s−1)

Lq/(s−1)

' ‖Mαsµ‖q/(s−1)

Lq/(s−1) (Muckenhoupt-Wheeden).

Here Mαs is a fractional maximal function:

Mαsµ(x) = sup
t>0

µ(Bt(x))

tn−αs
.
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Relation to Riesz’s potentials: Wolff type Inequalities

Explicitly,

ˆ

Rn

[
ˆ ∞

0

(µ(Bt(x))

tn−αs

)
1

s−1 dt

t

]q

dx '
ˆ

Rn

[
ˆ ∞

0

µ(Bt(x))

tn−αs

dt

t

]
q

s−1

dx

'
ˆ

Rn

[

sup
t>0

µ(Bt(x))

tn−αs

dt

t

]
q

s−1

dx

• These inequalities provide information on the integrability of
solutions to −∆pu = f or Fk [−u] = f for f ∈ Lr by means of
fractional integrals.
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Relation to Riesz’s potentials: Wolff type Inequalities

• Loosely speaking, Wα,sµ behaves like (Iαsµ)
1

s−1 .

• One can replace dx by w(x)dx for any weight w ∈ A∞

(Muckenhoupt-Wheeden 1974).

• [Wα,s(·)]s−1 : L → L, [Wα,s(·)]s−1 : M → M with explicit indices.

• This gives the precise mapping property of the solution operator.
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Application to quasilinear Lane-Emden type equations

Theorem (P.-Verbitsky, 2008)

Let q > p − 1, 1 < p < n, and µ ∈ M+(Rn). Then

{

−∆pu = uq + µ in R
n,

infRn u = 0,

m
µ(K ) ≤ C capp, q

q−p+1
(K ).

m
W1, p(W1, pµ)q ≤ C W1, pµ a.e.

m

Ip(Ipµ)
q

p−1 ≤ C Ipµ a.e.
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Theorem (P.-Verbitsky, 2008)
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Relation to semilinear equations
• Note that q

q−p+1 =
(

q
p−1

)′
. Liouville exponent q0 = n(p−1)

n−p
.

• From the pointwise bounds by Wolff’s potential, heuristically we
are dealing with an integral equation of the form

u ≈ W1,p(u
q) + W1,pµ.

• Recall that
µ(K ) ≤ C capp, q

q−p+1
(K )

m
u = Ip(u

q/(p−1)) + Ipµ

As Ip = (−∆)−p/2, in some sense we have the equivalence

−∆pu = uq + µ

m
(−∆)p/2u = uq/(p−1) + µ

N. C. Phuc (LSU) August 28, 2016 53 / 110



Relation to semilinear equations
• Note that q

q−p+1 =
(

q
p−1

)′
. Liouville exponent q0 = n(p−1)

n−p
.

• From the pointwise bounds by Wolff’s potential, heuristically we
are dealing with an integral equation of the form

u ≈ W1,p(u
q) + W1,pµ.

• Recall that
µ(K ) ≤ C capp, q

q−p+1
(K )

m
u = Ip(u

q/(p−1)) + Ipµ

As Ip = (−∆)−p/2, in some sense we have the equivalence

−∆pu = uq + µ

m
(−∆)p/2u = uq/(p−1) + µ

N. C. Phuc (LSU) August 28, 2016 53 / 110



Relation to semilinear equations
• Note that q

q−p+1 =
(

q
p−1

)′
. Liouville exponent q0 = n(p−1)

n−p
.

• From the pointwise bounds by Wolff’s potential, heuristically we
are dealing with an integral equation of the form

u ≈ W1,p(u
q) + W1,pµ.

• Recall that
µ(K ) ≤ C capp, q

q−p+1
(K )

m
u = Ip(u

q/(p−1)) + Ipµ

As Ip = (−∆)−p/2, in some sense we have the equivalence

−∆pu = uq + µ

m
(−∆)p/2u = uq/(p−1) + µ

N. C. Phuc (LSU) August 28, 2016 53 / 110



Quasilinear Lane-Emden type equations
The proof of the implication
{

−∆pu = uq + µ in R
n,

infRn u = 0.
⇒ µ(K ) +

ˆ

K

uqdx ≤ C capp, q
q−p+1

(K ).

Proof: Let ν = uq + µ. By the lower Wolff potential estimate

C W1, pν(x) ≤ u(x) ∀x ∈ R
n.

From this we obtain

(W1, pν)qdx ≤ C uq(x)dx ≤ C dν.

⇓
ˆ

Rn

(W1, pν)q(Mνg)
q

p−1 dx ≤ C

ˆ

Rn

(Mνg)
q

p−1 dν

for all g ∈ L
q

p−1
ν . Here Mν denotes the centered H-L maximal

function associated to ν defined by
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continued...

Mν f (x) = sup
r>0

´

Br (x) |f | dν

ν(Br (x))
.

Since Mν is bounded on Ls
ν(R

n), s > 1, we obtain

ˆ

Rn

(W1, pν)q(Mνg)
q

p−1 dx ≤ C

ˆ

Rn

g
q

p−1 dν.

From this inequality and the estimate

[W1, pν(x)]q[Mνg(x)]
q

p−1 ≥ C [W1, p(gdν)(x)]q

we deduce
ˆ

Rn

[W1, p(gdν)(x)]qdx ≤ C

ˆ

Rn

g
q

p−1 dν.
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continued...

Thus by Wolff’s inequality one gets

ˆ

Rn

[Ip(gdν)(x)]
q

p−1 dx ≤ C

ˆ

Rn

g
q

p−1 dν.

for all g ∈ L
q

p−1
ν , g ≥ 0. Note that Ip is linear and thus by duality

ˆ

Rn

[Ip(f )(x)]
q

q−p+1 dν ≤ C

ˆ

Rn

f
q

q−p+1 dx .

⇓
ν(K ) ≤ C capp, q

q−p+1
(K ).
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Here is another proof:
Let ν = uq + µ. By the lower Wolff potential estimate

C W1, pν(x) ≤ u(x) ∀x ∈ R
n.

From this we obtain, for every ball B ⊂ R
n,

(W1, pνB)qdx ≤ C uq(x)dx ≤ C dν.

⇓
ˆ

B

(W1, pνB)qdx ≤ C ν(B).

⇓ (localized Wolff)
ˆ

B

(IpνB)
q

p−1 dx ≤ C ν(B) (Kerman-Sawyer).

⇓
ν(K ) ≤ C capp, q

q−p+1
(K ).
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Equations on bounded domains

Theorem (P.-Verbitsky, 2008)

Let q > p − 1. Suppose that suppµ b Ω.







−∆pu = uq + µ in Ω,
u ≥ 0 in Ω,
u = 0 on ∂Ω.

m
µ(K ) ≤ C Capp, q

q−p+1
(K ).

m

I2Rp (I2Rp µ)
q

p−1 ≤ C I2Rp µ a.e.,

where R = diam(Ω).

• No restriction on Ω is needed here.
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Some sufficient conditions

• Simple sufficient condition:

µ = f ∈ L
n(q−p+1)

pq
,∞

(Ω).

This answers a question posed by Bidaut-Veron 2002.
• Fefferman-Phong sufficient condition:

µ = f ∈ L1+ε,
(1+ε)pq

q−p+1 (Ω).
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Removable Singularities for −∆pu = uq

Theorem (P.-Verbitsky, 2008)

Let E ⊂ Ω be compact. Then

Capp, q
q−p+1

(E ) = 0

is necessary and sufficient in order that:

{

u ∈ Lq
loc

(Ω \ E ), u ≥ 0,
−∆pu = uq in D′(Ω \ E ).

⇓
{

u ∈ Lq
loc

(Ω), u ≥ 0,
−∆pu = uq in D′(Ω).

Remark: No information of u near E is needed.
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Hessian equations of Lane-Emden type

Theorem (P.-Verbitsky, 2008)

Let q > k. Suppose suppµ b Ω, where Ω is uniformly (k − 1)-convex.







Fk [−u] = uq + µ in Ω,
u ≥ 0 in Ω,
u = 0 on ∂Ω.

⇐⇒ µ(K ) ≤ CCap2k, q
q−k

(K ).

m
I2R2k (I2R2k µ)

q
2k ≤ C I2R2k µ a.e.,

where R = diam(Ω).

• (k − 1)-convexity of Ω: Hj(∂Ω) > 0, j = 1, . . . , k − 1; Hj denotes the
j-mean curvature of the boundary ∂Ω.
• Similar result in R

n. Liouville exponent q0 = nk
n−2k .
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Removable Singularities for Fk [−u] = uq

Theorem (P.-Verbitsky, 2008)

Let E ⊂ Ω be compact. Then

Cap2k, q
q−k

(E ) = 0

is necessary and sufficient in order that:

{

u ∈ Lq
loc

(Ω \ E ), u ≥ 0,
Fk [−u] = uq in D′(Ω \ E ).

⇓
{

u ∈ Lq
loc

(Ω), u ≥ 0,
Fk [−u] = uq in D′(Ω).
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Lane-Emden type equations with two weights

−∆pu = σuq + µ, u ≥ 0.

Fk [−u] = σuq + µ, u ≥ 0.

Here σ and µ are nonnegative measures. For simplicity we will
discuss these equations on the whole R

n.
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Lane-Emden type equations with two weights

Theorem (Kalton-Verbitsky 1999, P.-Verbitsky 2009)

−∆pu = σuq + µ, u ≥ 0.

m
W1, p[(W1, pµ)qdσ](x) ≤ C W1, pµ(x).

m
ˆ

B

[W1, pµB(y)]qdσ(y) ≤ Cµ(B), ∀balls B.

The last line is Kerman-Sawyer type condition.
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Lane-Emden type equations with two weights

Moreover, these conditions are also equivalent to the following pair
of conditions:

ˆ

Rn

[W1, p(gdµ)(y)]qdσ(y) ≤ C

ˆ

Rn

g
q

p−1 dµ, ∀g ≥ 0

and for all x ∈ R
n and r > 0,

ˆ r

0

(

σ(Bt(x))

tn−p

)
1

p−1 dt

t
·
[

ˆ ∞

r

(

µ(Bt(x))

tn−p

)
1

p−1 dt

t

]

q
p−1

−1

≤ C .

The last one is referred to as infinitesimal inequality. It can be
written as

Wr
1, pσ · [W1, pµ − Wr

1, pµ]
q

p−1
−1 ≤ C .

N. C. Phuc (LSU) August 28, 2016 65 / 110



Lane-Emden type equations with two weights

An a priori estimate for solution:

ˆ r

0

(

σ(Bt(x))

tn−p

)
1

p−1 dt

t
·





ˆ ∞

r

(´

Bt(x) uqdσ

tn−p

)
1

p−1 dt

t





q
p−1

−1

≤ C .

Corollary

Suppose that 0 ∈ Ω and that u ≥ 0 is a solution to the differential
inequality

−∆pu ≥ uq

|x |p , q > p − 1,

or

Fk [−u] ≥ uq

|x |2k , q > k .

Then u ≡ 0.
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Pointwise gradient estimates for −∆pu = µ

Theorem (Duzaar-Mingione 2010, Kuusi-Mingione 2013)

Let p > 2 − 1/n and suppose that u solves −∆pu = µ in Ω. Then for any
ball BR(x) ⊂ Ω

|∇u(x)| ≤ C [IR1 |µ|(x)]
1

p−1 + C

 

BR(x)
|∇u(y)|dy ,

where

IR1 µ(x) =

ˆ R

0

µ(Bt(x))

tn−1

dt

t
.
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Pointwise gradient estimates for −∆pu = µ

A history: An earlier result in the case p ≥ 2 reads

Theorem (Duzaar-Mingione (2009?) 2011)

Let p ≥ 2 and suppose that u solves −∆pu = µ in Ω. Then for any ball
BR(x) ⊂ Ω

|∇u(x)| ≤ C WR
1
p
,p
|µ|(x) + C

 

BR(x)
|∇u(y)|dy ,

where

WR
1
p
,p

µ(x) =

ˆ R

0

[µ(Bt(x))

tn−1

]
1

p−1 dt

t
.

• For p > 2
[

IR1 |µ|(x)
]

1
p−1 ≤ CW2R

1
p
,p
|µ|(x).
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Pointwise gradient estimates for −∆pu = µ

Some consequences:

Corollary (Duzaar-Mingione, Kuusi-Mingione)

Let p > 2 − 1/n and suppose that u ∈ W 1,p(Ω) solves −∆pu = µ in Ω.
(i) Lipschitz continuity criterion:

IR1 |µ| ∈ L∞
loc(Ω) for some R > 0 =⇒ ∇u ∈ L∞

loc(Ω).

(i) Criterion for the continuity of ∇u: If limR→0 IR1 |µ|(x) = 0 locally
uniformly in x then ∇u is continuous in Ω. In particular, this holds if
µ ∈ Ln,1(Ω), i.e.,

ˆ ∞

0
|{x ∈ Ω : |µ(x)| ≥ t}| 1

n dt < +∞.

• These criteria are independent of p.
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Pointwise gradient estimates for −∆pu = µ

Equations with general structure: −divA(x ,∇u) = µ.
• Growth and ellipticity conditions: for some p > 2 − 1/n,

|A(x , ξ)| ≤ A|ξ|p−1, ∇ξ|A(x , ξ)| ≤ A|ξ|p−2,

〈∇ξA(x , ξ)λ, λ〉 ≥ B|ξ|p−2|λ|2

for all x ∈ R
n, and ξ, λ ∈ R

n \ {0}.
• Continuity condition: for some α ∈ (0, 1)

|A(x1, ξ) −A(x2, ξ)| ≤ C |x1 − x2|α|ξ|p−1.

This Hölder condition can also be replaced by a Dini condition.

• Example: divA(x ,∇u) = div
(

A(x)∇u · ∇u
)

p−2
2

A(x)∇u, A ∈ Cα.

• Pointwise gradient estimates upto the boundary can also be done
for C 1,α domains.
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Why the restriction p > 2 − 1/n?

• Generally, solutions of −∆pu = µ satisfy ∇u ∈ Lq
loc

for any

0 < q < n(p−1)
n−1 . Thus when p > 2 − 1/n, ∇u is locally integrable.

• W 1,1 comparison estimate (Duzaar-Mingione): With u ∈ W 1, p
loc

(Ω)

being a solution of −∆pu = µ, let w ∈ u + W 1, p
0 (Br ) with ∆pw = 0 in

Br where Br b Ω. Then there is a constant C = C (n, p) such that

 

Br

|∇u −∇w |dx ≤ C

[ |µ|(Br )

rn−1

]
1

p−1

+ C
|µ|(Br )

rn−1

(
 

Br

|∇u|dx

)2−p

if 2 − 1/n < p ≤ 2, and

 

Br

|∇u −∇w |dx ≤ C

[ |µ|(Br )

rn−1

]
1

p−1

if p ≥ 2.

• Incidentally, W1,pµ ' V1,pµ := I1[I1(µ)
1

p−1 ] iff 2 − 1/n < p < n.

N. C. Phuc (LSU) August 28, 2016 71 / 110



Why the restriction p > 2 − 1/n?

• Generally, solutions of −∆pu = µ satisfy ∇u ∈ Lq
loc

for any

0 < q < n(p−1)
n−1 . Thus when p > 2 − 1/n, ∇u is locally integrable.

• W 1,1 comparison estimate (Duzaar-Mingione): With u ∈ W 1, p
loc

(Ω)

being a solution of −∆pu = µ, let w ∈ u + W 1, p
0 (Br ) with ∆pw = 0 in

Br where Br b Ω. Then there is a constant C = C (n, p) such that

 

Br

|∇u −∇w |dx ≤ C

[ |µ|(Br )

rn−1

]
1

p−1

+ C
|µ|(Br )

rn−1

(
 

Br

|∇u|dx

)2−p

if 2 − 1/n < p ≤ 2, and

 

Br

|∇u −∇w |dx ≤ C

[ |µ|(Br )

rn−1

]
1

p−1

if p ≥ 2.

• Incidentally, W1,pµ ' V1,pµ := I1[I1(µ)
1

p−1 ] iff 2 − 1/n < p < n.

N. C. Phuc (LSU) August 28, 2016 71 / 110



Why the restriction p > 2 − 1/n?

• Generally, solutions of −∆pu = µ satisfy ∇u ∈ Lq
loc

for any

0 < q < n(p−1)
n−1 . Thus when p > 2 − 1/n, ∇u is locally integrable.

• W 1,1 comparison estimate (Duzaar-Mingione): With u ∈ W 1, p
loc

(Ω)

being a solution of −∆pu = µ, let w ∈ u + W 1, p
0 (Br ) with ∆pw = 0 in

Br where Br b Ω. Then there is a constant C = C (n, p) such that

 

Br

|∇u −∇w |dx ≤ C

[ |µ|(Br )

rn−1

]
1

p−1

+ C
|µ|(Br )

rn−1

(
 

Br

|∇u|dx

)2−p

if 2 − 1/n < p ≤ 2, and

 

Br

|∇u −∇w |dx ≤ C

[ |µ|(Br )

rn−1

]
1

p−1

if p ≥ 2.

• Incidentally, W1,pµ ' V1,pµ := I1[I1(µ)
1

p−1 ] iff 2 − 1/n < p < n.

N. C. Phuc (LSU) August 28, 2016 71 / 110



Pointwise gradient estimates for −∆pu = µ

Comments on the proof:

• Some sort of “interpolation” between W 1,1 and C 1,α estimates.

• Making use of the above W 1,1 comparison estimate.

• Making use of C 1,α estimate for homogeneous equations in a
mean oscillation decay form: Let w ∈ W 1,p(Ω) be a solution of
∆pu = 0. Then there exist α ∈ (0, 1) and C ≥ 1 such that

 

Bρ

|∇w − (∇w)Bρ |dy ≤ C
( ρ

R

)α
 

BR

|∇w − (∇w)BR
|dy

holds for all concentric balls Bρ ⊂ BR ⊂ Ω. Here (∇w)Bρ is the
average of ∇w over the ball Bρ.
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Weighted gradient estimates for −divA(x ,∇u) = µ

When A(x , ξ) is no longer Hölder (or Dini) continuous in x, the
pointwise estimate fails. In that case it can be replaced by a
weighted estimate. The condition on A(x , ξ) in the x-variable is
then relaxed to VMO or small BMO.

Definition

We say that A(x , ξ) satisfies a (δ, R0)-BMO condition for some δ, R0 > 0 if

[A]R0 := sup
y∈Rn, 0<r≤R0

 

Br (y)
Υ(Br (y))(x)dx ≤ δ,

where

Υ(Br (y))(x) := sup
ξ∈Rn\{0}

|A(x , ξ) −ABr (y)(ξ)|
|ξ|p−1

with ABr (y)(ξ) being the average of A(·, ξ) over the ball Br (y).
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Weighted gradient estimates for −divA(x ,∇u) = µ

Muckenhoupt-Wheeden type bounds:

Theorem (P. 2014)

Let 2 − 1/n < p ≤ n, 0 < q < ∞, and let w be an A∞ weight. Assume
that A(x , ξ) satisfies a (δ, R0)-BMO condition for some small δ > 0.
Assume also that ∂Ω is sufficiently flat in the sense of Reifenberg. Then
for any renormalized solution u to the boundary value problem

{

−divA(x ,∇u) = µ in Ω,
u = 0 on ∂Ω,

we have
ˆ

Ω
|∇u|qw(x)dx ≤ C

ˆ

Ω
M1(µ)

q
p−1 w(x)dx .

• Here M1 is the fractional maximal function of order 1.
• The solution-gradient operator maps L → L and M → M, etc.
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Reifenberg flat domains

Definition

We say that Ω is a (δ, R0)-Reifenberg flat domain if for every x ∈ ∂Ω and
every r ∈ (0, R0], there exists a hyperplane L(x , r) such that

D[∂Ω ∩ Br (x), L(x , r) ∩ Br (x)] ≤ δ r .

• Essentially, this says that the boundary is sufficiently flat at every
boundary point and at every scale. Locally, it is trapped between
two hyperplanes separated by a small positive distance proportional
to the scale.
• Reifenberg 1960. Appears in minimal surfaces and free boundary
problems.
• Examples: C 1 domains, Lipschitz domains with small Lipschitz
constant, or even some fractal domains.
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Reifenberg flat domains
Here is a closer look:

Figure: A closer look at RF domain
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Gradient estimate for ∆pu = divF (distributional data)

A nonlinear singular operator: The p-harmonic transform.
Let f ∈ Lp(Ω, Rn). Consider the problem

{

∆pu := div(|∇u|p−2∇u) = div|f|p−2f,

u ∈ W 1,p
0 (Ω).

(7)

The energy estimate (take u as a test function and IBP):

ˆ

Ω
|∇u|pdx ≤

ˆ

Ω
|f|pdx

The p-harmonic transform is defined by

Hp : Lp(Ω, Rn) → Lp(Ω, Rn)

Hp(f) = ∇u.
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The Harmonic transform
The case p = 2 and Ω = R

n: By means of Fourier transform we find

H2(f) = −[Rij ]f

= −c(n)p.v.

ˆ

Rn

< x − y , f(y) > (x − y)

|x − y |n+2
dy .

Here [Rij ] is the matrix of second order Riesz transforms:

Rij(ϕ) = Ri (Rj(ϕ))

= c(n)p.v.

ˆ

Rn

(xi − yi )(xj − yj)

|x − y |n+2
ϕ(y)dy .

Calderón-Zygmund 1952:

||H2(f)||Lq(Rn) ≤ Cq ||f||Lq(Rn), ∀q > 2 − 1 = 1.

• However, this estimate generally fails when the operator has bad
coefficients or when the domain is bad.
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Bad coefficient example

Meyer’s example: The function u(x) = x1√
|x |

solves the equation

div(A(x)∇u) = 0 in R
2,

where

A(x) =
1

4|x |2
[

4x2
1 + x2

2 3x1x2

3x1x2 x2
1 + 4x2

2

]

x = (x1, x2).

∇u /∈ Lq(B1) ∀q ≥ 4.

Here A(x) is bounded but discontinuous at the origin!
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Bad domain example
Let π

2 < θ0 < π and consider the (non-convex) domain:

Ωθ0 = {(r , θ) : 0 < r < 1 and − θ0 < θ < θ0}.

For λ = π
2θ0

< 1, let u(r , θ) = rλ cos(λθ). Then ∆u = 0 in Ωθ0 and
u = 0 when θ = ±θ0.

Near the origin, we have |∇u| = λrλ−1 = λr
π

2θ0
−1

.
Thus for any q > 4 we can find a θ0 (near π) such that

|∇u| /∈ Lq(Bε(0) ∩ Ωθ0), ε > 0.
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The p-harmonic transform: Basic question
Question: Is Hp bounded on Lq for q > p − 1? Yes, when q > p. The
case p − 1 < q < p is widely open. Difficulty: No duality available!

Theorem (Iwaniec 1983, Kinnunen-Zhou 1999, 2001)

Let Ω = R
n or Ω be bounded with C 1,α boundary. Suppose that

p < q < ∞. Then one has

Hp : Lq(Ω, Rn) → Lq(Ω, Rn)

with
||Hp(f)||Lq ≤ C ||f||Lq .

• Byun 2004, Byun-Wang 2007: C 1 or even Reifenberg flat domains
and small BMO coefficients. Caffarelli-Peral 1998: interior bounds
by a perturbation technique.
• Mengesha-P. 2016: More general nonlinear structure.
• The linear case: Di Fazio 1996, Auscher-Qafsaoui 2002,
Byun-Wang 2004, and many others.
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The p-harmonic transform: Basic question

A result slightly below p:

Theorem (Iwaniec-Sbordone 1994)

Let Ω be a bounded regular domain. There exists small ε > 0 such that for
all p − ε < q < p one has

Hp : Lq(Ω, Rn) → Lq(Ω, Rn)

||Hp(f)||Lq ≤ C ||f||Lq .

• Conjecture (Iwaniec 1983): Hp is bounded on Lq for all
p − 1 < q < p.
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The p-harmonic transform: A result slightly below p

• P. 2011, 2014: OK if we assume in addition that the solution is
p-superharmonic, i.e., div |f|p−2f ≤ 0 (for Ω = R

n and p > 2 − 1/n).
• Adimurthi-P. 2016: Lorentz and Morrey estimates over domains
whose complement is uniformly p-thick w.r.t cap1,p (a very mild
restriction on Ω).

Definition (Uniform p-thickness)

Let Ω ⊂ R
n be a bounded domain and 1 < p < n. We say that the

complement Ωc := R
n \ Ω is uniformly p-thick with constants r0, b > 0, if

the inequality

cap1,p(Br (x) ∩ Ωc) ≥ b cap1,p(Br (x))) = cb rn−p

holds for any x ∈ ∂Ω and r ∈ (0, r0].
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The p-harmonic transform: Weighted version

Theorem (P. 2011, Mengesha-P. 2012, 2016, Adimurthi-P. 2016)

Suppose that Ω is a bounded sufficiently flat domain (in the sense of
Reifenberg). Let u be a solution to

{

∆pu = div |f|p−2f in Ω,
u = 0 on ∂Ω.

Then one has the estimate

||∇u||Lq(Ω,w) ≤ C ||f||Lq(Ω,w), ∀q ≥ p,

provided the weight w is in the Muckenhoupt class Aq/p.
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The p-harmonic transform: Weighted version

•Recall that for s > 1, the Muckenhoupt class As consists of
nonnegative functions w ∈ L1

loc
(Rn) such that

sup
B

(

1

|B|

ˆ

B

w(x)dx

)(

1

|B|

ˆ

B

w(x)
−1
s−1

)s−1

< +∞.

Note that Ar ⊂ As for r ≤ s. The function w(x) = |x |a ∈ As iff
−n < a < n(s − 1).

• This estimate gives a nonlinear version of weighted norm
inequalities for singular integrals: Hunt-Muckenhoupt-Wheeden
1973 (1D), Coifman-Fefferman 1974.

• They imply estimates in Maz’ya and Morrey spaces, etc.
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The p-harmonic transform: Weighted version

• The sharp result should be an estimate for Aq/(p−1) weights. Note
that Aq/p ⊂ Aq/(p−1). But from the point of view of extrapolation
theory, such a result would imply Iwaniec’s conjecture.

• For the linear equation

{

divA(x)∇u = div f in Ω,
u = 0 on ∂Ω,

where A has small BMO seminorm, one can take w ∈ Aq instead of
Aq/2 (Adimurthi-Mengesha-P. 2016, Bulicek-Diening-Schwarzacher
2016, Dong-Kim 2016).
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Some features in the theory

• Some sort of “interpolation” between W 1,p (energy) estimate and
W 1,∞ (or C 1,α) estimate using the H-L maximal function (or the
F-S sharp maximal function).
• Making use of the following W 1,p (energy) comparison estimate:
With u ∈ W 1, p

loc
(Ω) being a solution of ∆pu = div |f|p−2f, let

w ∈ u + W 1, p
0 (BR) with ∆pw = 0 in BR where BR b Ω. Then

 

BR

|∇u −∇w |p dx ≤ C

 

BR

|f|p dx

if p ≥ 2 and

 

BR

|∇u −∇w |p dx ≤ C
(

 

BR

|f|p dx
)p−1(

 

BR

|∇u|p dx
)2−p

if 1 < p < 2.
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Some features in the theory

• For the end-point case q = p, we need the following W 1,p−δ

comparison estimate: With u and w as above, then for any
sufficiently small δ > 0 we have

 

BR

|∇u −∇w |p−δ dx ≤ C

 

BR

|f|p−δ dx + C δ
p−δ
p−1

 

BR

|∇u|p−δ dx

if p ≥ 2 and

 

BR

|∇u −∇w |p−δ dx ≤ C
(

 

BR

|f|p−δ dx
)p−1(

 

BR

|∇u|p−δ dx
)2−p

+ C δp−δ

 

BR

|∇u|p−δ dx

if 1 < p < 2.
• Adimurthi-P. 2015 by Hodge decomposition (Iwaniec) or Lipschitz
truncation method (Lewis).
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Some features in the theory

• The theory works for all p > 1.

• A control by the H-L maximal function: for q > 0 and w ∈ A∞ we
have

ˆ

Ω
|∇u|qwdx ≤ C

ˆ

Ω

[

M(|f|p)
1
p

]q

wdx .

• For q = p one needs to lower the power p to p − δ (Adimurthi-P.
2016).

N. C. Phuc (LSU) August 28, 2016 89 / 110



Quasilinear Riccati type equations: measure data

Using the gradient pointwise bound of Duzaar-Mingione-Kuusi, one
has

Theorem

(i) Let q > p − 1 and suppose that suppµ b Ω, µ ≥ 0. Then

{

−∆pu = |∇u|q + µ in Ω,
u = 0 on ∂Ω

=⇒ µ(K ) ≤ C Cap1, q
q−p+1

(K ).

(ii) Conversely, let q > p − 1, p > 2 − 1/n. If ∂Ω ∈ C 1,α and if µ is a
finite signed measure such that

|µ|(K ) ≤ C Cap1, q
q−p+1

(K ) with a small C > 0,

then the above equation has a solution.
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Quasilinear Riccati type equations: measure data

• An equivalent condition: I2R1 [I2R1 (|µ|)
q

p−1 ] ≤ C I2R1 |µ| a.e., where
R = diam(Ω).

• The proof of the existence result is based on an application of
Schauder Fixed Point Theorem on the set

SM :=
{

u ∈ W 1,1
0 (Ω) : |∇u| ≤ M (I2R1 |µ|)

1
p−1 a.e.

}

for some M > 0. In the case p > 2, one can also replace (I2R1 |µ|)
1

p−1

with W2R
1/p,p|µ|.
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Removable singularities for −∆pu = |∇u|q

Theorem

Let K ⊂ Ω be a compact set and let q > p − 1, p > 2 − 1/n. Then the
condition

Cap1, q
q−p+1

(K ) = 0

is necessary and sufficient so that any solution u to the problem







u ∈ W 1, q
loc

(Ω \ K ),
−∆pu = |∇u|q in D′(Ω \ K ),
u is p-superharmonic in Ω,

(8)

is also a solution to a similar problem with Ω in place of Ω \ K.
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Equations with signed distributional data

Observation: The last existence result is sharp when µ ≥ 0 but it is
not for sign changing (oscillatory) data.

Example: Suppose that 1 < p < n and q > p and let s = q
q−p+1 .

Then 0 < s < n. Fix ε > 0 such that ε + s < n and define

σ(x) = |x |−ε−s sin(|x |−ε).

Then σ+ (hence σ) does not belong to the space M1, s(B1(0)).
Thus the theorem could not be applied to the equation

{

−∆pu = |∇u|q + λ σ in B1(0),
u = 0 on ∂B1(0),

for any real number λ 6= 0.
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The case q ≥ p with Morrey oscillatory data

Theorem (Mengesha-P. 2016)

Let q ≥ p > 1 and assume that ∂Ω is sufficiently flat. Let σ = div f. Then
there exists a constant c0 = c0(n, p, q, Ω) such that if

‖f‖
L

q(1+ε)
p−1 ,

q(1+ε)
q−p+1 (Ω)

≤ c0, (9)

then the Riccati type equation

{

−∆pu = |∇u|q + σ in Ω,
u = 0 on ∂Ω

admits a solution u ∈ W
1, q(1+ε)
0 (Ω) with |∇u| ∈ Lq(1+ε),

q(1+ε)
q−p+1 (Ω).
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The case q ≥ p with Morrey oscillatory data

• Condition (9) holds if |f| ∈ L
n(q−p+1)

p−1
,∞ with small norm.

• Let’s go back to the example σ(x) = |x |−ε−s sin(|x |−ε). It is not
hard to show that one can write

σ(x) = div f(x) where |f| ∈ L
n(q−p+1)

p−1
,∞

.

Thus the last theorem is applicable to this datum.
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The case q ≥ p with Morrey oscillatory data

• In the case q = p, one can replace L
q(1+ε)
p−1

,
q(1+ε)
q−p+1 with M

q
p−1

,1, q
q−p+1

(Adimurthi-P., in preparation). This case was also studied by many
authors Jaye-Maz’ya-Verbitsky 2012, 2013, Ferone-Murat 2000,
2014, etc. This case has a connection to the Schrödinger type
equation −∆pv = σvp−1, v ≥ 0.

• In the linear case p = 2, the existence result holds for all q > 1.

Moreover, the Morrey space Lq(1+ε),
q(1+ε)
q−1 can be replaced by the

Maz’ya space Mq,1,q′

(Adimurthi-Mengesha-P., in preparation).

• Comparison to measure data: M1,1, q
q−p+1 ⊂ div(M

q
p−1

,1, q
q−p+1 ).
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A necessary condition

Theorem

Let p > 1, q > p − 1. Suppose that σ is a distribution in a bounded
domain Ω such that the Riccati type equation

−∆pu = |∇u|q + σ in D′(Ω)

admits a solution u ∈ W 1, q(Ω) with |∇u| ∈ Mq,1, q
q−p+1 (Ω). Then there

exists a vector field f on Ω such that

σ = div f and |f| ∈ M
q

p−1
,1, q

q−p+1 (Ω).

• A similar result also holds if we replace Mq,1, q
q−p+1 with

Lq(1+ε),
q(1+ε)
q−p+1 .
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Some open problems

• Pointwise gradient estimate for −∆pu = µ in the singular case
1 < p ≤ 2 − 1/n.

• Estimate on the size of the singular sets of −∆pu = uq and
Fk [−u] = uq. Conjecture: capp, q

q−p+1
(S(u)) = 0 for the first equation

and cap2k, q
q−k

(S(u)) = 0 for the second equation. Pacard 1992,

1993, and Adams 2012 considered the case p = 2 (or k = 1).

• W 1,q estimate for −∆pu = div |f|p−2f when p − 1 < q < p
(Iwaniec’s conjecture), or W 1,p weighted estimate for Ap′ weights.

• Existence results for −∆pu = |∇u|q + div f in the case q > p − 1

and |f| ∈ M
q

p−1
,1, q

q−p+1 . This is known in the case p = 2 or q = p.
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Stationary Navier-Stokes equations

First, the Cauchy problem for non-stationary N-S equations:

ut + (u · ∇)u + ∇p = ∆u, div u = 0, u(x , 0) = u0(x).

u = u(x , t) = (u1, u2, . . . un).

Time-global existence with small initial data:

T. Kato: u0 ∈ Ln.

T. Kato, Cannone, Federbush, Y. Meyer, M. Taylor:

u0 ∈ Ln,∞, u0 ∈ Lp, p, 1 ≤ p ≤ n.

Koch-Tataru: u0 ∈ BMO−1.

Bourgain-Pavlović: Ill-posedness in Ḃ−1
∞,∞.

Yoneda 2010: Ill-posedness in a space smaller than Ḃ−1
∞, q for

any q > 2.
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Stationary Navier-Stokes equations
For 1 ≤ p < ∞, 0 < λ ≤ n,

‖f ‖Lp, λ = sup
BR

(

Rλ−n

ˆ

BR

|f |pdx

)
1
p

.

‖f ‖BMO−1 = sup
BR

(

1

|BR |

ˆ

BR

ˆ R2

0
|et∆f (y)|2dtdy

)
1
2

.

‖f ‖
B−1
∞, ∞

= sup
t>0

t
1
2

∥

∥

∥
et∆f (·)

∥

∥

∥

L∞

.

One has the continuous emdeddings: 1 ≤ p ≤ n

Ln ⊂ Ln,∞ ⊂ Lp, p ⊂ BMO−1 ⊂ Ḃ−1
∞,∞.

Critical spaces:

‖f ‖E = ‖λf (λ·)‖E , ∀λ > 0.
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Stationary Navier-Stokes equations

Stationary Navier-Stokes:

−∆U + U · ∇U + ∇P = F , divU = 0.

U = (U1, U2, . . . ,Un), F = (F1, F2, . . . ,Fn).

It is invariant under the scaling

(U, P, F ) 7→ (Uλ, Pλ, Fλ),

where

Uλ = λU(λ·), Pλ = λ2P(λ·), Fλ = λ3F (λ·) ∀λ > 0.
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Stationary Navier-Stokes equations

Integral form:

U = ∆−1
P∇ · (U ⊗ U) − ∆−1

PF , (10)

where P := Id −∇∆−1∇· is the Laray projection onto the
divergence-free vector fields.
A simple observation:

|∆−1∇ · A| ≤ C I1|A|.

Thus equation (10) can be treated similarly to the integral equation

u = I1(u
2) + f .
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The role of L2, 2

L2, 2 is the largest Banach space E ⊂ L2
loc

(Rn) that is invariant under
translation and that ‖λU(λ·)‖E = ‖U‖E .
Thus one is tempted to look for solutions in L2, 2 under the
smallness condition

∥

∥(−∆)−1F
∥

∥

L2, 2 ≤ ε.

However, it seems impossible to prove such existence results under
this condition as for U ∈ L2, 2 the matrix U ⊗ U would belong to
L1, 2, but unfortunately the first order Riesz potentials of functions
in L1, 2 may not even belong to L2

loc
(Rn).

• Kozono-Yamazaki 1995: Existence in the space L2+ε, 2+ε, ε > 0.
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The space V2, 2

We define

V2, 2(Rn) := {u ∈ L2
loc(R

n) : ‖u‖V2, 2(Rn) < +∞},
where

‖u‖V2, 2(Rn) = sup
K⊂Rn

[

´

K
u2dx

cap1, 2(K )

]
1
2

.

That is, V2, 2(Rn) = M2,1,2(Rn).
Embeddings:

L2+ε, 2+ε ⊂ V2, 2 ⊂ L2, 2, ∀ε > 0.
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Main result

Theorem (Phan-P., 2013)

There exists a sufficiently small number δ0 > 0 such that if
∥

∥(−∆)−1F
∥

∥

V2, 2 < δ0, then the equation (10) has unique solution U
satisfying

||U||V2, 2 ≤ C
∥

∥(−∆)−1F
∥

∥

V2, 2 .
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Stationary Navier-Stokes equations

Bilinear estimates: Let

B(U, V ) = ∆−1
P∇ · (U ⊗ V ).

One has
B : V2, 2 × V2, 2 → V2, 2

with
‖B(U, V )‖V2, 2 ≤ C ‖U‖V2, 2 ‖V ‖V2, 2 .
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Stability results

Let U ∈ V2, 2 be the solution of (10) with external force F satisfying

∥

∥(−∆)−1F
∥

∥

V2, 2 < δ0.

Consider the Cauchy problem











∂tu + u · ∇u + ∇p = ∆u + F , in R
n × [0,∞),

∇ · u = 0, in R
n × [0,∞),

u(0) = u0, in R
n,

(11)

where u0 ∈ V2, 2 with divu0 = 0.

Goal: To show that for u0 near U there exists a unique time-global
solution u(t) of (11) such that as time t → ∞ we have u(t) → U in
some sense.
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Stability results

Theorem (Phan-P., 2013)

Let σ0 ∈ (1/2, 1). There exists a number 0 < δ1 ≤ δ0 such that for
||(−∆)−1F ||V2, 2 < δ1, the following results hold:
There is a positive number ε0 > 0 such that for every u0 satisfying
||u0 − U||V2, 2 < ε0, there exists uniquely a time-global solution u(x , t) of
(11) with the initial condition being understood as

sup
t>0

tα/2‖(−∆)
α
2 [u(·, t) − u0]‖V2, 2 ≤ C ||u0 − U||V2, 2

for all α ∈ [−1, 0]. Moreover, for every σ ∈ [0, σ0], the solution u enjoys
the time-decay estimate

‖(−∆)
σ
2 [u(·, t) − U]‖V2, 2 ≤ C t

−σ
2 ||u0 − U||V2, 2 . (12)
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Stability results

Remarks:

When σ = 0, the estimate (12) provides the Lyapunov stability
of the stationary solution U. Moreover, it also implies that the
solution u remains in V2, 2 at all time.

When σ ∈ (0, σ0], we have the asymptotic stability

lim
t→+∞

‖(−∆)
σ
2 [u(·, t) − U]‖V2, 2 = 0.

Kozono-Yamazaki 1995: Stability in smaller Morrey spaces.
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