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The Weyl's lemma

Consider the simplest equation
Au=0 in R"

Weyl’s lemma tells us that any distributional solution is smooth.
Quantitatively,

o C
IV ull oo,y < Taln ull i1y, -

That was the beginning of regularity theory!
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The standard CZ theory
Next consider the equation
Au=f in R"
Then CZ theory tells us that
feld—=— Vueld, 1<q<oo.

Note that this fails at the end-point cases ¢ =1 and g = .
Consequently, Sobolev embedding implies

_nq_
Vue L, g < n,

_ng_
u€ L2, q<n/2.
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Pointwise representations

The bottom of the matter is

u(x) = (n) | Glxp)F)dy.

where

B Ix — y|>7" it n>2
Glxy = { log(jx—yl)  if n=2

Then differentiating twice

V2u(x) = / KGe)F()dy = RAR(£)]

where K(x,y) is a singular integral kernel of CZ type. Hence the
conclusion follows. Here R; is the j-th Riesz transform.
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Gradient estimates: Fractional integral approach

The pointwise representation says that

u(x) = laf (x), n>2,
and
[Vu(x)| < ehilf|(x),
where |,, a € (0, n) is a fractional integral

lop(x) = c(n, a)/ duly)

Rn | X — y|nme

o[ B &
0 th—a t :
Then v
lo : L9 — L7n=oq, g>1aqg<n.

This gives the desired LP control of v and Vu.
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Fractional integrals v.s. singular integrals

@ To bound v and Vu we do not need to pass to V2u and thus
CZ theory can be avoided. We work only with fractional
integrals instead. This has an advantage when dealing with
equations with bad coefficients over irregular domains.

@ The theory of fractional integrals is different from the theory of
singular integrals in that whereas the latter is based on
cancellation properties of the kernel, the former only use the
size of the kernel.

@ In particular, the embedding
ng
lo : L9 — Li=eq, ag < n,

fails as o — 0.
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A gradient estimate where singular integrals are needed

Now consider the equation
Au=divF in R".
We want to get the following bound
IVull e S IFllgas 1<g<oo,

i.e. the solution operator maps W19 into W9,
Integrating by parts and differentiating the pointwise representation

Vu(x) = - ViV, G(x,y) F(y)dy = —[RiRj]F.

Hence CZ theory applies and yields the above bound.
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Warning

e This L9 gradient estimate should not be expected to hold when
the coefficients are not good or when the domain is irregular.

e Bad coefficient example and bad domain example will be
discussed later on.
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Capacities

e Sobolev capacity: Let o >0, s > 1, and let K be a compact set.
Define

Cap(K. W™ (R")) i= inf{|[ullyo.s(ao) : U € S

where
Sk ={ue G°(R"),u>1on K}.

e Functions in W**(R") are generally not continuous. One can
think of Cap(-, W**(R")) is a device to measure the discontinuity of
functions in W**(R"), especially when as < n.

e Example (Lusin type theorem). If f € W**5(R"), then f has a
quasi-continuous representative f. That is, f = f a.e. and for any
¢ > 0 there exists an open set G such that Cap(G, W**(R")) < e
and f is continuous in R"\ G.
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Capacities
e Bessel capacity:

Capg, o(K) = inf{ £l £ >0,Gaf > 1 0n K},

where G, = F1[(1 + |£[>)2] (Bessel kernel), and

Gaf(x) = . Ga(x — y)f(y)dy.
e Note that
1
o <A ‘X‘" ay
Galx) < { em x| > 1.

e By Calderén-Zygmund theory

WS(R™) = {G,f : f € L°(R")},
and thus
Capays(K) ~ Cap(K, W**(R")).
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Capacities
e Riesz capacity: oo € (0,n), s > 1,

cap, s(K) = inf{ |fll7s - f>0,1of >1o0n K},

where recall that

Iof(x):/R Ldy.

nx —y|nme

e cap, () is associated to the homogeneous Sobolev space Wes,

e Locally we also have the equivalence: For as < n,

Capa,s(K) < Capa,s(K) < C(R)Capa,s(K)a VK C Bg.
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Capacities

e For as > n, Cap,, ((K) > c > 0 provided K is nonempty. But
e For as > n, cap, ((K) =0 for any K.

e Capacity of a ball: cap, ((B;) ~ |B,['=*/", as < n.

e A lower estimate for general sets:

capa,s(K) e |K\1*a5/”, as < n.

This follows from the Sobolev’s inequality.
e Relation to Hausdorff measure:

cap, s(K) < HI%(K),

and moreover H"~“*(K) < co = cap, s(K) = 0.
On the other hand, cap, ((K) =0= H(K) =0 for all t > n — as.
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Capacities

Capacities play an important role in analysis and PDEs. For
example, they are used to study:

¢ Pointwise behaviors of Sobolev functions (mentioned above).

¢ Removable singularities of solutions to PDEs. Example: Let E be
a closed subset of Q and v € Har(Q\ E) N L>®(Q\ E). If cap; ,(E) =0
then u € Har(Q).

e Dirichlet problems on arbitrary domains (Wiener's criterion), etc.

We are interested in capacities mainly because of their relation to
trace inequalities.
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Capacities and trace inequalities

Theorem (Maz'ya-Adams-Dahlberg)
Letve MT(R"),0<a<n,and1<s < oo. Then

/ (luf)°dv < Al/ fodx, Vfel*(R"),f>0.

)
v(K) < Axcap, s(K), VK CR"

e If o € N then they are equivalent to the following weighted
Poincaré-Sobolev’s inequality:

/ lolPdv < Al/ IV@%|°dx, Ve e C°(R™).
R? R”
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Capacities and trace inequalities
e For example, for o = 1 we have

[ lebdv<an [ Vopax Ve e Gren.
Rn Rn
(i
(L) dv < A1/ Fodx, VF € LS(R"),f > 0.
R" n
(i
v(K) < Axcapy 4(K), YK CR"

e For oo = 2, one has a similar result for |, and A.
e Also, we have the inhomogeneous version

[ lebdv<a [ (Ve +lef)ax v e GR(R.
R R

)
v(K) < G Capy o(K), VK CR"
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Capacities and trace inequalities

Balls versus sets:
e Necessary condition:

v(B;) < Cecap, (B;) = Cr"* VB, CR".

¢ Sufficient condition: v = gdx and for some ¢ > 0

/ gl—i-Edy < C rn—(l—i—e)as VB,« c R".

r

This is known as Fefferman-Phong condition (a Morrey space
condition).
e Another equivalent condition: Kerman-Sawyer’s testing condition

/ (lavg,)¥ dx < Cv(B,) VB, CR".
By
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What does the condition v(K) < Ccap, ((K) tell us?

e Since
|KI'™% < Ccap, o(K)

we see that if v = f € La:°(Q) then v(K) < C cap,, s(K) and hence

the trace inequality follows. Recall that for p > 1,

felP® o tPl{xcQ:|f(x)| >t} <C Vt>0.

@/ |fldx < C|K[*/P.
K
e Strong type < weak type:

/(Iaf)sdugC fedx, Vf.
n RI‘I

0

tu({lof > t}) < C [ fodx, VF.
]Rn
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Capacities and trace inequalities

e Capacitary weak type inequality:

1
cap, s({laf > t}) < = / fSdx, Vf.
Rn

This is obvious from the definition of capacity.
e Capacitary strong type inequality:

/ cap, s({laf > t})dt> < C [ f%dx, Vf.
0 RP

This is by no means obvious!
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Capacities and trace inequalities

Theorem (Maz'ya-Verbitsky 1995)
Letve MT(R"),0<a<n,and1<s < oco. Then

v(K) < Ascap, (K), VK CR"

)
/K(Iau)sldx <A cap, s(K), VK CR"
)
L [(1,r)*](x) < A? lov(x) ae xeR"
Remark:
e The constants A;, i = 1,...,5, are comparable.

e A similar result holds for G, and Bessel capacity Cap, ;.
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Formulation by function spaces

e Morrey space: LPA, p>1,0< A <n
_ fB, |f|Pdx
||f||2m = S;p N

r

When p = 1, we replace functions f with measures.
e Maz’ya space: MP**, p>1,0<as<n

f|Pdx
I s :=sU —fK| .
|| ||MPv 5 Kp Capms(K)

When p = 1, we replace functions f with measures.
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Formulation by function spaces

A
e Adams embedding: |, : £LP} — £ holds for p>1and ap < A.
But it fails for p = 1. Here )\ acts like the dimension.
e Maz'ya-Verbitsky embedding;:

Ia:Ml,a,s _)Ms’,a,s.

_asp
I - MPS — Mas—5 "% p=>1,p8p<as.

P.-Phan 2014.
e Maz’ya versus Morrey:

£1+e,(1+e)as C Ml,a,s C Cl,as, e> 0.

The first inclusion follows from Fefferman-Phong condition.
o v e MLas and |au <Cl,v a.e. — IS Mbass,
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Capacities and trace inequalities

The Hardy-Littlewood maximal function M and standard CZO are
bounded on MP**, p > 1 (Verbitsky).

Theorem (Verbitsky)
Let f € MP*° where p > 1 and as < n. Suppose that for all weights

w € A1,
/ lg|Pwdx < K/ |f|Pwdx,
R" R”

where K depends only on n, p, and the Ay constant of w. Then

Hg”Mp,o«s <C ||f”Mp,a,s .

e A weight function w € A; if JA > 0s.t. Mw < Aw a.e.
e Application: Take g = Mf or g = Tf, where T = CZO.
e The weighted estimate here is a substitute for pointwise estimate.

N. C. Phuc (LSU) EEEE P | 2 )



Capacities and trace inequalities

The proof of the above theorem uses the following features of
compact sets with positive capacity:
Lemma (Meyers 1970, Havin-Maz'ya 1972, Verbitsky 1985)

For any compact set K C R" with cap,, ;(K) > 0, there exists a measure
p = pX (called capacitary measure of K ) such that

(i) supp(u) C K, u(K) = cap, s(K) = HlaMHils/-

1
-1,

ii) Vo spt > 1 quasi-everywhere on K. Here Vg spt = 1o (lop)®
iii) Vo spt < C(n,a, s) in R™.
iv) cap, s{Va,sp > t} < At L T S(K).

(
(ii
(
(v

) (V asM) € A1, where 0 < ¢
0< <=0 jrp a/n<s < oo.

h—as

n—«
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Morrey space version

Theorem

Let f € LP?, where p>1 and 0 < \ < n. Suppose that for all weights

w & A1,
/ lg|Pwdx < K/ |f|Pwdx,
Rn RI‘I

where K depends only on n, p, and the Ay constant of w. Then

lgllzon < ClIfllzon-

e Idea (Mengesha-P. 2010): Fix 0 < ¢ < A and apply the inequality
with the weight

w(x) = min{|x — z|7"tA¢ pontATeL

where B,(z) is the ball on which we want to control g.
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Trace inequalities with different exponents

Consider inequality of the the more general form
/ |ul9dy < C/ |V@ul®dx, Yue CG°(R").
R" R"

e g = s > 1: discussed above.
e g > s > 1: the characterization is

q
s

v(K) < Ccap, s(K)s, VK CR"

)
v(B;) < Ccap, <(B ): = Crnas)a/s vy palls B, C R".

This is known as Adams’ Theorem. This also holds for g > s = 1.

N. C. Phuc (LSU) August 28, 2016 26 / 110



Trace inequalities with different exponents

e s>1, s> qg> 0: a characterization is due to
Cascante-Ortega-Verbitsky

q(s—1)

W, sv € L= (dv),

where W, ;v is the Wolff’'s potential of v

W, sv(x) = /OOO <V(Br(x))> o %, x € R".

rn—as

e Another characterization is due to Maz’ya-Netrusov:

e

o [¢s/9 \ 79 dt
/o V(1) t

where V(t) = inf{cap; ;(A) : AC R",v(A) > t}.
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Trace inequalities with different exponents

e The special case s > 1 and g = 1:
— v e (Wes)
)
lov € L5 (dx)

)
W, v € LY(dv)

e The last equivalence is known as Wolff’s inequality:

/ (a0 o~ [ W av(x)dv(x).

RN
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Connection to Lane-Emden equation with measure data

Consider the equation
—Au=u7+pin R". (1)

Here u >0, u € L] (R"), and € MT(R"). In integral form, this
reads
u=Ilo(u)+ o a.e.

Here we assume that I,y < 400 a.e.

Theorem (Baras-Pierre 1983, 1985)

Let g > 1 and n > 2. Then (1) has a nonnegative solution u € L (R") if
and only if

[ @i < @-0a [ o) Tax vozo,

e The proof makes use of duality and the linear nature of I, (or A).
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Connection to Lane-Emden equation with measure data

Theorem (Adams-Pierre 1991)

Let g > 1 and n > 2.
(i) If (1) has a nonnegative solution u € L} (R") then

p(K) < Ccapy ¢ (K) (2)

for all compact sets K C R", with C independent of K.
(ii) There exists a constant Co = Co(n, q) such that if (2) holds with
C < Gy, then (1) has a nonnegative solution u € L] (R").

e Note that (2) = When p is nonzero, the Hausdorff dimension of
Supp(p) > n—2q'. That is 1 has to be “soft” enough.
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Connection to Lane-Emden equation with measure data
Equations on bounded domains:

Theorem (Adams-Pierre 1991)

Suppose that suppy € , g > 1.
e [f the equation

—Au=u9+ pin Q,

u>0in Q, (3)
u =0 on 09,
has a solution then
i(K) < CCapy o(K), VKCQ. (4)

e Conversely, 3Cy = Co(n, q) > 0 such that if (4) holds with C < Cy then
(3) has a solution.

v
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Connection to Lane-Emden equation with measure data

The proof of these two theorems were based Baras-Pierre’s result
and the following characterization: For s > 1,

v(K) < Ccapy o(K)

0
/ oy < C / Dplfdx, Ve e C(RY)
Rn R7
0
/ pldv < C / JNAEPEEN
Rn Rn
0

/R lpl9dv < C /R Al 5dx,  qel[Ls].
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A proof of (1) = (2) (Verbitsky-Wheeden 1995):

(1) = L) <u<+o0 ae

(i
L2[12(u)9] < I2(uf)
(i
/ (LF)¥ widx < C [ f9dx, VfF.
n Rn
T
/uqu§ Ceap, o(K), VK.
K
I (u>lap)

/Ig(,u)quchapzyq/(K), VK.
K
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Connection to Lane-Emden equation with measure data

e Intrinsic space of solutions: AM%29
e Simple sufficient condition: Let p = fdx.

fe LTZ”OO(Q) (with small norm).

o Fefferman-Phong sufficient condition: Let p = fdx. For some ¢ > 0

_(1+€)2
/ flbedy < Cr" @D, Vballs B;.

Here one checks only over balls, but a small bump on f is needed.
e Liouville type theorem: If 1 < g < 5 (i.e. 2¢' > n) then (1) has
no nonnegative global solution provided ;. # 0.

e On the other hand, if 1 < g < -5 then (4) is satisfied for some
C > 0 provided p is finite in €. In this case a solution exists in (2
provided ||u|| is small enough.
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Removable Singularities for —Au = uf

Theorem (Adams-Pierre 1991)
Let E C Q be compact. Then

Cap, (E) =0
is necessary and sufficient in order that:
{ ve ] (Q\E), u>0,
—Au=u? in D(Q\E).
¢

vell (Q), u>0,
—Au=u? in D'(Q).

e Remark: No information of v near E is needed.
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Removable Singularities for —Au = uf

Proof of the necessity part: By contradiction, suppose that
Cap, ,(E) > 0. Let uF be the capacitary measure for E. It is known

that ,F satisfies the capacitary condition. Thus there is a positive
solution v € L to

loc
~Au=ul+epf in Q,

provided ¢ is sufficiently small. As supp(uf) C E and uf # 0, we
reach a contradiction!
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Connection to Riccati type equation with measure data
Consider an equation with super-linear growth in the gradient
—Au=|Vul?+ p in R". (5)

Here u € W 9(R") and p € MH(R").

loc
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Connection to Riccati type equation with measure data

Consider an equation with super-linear growth in the gradient
— Au=|Vu|?4 p in R", (5)
Here u € W9(R") and € M+ (R").

Theorem (Hansson-May'za-Verbitsky 1999)

Let g >1andn> 2.
(i) If (5) has a solution u € WI})’C"(R”) then

1(K) < Ccapy o (K) (6)

for all compact sets K C R”, with C independent of K.
(ii) There exists a constant Cog = Co(n, q) such that if (6) holds with
C < o, then (5) has a solution u € W-9(R™).

loc
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Connection to Riccati type equation with measure data

Necessary conditions

Lemma (Hansson-Maz'ya-Verbitsky 1999)
Let g > 1 and p € M*T(R™). If (5) has a solution u € Wli’cq(R"), then
/ o9 du<(qd - 1)"/_1/ Vep|9 dx
R" R”

and
/%Dq'IVUI"dXS(q’)q// Vo] dx
Rn Rn

for all p € C§°(R"), ¢ > 0.
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Connection to Riccati type equation with measure data

Necessary conditions

Lemma (Hansson-Maz'ya-Verbitsky 1999)
Let g > 1 and p € M*T(R™). If (5) has a solution u € Wli’cq(]R”), then

/ o9 du<(qd - 1)"/_1/ Vep|9 dx
Rn R"

and

/ o7 |Vul9dx < (¢)7 / Vel dx
R" Rn

for all p € C§°(R"), ¢ > 0.

e Idea of the proof: Use % as a test function for (5).
e Liouville exponent: gy = .75.

e A priori estimate Vu € M%19,
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Nonlinear setting: The three model equations
Lane-Emden type:
—Apu=ut+p, u>0.

Fe[—u] = u? + p, u>0.
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Nonlinear setting: The three model equations
Lane-Emden type:
—Apu=ut+p, u>0.

Fe[—u] = u? + p, u>0.

Riccati type:
—Apu=|Vul?+ pu.
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Nonlinear setting: The three model equations

Lane-Emden type:
—Apu=ut+p, u>0.

Fi[—u] = u? + p, u>0.

Riccati type:
—Apu=|Vul?+ pu.
Stationary Navier-Stokes:
-AU+U-VU+VP = F,
divU = 0.
U= (U1, Us,...,U,), F=(F,Fy...,F).

e Here 1 is a non-negative measure or even a signed distribution for

Riccati type equations.
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Apu = div(|Vu|P?Vu),
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The p-Laplacian

Apu = div(|VulP~2Vu), p>1.

e In most cases it can be replaced by a more general quasilinear
operator

Lp[u] = divA(x, Vu),

where A = (A3, Ay, ... A,) satisfies certain growth and monotonicity
conditions:

A(x, ) - €= [€P, [A(x,&1) — A(x, &)] - (& — &) >0
for all x,&, and & # & in R”.
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The p-Laplacian

Apu = div(|VulP~2Vu), p>1.

e In most cases it can be replaced by a more general quasilinear

operator
Lp[u] = divA(x, Vu),

where A = (A3, Ay, ... A,) satisfies certain growth and monotonicity
conditions:

Alx, €) - €~ [¢P, [A(x, &) — Alx, &)l - (& - &) > 0

for all x,&, and & # & in R”.
e For equations of Riccati type stronger monotonicity and regularity
conditions on 4 are needed.
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The k-Hessian

Let k=1,2,...,n. It is defined that

Fi[u] = the sum of k x k principal minors of the Hessian matrix V2u.
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The k-Hessian

Let Kk =1,2,...,n. It is defined that

Fi[u] = the sum of k x k principal minors of the Hessian matrix V2u.

That is,
Fk[u] = Z )\,‘1 e >‘ik7
<<l
where )\, ..., )\, are eigenvalues of V2u. In particular,

Filu] = Au, Folu] = det(V2u).
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The k-Hessian

Let Kk =1,2,...,n. It is defined that

Fi[u] = the sum of k x k principal minors of the Hessian matrix V2u.

That is,
Fk[u] = Z )\,‘1 e >‘ik7
<<l
where )\, ..., )\, are eigenvalues of V2u. In particular,

Filu] = Au, Folu] = det(V2u).

det(Mp — V2u) = > F[-u]A" .
k=0
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Pointwise estimates for —A,u = p

Theorem (Kilpeldinen-Maly 1994)
Let r = dist(x,0Q). If —Apu=p € MT(Q), u> 0 in Q then

C1W1§, p.U(X) < u(x) < Wi pu(x) + inf u,

Br/B(X)

1, pt(x) = /0 [M(Bt(X))} Hd?

tn—p

where

N. C. Phuc (LSU)
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Pointwise estimates for —A,u = p
Theorem (Kilpeldinen-Maly 1994)
Let r = dist(x,0Q). If —Apu=p € MT(Q), u> 0 in Q then

C1W

Hwi~

(X)) S u(x) < Wi pu(x) + inf u,
Br/B(X)
where

Wi u(x) = /0 [N(Bt(x))} 11%

tn—p

For Q = R" and infrn u = 0 we have neater bounds

Wi ppi(x) < u(x) < W, pp(x).
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Pointwise estimates for —A,u = p
Theorem (Kilpeldinen-Maly 1994)
Let r = dist(x,0Q). If —Apu=p € MT(Q), u> 0 in Q then

C1W

Hwi~

(X)) S u(x) < Wi pu(x) + inf u,

Br/3(X)

= [ BB

=

where

For Q = R" and infrn u = 0 we have neater bounds

Wi ppi(x) < u(x) < W, pp(x).

e For p =2 we go back to the classical Newtonian potential since

Wi 271(x) = (n) bapa(x).

N. C. Phuc (LSU)
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Characterization of Holder continuity for —A,u = 1

Corollary (Kilpeldinen-Maly 1994)

Let u be a solution of —Apu = p >0 in €.
(i) If there exists € > 0 such that u(B,(x)) < C r"P*¢ whenever
Ba(x) C Q, then u € ¢ () for some v > 0.

loc
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Characterization of Holder continuity for —A,u = 1

Corollary (Kilpeldinen-Maly 1994)

Let u be a solution of —Apu = p >0 in €.

(i) If there exists € > 0 such that u(B,(x)) < C r"P*¢ whenever
Bar(x) C Q, then u € G} (Q) for some v > 0.

(ii) Conversely, if u € C/ .(Q) for some v > 0 then

(B (x)) < M pn—Ptr(p=1)
for all By.(x) C Q.
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Characterization of Holder continuity for —A,u = 1

Corollary (Kilpeldinen-Maly 1994)

Let u be a solution of —Apu = p >0 in €.
(i) If there exists € > 0 such that u(B,(x)) < C r"P*¢ whenever
Bar(x) C Q, then u € G} (Q) for some v > 0.

(ii) Conversely, if u € C/ .(Q) for some v > 0 then
(B (x)) < M pn—Ptr(p=1)

for all By.(x) C Q.

e Wiener’s criterion for p-Laplace equation (Kilpeldinen-Maly,
Maz’ya).
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Pointwise estimates for —A,u = p

Global estimate on bounded domains with zero boundary data:

Theorem (P.-Verbitsky 2008)

Let v be a finite signed measure in Q). Suppose that u is a renormalized
solution to

—Apu = pin Q,
u=0on 0N.
Then

u() < CWIE @410, wxe .

e One can replace A, with £,[-] ;== divA(x, V).
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Notion of renormalized solutions

For each integer k > 0 the truncation
Ti(u) := max{—k, min{k, u}}
belongs to W, "(Q2) and satisfies

—div A(x, V Ti(u)) = pk

in the sense of distributions in {2 for a finite measure py in Q.

Moreover, if we extend both 1 and px by zero to R” \ Q then

[k = [l

weakly as measures in R".
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Notion of renormalized solutions

For each integer k > 0 the truncation
Ti(u) := max{—k, min{k, u}}
belongs to W, "(Q2) and satisfies
—div A(x, VT (v)) = uk

in the sense of distributions in Q2 for a finite measure iy in €.
Moreover, if we extend both 1 and px by zero to R” \ Q then

[k = [l

weakly as measures in R".

e Fundamental solution: u(x) =c¢ M% for p # n, and
u(x) = —c log|x| for p = n.
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Pointwise estimates for Fy[—u] =

Recall that for « >0, s > 1

W, u(x) = /Or [M} slldtt'

tl‘l*O{S

k-Hessian equations: o = %‘1, s=k+1.
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Pointwise estimates for Fy[—u] =
Recall that for o >0, s > 1

W, u(x) = /or [M} slldtt'

tnfas
k-Hessian equations: o = %‘1, s=k+1.
Theorem (Labutin 2002)
Let r = dist(x,0Q). If Fg[—u]l = pu € MT(Q), u> 0 in Q then

g < < W’ i
sz—fl,kﬂﬂ(x) Sulx) S W%,kﬂﬂ(x) + B,I/r;{(:X) e

v
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Pointwise estimates for Fy[—u] =
Recall that for o >0, s > 1

W, u(x) = /Or [M} slldtt'

tI‘I*O(S

k-Hessian equations: o = %‘1, s=k+1.

Theorem (Labutin 2002)
Let r = dist(x,09Q). If Fx[—u] = p € MT(Q2), u >0 in Q then

: < < W' )
W%’HIM(X) S5 W%,kﬂﬂ(x) + B,'/rlix) u.

For Q = R" and infrn u = 0 we have neater bounds

< < .
AW iy 11(6) < u(x) < W sy 1i(x)

k+17

v
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Global estimate in bounded domains

Theorem (P.-Verbitsky 2008)

Let € MT(2). Suppose that u is a k-convex solution to

Fk[_u] =K in Qa
u=0 on 0N.
Then

u(x) < szzianlig_ﬂl)y(x), Vx € Q.

k+17

N. C. Phuc (LSU)
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Global estimate in bounded domains

Theorem (P.-Verbitsky 2008)

Let € MT(2). Suppose that u is a k-convex solution to

Fk[_u] =K in Qa
u=0 on 0N.

Then

u(x) < szziarzgﬁ)u(x), Vx € Q.
k+17

e Here the boundary condition is understood in the classical sense,
and we assume that p € L°, s > 5, near 0.

N. C. Phuc (LSU) August 28, 2016 47 / 110



Global estimate in bounded domains

Theorem (P.-Verbitsky 2008)

Let € MT(2). Suppose that u is a k-convex solution to

Fk[_u] =/,L1Il Q7
u=0 on 0N.

Then

u(x) < szziarzg?l)u(x), Vx € Q.
k+17

e Here the boundary condition is understood in the classical sense,
and we assume that p € L°, s > 5, near 0.

e Fundamental solution: u(x) =c¢ |x|L§" for k # n/2, and
u(x) = —c log |x| for k = n/2.
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Notion of k-convexity (k-subharmonicity)

Definition
A function v : Q — [—00, 00) is k-convex if v is USC and if whenever the
graph of a quadratic polynomial g touches the graph of v from above at

some point in Q then Fy[q] > 0.
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Notion of k-convexity (k-subharmonicity)

Definition

A function v : Q — [—00, 00) is k-convex if v is USC and if whenever the
graph of a quadratic polynomial g touches the graph of v from above at
some point in Q then Fi[g] > 0.

Remark: 1-convexity is subharmonicity and n-convexity is the
convexity in the usual sense.
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Notion of k-convexity (k-subharmonicity)

Definition

A function v : Q — [—00, 00) is k-convex if v is USC and if whenever the
graph of a quadratic polynomial g touches the graph of v from above at
some point in Q then Fi[g] > 0.

Remark: 1-convexity is subharmonicity and n-convexity is the
convexity in the usual sense.

A function v € C%(Q) is k-convex in Q if and only if F;[v] >0 in Q
forall j=1,2,... k.

N. C. Phuc (LSU) August 28, 2016 48 / 110



Notion of k-convexity (k-subharmonicity)

Definition

A function v : Q — [—00, 00) is k-convex if v is USC and if whenever the
graph of a quadratic polynomial g touches the graph of v from above at
some point in Q then Fi[g] > 0.

Remark: 1-convexity is subharmonicity and n-convexity is the
convexity in the usual sense.

A function v € C3(Q) is k-convex in Q if and only if F;[v] >0 in Q
forall j=1,2,... k.

Trudinger-Wang 1999: If v is k-convex in  then Fi[v] can be

understood as a Borel measure j[v] in Q. Moreover, if v € C3(Q)
then p[v] = Fi[v].
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Relation to Riesz's potentials: Wolff type inequalities

Original Wolff’s inequality: 1 <a <n, s > 1,

/n(lau)s—sldx ~ [ W, opu(x)dpu(x).
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Relation to Riesz's potentials: Wolff type inequalities

Original Wolff’s inequality: 1 <a <n, s > 1,

/n(lau)ssldxz - W, sp(x)dp(x).

A variant of Wolff’s inequality (P-Verbitsky 2008): For
g>s—1>0,1<as<n,

1
IWespall o = aspl 9470

~ | Mas,uH‘ZgSZI (Muckenhoupt-Wheeden).

Here M, is a fractional maximal function:

#(Be(x)

tnfas

Masp(x) = sup
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Relation to Riesz's potentials: Wolff type Inequalities

Explicitly,

[ (1Bt g [ ][ 1N,
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Relation to Riesz's potentials: Wolff type Inequalities

Explicitly,

_9q_

/n [/ooo (W)sa?}qug/Rn Uooou(ttn?t&):))cﬂsl N

S NGO EL

e These inequalities provide information on the integrability of
solutions to —A,u = f or F[—u] = f for f € L" by means of
fractional integrals.
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Relation to Riesz's potentials: Wolff type Inequalities

1

e Loosely speaking, W, s« behaves like (1ns/0)5T.

e One can replace dx by w(x)dx for any weight w € A
(Muckenhoupt-Wheeden 1974).

o Wos()5t:L— L, [Was()]*7t: M — M with explicit indices.

e This gives the precise mapping property of the solution operator.
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Application to quasilinear Lane-Emden type equations
Theorem (P.-Verbitsky, 2008)
letq>p—1,1<p<n,andpec MT(R"). Then

—Apu=u9+pin R",
infRn u—= 0,

)

1(K) < Ccapp, _a_(K).

q—p+1

v
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Application to quasilinear Lane-Emden type equations

Theorem (P.-Verbitsky, 2008)
letq>p—1,1<p<n,andpec MT(R"). Then

—Apu=u+ pin R
infRn u—= 0,

)

1(K) < Ccap, _a_(K).

q—p+1

(3
Wi (Wi, pp)? < CWq ppu a.e.

v

N. C. Phuc (LSU) August 28, 2016 52 /110




Application to quasilinear Lane-Emden type equations

Theorem (P.-Verbitsky, 2008)
letq>p—1,1<p<n,andpec MT(R"). Then

—Apu=u+ pin R
infRn u—= 0,

)

1(K) < Ccap, _a_(K).

q—p+1

(3
Wi (Wi, pp)? < CWq ppu a.e.

(lpp)P=T < Clpp a.e. )
August 28, 2016 52 / 110




Relation to semilinear equations

/
_(_a - _
¢ Note that o p+1 (ﬁ) . Liouville exponent gy =

n(p—1)
n—p
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Relation to semilinear equations
e Note that —%4 - = (-2

/
P ﬁ> . Liouville exponent go = "(npf_pl).
e From the pointwise bounds by Wolff’s potential, heuristically we

are dealing with an integral equation of the form

un Wi p(u?) + Wi pp.

N. C. Phuc (LSU)
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Relation to semilinear equations
/
a _ (_q s _ n(p-1)
¢ Note that il = ﬁ> . Liouville exponent gy = “np
e From the pointwise bounds by Wolff’s potential, heuristically we
are dealing with an integral equation of the form

un Wi p(u?) + Wi pp.

e Recall that

WK) < Ceap,, _a_(K)
)
0= 1p(u? D) 4 1p
As 1, = (—A)"P/2, in some sense we have the equivalence
—Apu=uT+p

i)

(=A)P2y = ¢/ (P=1) 4y,
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Quasilinear Lane-Emden type equations
The proof of the implication

—Apu = u9 4y in R,
infgn u = 0.

=>M(K)+/uqu§Ccapp, e (K).

K q—p+1
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Quasilinear Lane-Emden type equations
The proof of the implication

{ —Apu = u9 4y in R,

infrn u = 0. :>N(K)+/

uldx < Ccap, _a_(K).
K

q—p+1
Proof: Let v = u9 + u. By the lower Wolff potential estimate
CWy pv(x) <u(x) VxeR"™

From this we obtain

(W1, pv)%dx < Cu9(x)dx < Cdv.
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Quasilinear Lane-Emden type equations
The proof of the implication

—Apu=u9+ pin R, q
<
{ infan u = 0. = u(K) + /K uldx < Ccapp, q72+1(K)'
Proof: Let v = u9 + u. By the lower Wolff potential estimate
CWi pv(x) <u(x) VxeR™

From this we obtain

(W1, pv)%dx < Cu9(x)dx < Cdv.

4

/ (lepy)q(MVg)ﬁdX <C (Myg)#dy
Rn Rn

_q
for all g € L.™'. Here M,, denotes the centered H-L maximal
function associated to v defined by
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continued...

[ (x) |f|dv

M, f(x) = sup —~——.
0 = B,

Since M, is bounded on L;(R"), s > 1, we obtain

/ (WLpu)q(Myg)%dx <C gﬁdy.

Rn R
From this inequality and the estimate
_q
[W1,pv(x)]7[Mug(x)]?~T = C[W1, 5(gdv)(x)]*

we deduce

/ (W1, ,(gdv)(x)]%dx < C | g7idv.
R -
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continued...

Thus by Wolff’s inequality one gets
/ [Ip(ng)(X)]P%ldxg C/ gp%ld,/_
R" R

_q
forall g € LL™*, g > 0. Note that I, is linear and thus by duality
/ [Hp(F)(x)]a=r+1 pidy < C | fopidx.
]Rn

I
v(K) < Ccap, e
> q—p

(K).
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Here is another proof:
Let v = u9 4+ u. By the lower Wolff potential estimate

CWiy pv(x) <u(x) VxeR™
From this we obtain, for every ball B C R”,
(W1, pvg)%dx < Cul(x)dx < Cdv.
4
/B(WLPVB)qu < Cv(B).
|} (localized Wolff)
/B(IPI/B)qudx < Cv(B) (Kerman-Sawyer).

I
v(K) < Ccap,, _a_(K).

q—p+1

N. C. Phuc (LSU) August 28, 2016 57 / 110




Equations on bounded domains

Theorem (P.-Verbitsky, 2008)
Let q > p — 1. Suppose that suppu € Q.

—Apu=u9 4 pin Q,
u>0in Q,
u =0 on 09.

()
u(K) < CCap, _a_(K).

q—p+1

v

N. C. Phuc (LSU) August 28, 2016 58 / 110



Equations on bounded domains

Theorem (P.-Verbitsky, 2008)
Let q > p — 1. Suppose that suppu € Q.

—Apu=u9 4 pin Q,
u>0in Q,
u =0 on 09.

()
u(K) < CCap, _a_(K).

q—p+1

¢
PRI2Ru)7T < CRRu  ae,,

where R = diam(2).

v

o No restriction on Q is needed here.
N. C. Phuc (LSU) August 28, 2016
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Some sufficient conditions

¢ Simple sufficient condition:
n(g—p+1)

p=Ffel r Q).

This answers a question posed by Bidaut-Veron 2002.
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Some sufficient conditions

¢ Simple sufficient condition:

n(g—p+1)

p=Ffel r Q).

This answers a question posed by Bidaut-Veron 2002.
¢ Fefferman-Phong sufficient condition:

(1+€)pg

p=rfe e (Q).
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Removable Singularities for —A,u = u9

Theorem (P.-Verbitsky, 2008)
Let E C Q be compact. Then

Cap, o (E)=0

q—p+1

is necessary and sufficient in order that:
vell (Q\E), u>0,
—Apu=u? in D(Q\E).
J

vell (Q), u>0,
—Apu=u? in D(Q).

Remark: No information of u near E is needed.
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Hessian equations of Lane-Emden type

Theorem (P.-Verbitsky, 2008)
Let q > k. Suppose suppu € 2, where S is uniformly (k — 1)-convex.

Fe[—u] = u? + p in Q,
u>0in Q, < n(K) < CCapyy _a_(K).
u =0 on 0f. ?
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Hessian equations of Lane-Emden type

Theorem (P.-Verbitsky, 2008)
Let q > k. Suppose suppu € 2, where S is uniformly (k — 1)-convex.

Fe[—u] = u? + p in Q,
u>0in Q, < n(K) < CCapyy _a_(K).
u =0 on 0f. ?

2R(12R, \ L 2R
e (ep)zx < Clygp  ae,

where R = diam(2).
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Hessian equations of Lane-Emden type

Theorem (P.-Verbitsky, 2008)
Let q > k. Suppose suppu € 2, where S is uniformly (k — 1)-convex.

Fe[—u] = u? + p in Q,
u>0in Q, < n(K) < CCapyy _a_(K).
u =0 on 0f. ?

(i
q
BRBRu)zF < CBFu  ae.,

where R = diam(2).

v

e (k — 1)-convexity of Q: H;(0Q2) >0,/ =1,...,k —1; H; denotes the
Jj-mean curvature of the boundary 0.
e Similar result in R". Liouville exponent gy = nf—gk
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Removable Singularities for Fy[—u] = u?

Theorem (P.-Verbitsky, 2008)
Let E C Q be compact. Then
Cap,, _a (E)=0
) g—k
is necessary and sufficient in order that:
vell (Q\E), u>0,
Fi[-ul =u? in D(Q\E).

4

vell (Q), u>0,
Fe[-ul =u? in D'(Q).

N. C. Phuc (LSU)
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Lane-Emden type equations with two weights

—Apu=ou? + p, u>0.
Fe[—u] = ou? + p, u>0.

Here o and . are nonnegative measures. For simplicity we will
discuss these equations on the whole R".
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Lane-Emden type equations with two weights

Theorem (Kalton-Verbitsky 1999, P.-Verbitsky 2009)

—Apu=ocu?+p, u>0.

)

Wi, [(Wi, o) dr)(x) < € Wi, ().
0

/B W1, pus(y)]9do(y) < Cu(B), Vballs B.

The last line is Kerman-Sawyer type condition.
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Lane-Emden type equations with two weights

Moreover, these conditions are also equivalent to the following pair
of conditions:

L
| W oedn)odotr) < € [ g7*tan e =0
and for all x ¢ R" and r > 0,

[ (e [~ (oo

The last one is referred to as infinitesimal inequality. It can be
written as

Wi o - Wy — W] a1t < C.
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Lane-Emden type equations with two weights

An a priori estimate for solution:

1

1 P
/' (O’(Bt(X))>P1 dt /°° (th(x) U"d0> g
dat. IB( U9 dt <cC.
o \ P t |/ tn—p t =
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Lane-Emden type equations with two weights

An a priori estimate for solution:

feeeye | (tee) e <

Corollary

Suppose that 0 € Q and that u > 0 is a solution to the differential
inequality

ud
—APUEW7 qg>p—1,
or
ud
Fi[—u] = x[2%’ q> k.
Then u = 0.
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Pointwise gradient estimates for —A,u = p

Theorem (Duzaar-Mingione 2010, Kuusi-Mingione 2013)

Let p > 2 —1/n and suppose that u solves —Apu = 1 in Q. Then for any
ball Br(x) C Q

Vulx)] < C PRIl ()]7 + cf Vu(y)|dy,

where

t"1 t
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Pointwise gradient estimates for —A,u = p

A history: An earlier result in the case p > 2 reads

Theorem (Duzaar-Mingione (20097) 2011)

Let p > 2 and suppose that u solves —Apu = pu in §2. Then for any ball
BR(X) cQ

V()] < CWE Jull) + € £ [Vu(y)ldy.
P’ Bgr(x)
where

tn—l

W pu(x) = /O " [M] = %
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Pointwise gradient estimates for —A,u = p

A history: An earlier result in the case p > 2 reads

Theorem (Duzaar-Mingione (20097) 2011)

Let p > 2 and suppose that u solves —Apu = pu in §2. Then for any ball
BR(X) cQ

HM@NSCWfAM&%+Cﬁ”)WMWH%
P R(X

- O]

where

e For p>?2

1

IEI] 7 < CWAR (o)
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Pointwise gradient estimates for —A,u = p
Some consequences:

Corollary (Duzaar-Mingione, Kuusi-Mingione)

Let p>2—1/n and suppose that u € W1P(Q) solves —Apu = i in Q.
(i) Lipschitz continuity criterion:

IR|u| € L32.(Q) for some R > 0 = Vu € L2(Q).
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Pointwise gradient estimates for —A,u = p

Some consequences:

Corollary (Duzaar-Mingione, Kuusi-Mingione)

Let p>2—1/n and suppose that u € W1P(Q) solves —Apu = i in Q.
(i) Lipschitz continuity criterion:

IR|u| € L32.(Q) for some R > 0 = Vu € L2(Q).
(i) Criterion for the continuity of Vu: If limg_q I¥|u|(x) = 0 locally

uniformly in x then Vu is continuous in ). In particular, this holds if
p e L™(Q), ie.,

o
/ 1{x € Q: |u(x)| > t}|rdt < +00.
0
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Pointwise gradient estimates for —A,u = p

Some consequences:

Corollary (Duzaar-Mingione, Kuusi-Mingione)

Let p>2—1/n and suppose that u € W1P(Q) solves —Apu = i in Q.
(i) Lipschitz continuity criterion:

IR|u| € L32.(Q) for some R > 0 = Vu € L2(Q).

(i) Criterion for the continuity of Vu: If limg_q I¥|u|(x) = 0 locally
uniformly in x then Vu is continuous in ). In particular, this holds if
p e L™(Q), ie.,

o
/ 1{x € Q: |u(x)| > t}|rdt < +00.
0

e These criteria are independent of p.
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Pointwise gradient estimates for —A,u = p

Equations with general structure: —div.A(x, Vu) = p.
e Growth and ellipticity conditions: for some p > 2 —1/n,

A OIS AEPPTE Vel Ax, €] < AlgP2,
(VeA(: OAN) = BIE[P 22
for all x € R”, and £, A € R"\ {0}.
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Pointwise gradient estimates for —A,u = p

Equations with general structure: —div.A(x, Vu) = p.
e Growth and ellipticity conditions: for some p > 2 —1/n,

A O < AEPTY Vel A(x, €)| < AjgP2,
(VeA(: OAN) = BIE[P 22
for all x € R”, and £, A € R"\ {0}.

e Continuity condition: for some o € (0,1)

|A(x1,€) — A(x2, )| < Clxi — xo|*[€[P7.

This Holder condition can also be replaced by a Dini condition.
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Pointwise gradient estimates for —A,u = p

Equations with general structure: —div.A(x, Vu) = p.
e Growth and ellipticity conditions: for some p > 2 —1/n,

Al < AEPT, Vel A(x,€) < AlglP2,
(VeA(x, A A) > BIEPZ A2
for all x € R”, and &, \ € R"\ {0}.
e Continuity condition: for some o € (0,1)

|A(x1,€) — A(x2, )| < Clxi — xo|*[€[P7.

This Holder condition can also be replaced by a Dini condition.
p—2

e Example: divA(x,Vu) = diV(A(x)Vu . VU)TA(X)VU, Ae Ce.
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Pointwise gradient estimates for —A,u = p

Equations with general structure: —div.A(x, Vu) = p.
e Growth and ellipticity conditions: for some p > 2 —1/n,
Al < AEPT, Vel A(x,€) < AlglP2,
(VAR A X) = BIEPT2 AR
for all x € R”, and &, \ € R"\ {0}.
e Continuity condition: for some o € (0,1)

|A(x1,€) — A(x2, )| < Clxi — xo|*[€[P7.

This Holder condition can also be replaced by a Dini condition.
p—2

e Example: divA(x, Vu) = div (A(X)Vu : Vu) TA(X)VU, Ae Ce.
¢ Pointwise gradient estimates upto the boundary can also be done
for C1'* domains.
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Why the restriction p > 2 —1/n?

e Generally, solutions of —A,u = 1 satisfy Vu € L] for any

loc

0<g< "(p 1) Thus when p > 2 —1/n, Vu is locally integrable.
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Why the restriction p > 2 —1/n?

e Generally, solutions of —A,u = 1 satisfy Vu € L]
0< qg< ”(P 1)
e W'! comparison estimate (Duzaar-Mingione): With u € W "(Q)
being a solution of —A,u=p, let w € u+ Wol’p(B,) with A,w =0 in

B, where B, € 2. Then there is a constant C = C(n, p) such that

(@) ( 9 dx)“

1o for any

Thus when p > 2 —1/n, Vu is locally integrable.

1

Vu— Vwldx < C ['“K )] oS

B

if2—1/n<p<2, and
1

B, L
|Vu—Vw|dx < C [“ﬂn(l)]lj if p> 2.

B,
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Why the restriction p > 2 —1/n?

e Generally, solutions of —A,u = 1 satisfy Vu € L]
0< qg< ”(P 1)
e W'! comparison estimate (Duzaar-Mingione): With u € W "(Q)
being a solution of —A,u=p, let w € u+ Wol’p(Br) with A,w =0 in

B, where B, € 2. Then there is a constant C = C(n, p) such that

1o for any

Thus when p > 2 —1/n, Vu is locally integrable.

1 2-p
|Vu—Vwldx < C [M( 1)] 1 +C |,ur|n(51r) < ]Vu\dx)
B,

B

if2—1/n<p<2, and
1

IVu— Vwldx < C ['“’K )]Pl if p>2.

1
B,

o Incidentally, W1 o =~ V1 o = I1[ly ()7 1] iff 2 — 1/n < p < n.
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Pointwise gradient estimates for —A,u = p

Comments on the proof:

e Some sort of “interpolation” between W' and C1* estimates.
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Pointwise gradient estimates for —A,u = p

Comments on the proof:

e Some sort of “interpolation” between W' and C1* estimates.

e Making use of the above W' comparison estimate.
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Pointwise gradient estimates for —A,u = p

Comments on the proof:
e Some sort of “interpolation” between W' and C1* estimates.
e Making use of the above W' comparison estimate.

e Making use of C1'® estimate for homogeneous equations in a
mean oscillation decay form: Let w € W'P(Q) be a solution of
Apu = 0. Then there exist a € (0,1) and C > 1 such that

F 19w (Twe,ldy < € (5)" f [Vw - (Twagldy
B, R Br

holds for all concentric balls B, C Br C Q2. Here (W)Bp is the
average of Vw over the ball B,,.
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Weighted gradient estimates for —div.A(x, Vu) = u

When A(x,§) is no longer Hélder (or Dini) continuous in x, the
pointwise estimate fails. In that case it can be replaced by a
weighted estimate. The condition on A(x, &) in the x-variable is
then relaxed to VMO or small BMO.
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Weighted gradient estimates for —div.A(x, Vu) = u

When A(x,§) is no longer Hélder (or Dini) continuous in x, the
pointwise estimate fails. In that case it can be replaced by a
weighted estimate. The condition on A(x, &) in the x-variable is
then relaxed to VMO or small BMO.

Definition

We say that A(x, £) satisfies a (0, Rp)-BMO condition for some 4, Ry > 0 if

[A]r, == sup ][ T(B:(y))(x)dx <4,
y€ER, 0<r<Ry J B:(y)

where

Alx,§) A
BN = sup 2008 Apn ()
¢eR"\{0} €17

with .,TlBr(y)(f) being the average of A(-,&) over the ball B,(y).
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Weighted gradient estimates for —div.A(x, Vu) = u
Muckenhoupt-Wheeden type bounds:

Theorem (P. 2014)

Let2—-1/n<p<n,0<qg<oo, and let w be an Ay, weight. Assume
that A(x, &) satisfies a (6, Ry)-BMO condition for some small 6 > 0.
Assume also that OS2 is sufficiently flat in the sense of Reifenberg. Then
for any renormalized solution u to the boundary value problem

—divA(x,Vu) = pin Q,
u = 0on 09,

we have

/Q|V”|qW(X)dX§ C/QMl(,u)PilW(x)dx.

e Here M1 is the fractional maximal function of order 1.
e The solution-gradient operator maps £ — £ and M — M, etc.
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Reifenberg flat domains

Definition

We say that Q is a (9, Rp)-Reifenberg flat domain if for every x € 9Q and
every r € (0, Ro], there exists a hyperplane L(x, r) such that

D[oQ2 N By(x), L(x,r) N B,(x)] < dr.
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Reifenberg flat domains

Definition
We say that Q is a (9, Rp)-Reifenberg flat domain if for every x € 9Q and
every r € (0, Ro], there exists a hyperplane L(x, r) such that

D[oQ2 N By(x), L(x,r) N B,(x)] < dr.

e Essentially, this says that the boundary is sufficiently flat at every
boundary point and at every scale. Locally, it is trapped between
two hyperplanes separated by a small positive distance proportional
to the scale.
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Reifenberg flat domains

Definition
We say that Q is a (9, Rp)-Reifenberg flat domain if for every x € 9Q and
every r € (0, Ro], there exists a hyperplane L(x, r) such that

D[oQ2 N By(x), L(x,r) N B,(x)] < dr.

e Essentially, this says that the boundary is sufficiently flat at every
boundary point and at every scale. Locally, it is trapped between
two hyperplanes separated by a small positive distance proportional
to the scale.

¢ Reifenberg 1960. Appears in minimal surfaces and free boundary
problems.
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Reifenberg flat domains

Definition
We say that Q is a (9, Rp)-Reifenberg flat domain if for every x € 9Q and
every r € (0, Ro], there exists a hyperplane L(x, r) such that

D[02N By (x), L(x,r) N B,(x)] < dr.

e Essentially, this says that the boundary is sufficiently flat at every
boundary point and at every scale. Locally, it is trapped between
two hyperplanes separated by a small positive distance proportional
to the scale.

¢ Reifenberg 1960. Appears in minimal surfaces and free boundary
problems.

e Examples: C! domains, Lipschitz domains with small Lipschitz
constant, or even some fractal domains.
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Reifenberg flat domains

Here is a closer look:

domain

N

Figure: A closer look at RF domain
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Gradient estimate for A,u = divF (distributional data)

A nonlinear singular operator: The p-harmonic transform.
Let f € LP(2,R"). Consider the problem

Apu = div(|VulP~2Vu) = div|f|P~2f, (7)
ue WyP(Q).

The energy estimate (take u as a test function and IBP):

/\Vu\pdxg/ 1F[P dx
Q Q

The p-harmonic transform is defined by
Hp o LP(Q,R") — LP(Q,R")

Hp(f) = Vu.
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The Harmonic transform

The case p =2 and QQ = R": By means of Fourier transform we find
Ha(f) = —[Rylf

<x—y,fly) > (x—y)
= —c(n p.v./ dy.
O f ™ ey Y

Here [Rj] is the matrix of second order Riesz transforms:

Ri(v) = Ri(Rj(¥))
= c(n)p.v. /n (xi = yi) (5~ yj)(p(y)dy.

|x — y|+2
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The Harmonic transform
The case p =2 and QQ = R": By means of Fourier transform we find
Ha(f) = —[Rylf

<x—y,fly)>(x—y)
= —c(n p.v./ dy.
e T oy Y

Here [Rj] is the matrix of second order Riesz transforms:

Ri(v) = Ri(Rj(¥))
= c(n)p.v. /n (xi = yi) (5~ yj)(p(y)dy.

[x — y|n+2

Calderén-Zygmund 1952:
[[H2(F)]| Lamny < Cq lIFl]La(mny, Vg>2—-1=1.

e However, this estimate generally fails when the operator has bad
coefficients or when the domain is bad.

N. C. Phuc (LSU) EEEE P, A 75



Bad coefficient example
Meyer’s example: The function u(x) = ﬁ solves the equation
div(A(x)Vu)=0  in R?

where

1 4X12 + x22 3x1x0

Alx) = ——
(x) 4x|2 | 3xaxe  XF+4x3

x = (x1,x2).

Vué L9(B)  Vq> 4.

Here A(x) is bounded but discontinuous at the origin!
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Bad domain example
Let T < 6p < 7 and consider the (non-convex) domain:

Qg, ={(r,0):0<r<land —fy <6 <6}

For A = 55 <1, let u(r,0) = r* cos(\0). Then Au =0 in Qp, and
u =0 when 0 = +6,. )

Near the origin, we have |Vu| = \r’ ! = Arz !

Thus for any g > 4 we can find a 6y (near 7) such that

IVu| ¢ L9(B.(0) N Qp,), > 0.
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The p-harmonic transform: Basic question

Question: Is 7, bounded on L9 for g > p— 17 Yes, when g > p. The
case p — 1 < g < p is widely open. Difficulty: No duality available!

N. C. Phuc (LSU) August 28, 2016 81 / 110



The p-harmonic transform: Basic question

Question: Is 7, bounded on L9 for g > p— 17 Yes, when g > p. The
case p — 1 < g < p is widely open. Difficulty: No duality available!

Theorem (lwaniec 1983, Kinnunen-Zhou 1999, 2001)
Let Q = R" or Q be bounded with C** boundary. Suppose that
p < q < oo. Then one has
Hp: LI(Q,R") — LI(Q2,R")
with
[Hp(O)lLe < ClIF]]Lo-
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The p-harmonic transform: Basic question

Question: Is 7, bounded on L9 for g > p— 17 Yes, when g > p. The
case p — 1 < g < p is widely open. Difficulty: No duality available!

Theorem (lwaniec 1983, Kinnunen-Zhou 1999, 2001)

Let Q = R" or Q be bounded with CY% boundary. Suppose that
p < q < oo. Then one has

M, : L9(Q,R") — L9(Q,R")

with

[ Hp(F)l]1e < CI[f]]1a-

v

e Byun 2004, Byun-Wang 2007: C! or even Reifenberg flat domains
and small BMO coefficients. Caffarelli-Peral 1998: interior bounds
by a perturbation technique.
e Mengesha-P. 2016: More general nonlinear structure.
e The linear case: Di Fazio 1996, Auscher-Qafsaoui 2002,
Byun-Wang 2004, and many others.
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The p-harmonic transform: Basic question

A result slightly below p:

Theorem (Iwaniec-Sbordone 1994)

Let Q be a bounded regular domain. There exists small € > 0 such that for
all p— e < g < p one has

M, L9(Q,R") — L9(Q,R")

[ Hp(F)l|La < CIIF]]1a-

e Conjecture (lwaniec 1983): 7, is bounded on L9 for all
p—1<qg<p.
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The p-harmonic transform: A result slightly below p

e P. 2011, 2014: OK if we assume in addition that the solution is
p-superharmonic, i.e., div [f|P~2f <0 (for Q =R" and p > 2 — 1/n).
e Adimurthi-P. 2016: Lorentz and Morrey estimates over domains
whose complement is uniformly p-thick w.r.t cap, , (a very mild
restriction on Q).
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The p-harmonic transform: A result slightly below p

e P. 2011, 2014: OK if we assume in addition that the solution is
p-superharmonic, i.e., div|f|P=2f <0 (for Q =R" and p > 2 — 1/n).
e Adimurthi-P. 2016: Lorentz and Morrey estimates over domains
whose complement is uniformly p-thick w.r.t cap, , (a very mild
restriction on Q).

Definition (Uniform p-thickness)

Let 2 C R” be a bounded domain and 1 < p < n. We say that the
complement Q¢ := R"\ Q is uniformly p-thick with constants ry, b > 0, if
the inequality

Capl,p(Br(X) nQc) > bcapr(Br(X))) — chrP

holds for any x € 9Q and r € (0, ro].
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The p-harmonic transform: Weighted version

Theorem (P. 2011, Mengesha-P. 2012, 2016, Adimurthi-P. 2016)

Suppose that Q2 is a bounded sufficiently flat domain (in the sense of
Reifenberg). Let u be a solution to

Apu = div|[f]P~2f in Q,
u = 0on 09Q.

Then one has the estimate
||VU||L‘7(Q,W) <C ||f||Lq(Q,W)a Vg > p,

provided the weight w is in the Muckenhoupt class Ag /.
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The p-harmonic transform: Weighted version

eRecall that for s > 1, the Muckenhoupt class A; consists of
nonnegative functions w € L{ (R”") such that

o (3 o) (3 o)< o

Note that A, C A for r < s. The function w(x) = |x|? € A iff
—n<a<n(s—1).
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The p-harmonic transform: Weighted version

eRecall that for s > 1, the Muckenhoupt class A; consists of
nonnegative functions w € L{ (R”") such that

o (3 o) (3 o)< o

Note that A, C A for r < s. The function w(x) = |x|? € A iff
—n<a<n(s—1).

e This estimate gives a nonlinear version of weighted norm
inequalities for singular integrals: Hunt-Muckenhoupt-Wheeden
1973 (1D), Coifman-Fefferman 1974.
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The p-harmonic transform: Weighted version

eRecall that for s > 1, the Muckenhoupt class A; consists of
nonnegative functions w € L{ (R”") such that

o (3 o) (3 o)< o

Note that A, C A for r < s. The function w(x) = |x|? € A iff
—n<a<n(s—1).

e This estimate gives a nonlinear version of weighted norm
inequalities for singular integrals: Hunt-Muckenhoupt-Wheeden
1973 (1D), Coifman-Fefferman 1974.

e They imply estimates in Maz'ya and Morrey spaces, etc.
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The p-harmonic transform: Weighted version

e The sharp result should be an estimate for A;/,_;) weights. Note
that A;/, C Ag/(p—1)- But from the point of view of extrapolation
theory, such a result would imply lwaniec’s conjecture.
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The p-harmonic transform: Weighted version

e The sharp result should be an estimate for A;/,_;) weights. Note
that A;/, C Ag/(p—1)- But from the point of view of extrapolation
theory, such a result would imply lwaniec’s conjecture.

e For the linear equation

divA(x)Vu = divf in Q,
u = 0on 09,

where A has small BMO seminorm, one can take w € A, instead of
Aq/2 (Adimurthi-Mengesha-P. 2016, Bulicek-Diening-Schwarzacher
2016, Dong-Kim 2016).

N. C. Phuc (LSU) EEEE P, i 63 )



Some features in the theory
e Some sort of “interpolation” between WP (energy) estimate and

Wt (or C1*) estimate using the H-L maximal function (or the
F-S sharp maximal function).
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Some features in the theory

e Some sort of “interpolation” between W!” (energy) estimate and
Wt (or C1*) estimate using the H-L maximal function (or the
F-S sharp maximal function).

e Making use of the following WP (energy) comparison estimate:
With v € Wlil)’Cp(Q) being a solution of A,u = div [f|P~2f, let

w € u+ W, P(Bg) with A,w = 0 in Bg where Bg € Q. Then

][ [Vu—-Vw|Pdx < C |f|P dx
Br

Br
if p>2 and
-1 2—
][ Vu— Vw|Pdx < C (][ li dx)p (][ IVulP dx) 8
BR BR BR
ifl<p<2
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Some features in the theory

e For the end-point case g = p, we need the following W1P—?
comparison estimate: With v and w as above, then for any
sufficiently small § > 0 we have

-3
][ |Vu—Vw[Pdx < C ][ |F|P=9 dx + caii—lf IV ulP~0 dx
BR BR BR

if p > 2 and

][ |Vu—Vw|PPdx < C (][ |f|P—° dx)p <][ IVulP~? dx> g
BR BR BR

- C5P5][ |V ulP~0 dx
Br
if l<p<2.

e Adimurthi-P. 2015 by Hodge decomposition (lwaniec) or Lipschitz
truncation method (Lewis).
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Some features in the theory

e The theory works for all p > 1.

e A control by the H-L maximal function: for ¢ > 0 and w € A, we
have

-

/]Vu]quX<C/ (If17) 5 ? wax.

e For g = p one needs to lower the power p to p — ¢ (Adimurthi-P.
2016).
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Quasilinear Riccati type equations: measure data

Using the gradient pointwise bound of Duzaar-Mingione-Kuusi, one
has

Theorem
(i) Let g > p — 1 and suppose that suppu € Q, > 0. Then

—Apu=|Vul?+ pin Q,
{ U= 0 on o0 =>u(K)<CCap17qpl(K).

(i) Conversely, let g >p—1,p>2—1/n. If0Q € C1“ and if i is a
finite signed measure such that

lu|(K) < C Cap; q+1(K) with a small C > 0,
> q—p

then the above equation has a solution.
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Quasilinear Riccati type equations: measure data

e An equivalent condition: I2R[12R(|u[)7°1] < C I2R|y| a.e., where
R = diam(Q).
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Quasilinear Riccati type equations: measure data

e An equivalent condition: 12R[12R(|u[)7"1] < C I2R|y| a.e., where
R = diam(Q).

e The proof of the existence result is based on an application of
Schauder Fixed Point Theorem on the set

1
Sy = {u e W Q) : [Vu| < M (12R|))5 e.}

1
for some M > 0. In the case p > 2, one can also replace (137||)»—T
with Wl/pp\,u\
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Removable singularities for —A,u = |Vul|?

Theorem

Let K C 2 be a compact set and let g > p—1, p>2—1/n. Then the
condition

Capl q (K):O

> q—p+1

is necessary and sufficient so that any solution u to the problem

ue WEIQ\ K),

—Apu=1|Vul? inD(Q\K), (8)
u is p-superharmonic in €,

is also a solution to a similar problem with Q in place of Q \ K.
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Equations with signed distributional data

Observation: The last existence result is sharp when p > 0 but it is
not for sign changing (oscillatory) data.

Example: Suppose that 1 < p <nand g> p and let s = q_%gﬂ.
Then 0 < s < n. Fix € > 0 such that ¢ + s < n and define
o(x) = |x|~*sin(|x| ™).

Then ot (hence o) does not belong to the space M *(B;(0)).
Thus the theorem could not be applied to the equation

—Apu = |VulT"+ o in B1(0),
u = 0 on 9B1(0),

for any real number )\ # 0.

N. C. Phuc (LSU) EEEE P, | G



The case g > p with Morrey oscillatory data

Theorem (Mengesha-P. 2016)

Let g > p > 1 and assume that 0N is sufficiently flat. Let o = divf. Then
there exists a constant ¢y = co(n, p, q,2) such that if

Il au+e aurg < co, (9)
L P—1 a—p+tI(Q)
then the Riccati type equation

—Apu = |Vul40 inQ,
u = 0 ondQ2

(1+€)
admits a solution u € WX 94(Q) with |Vu| € £I0) 5011 (Q).
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The case g > p with Morrey oscillatory data

n(g—p+1)
e Condition (9) holds if [f| € L 51> with small norm.

e Let’s go back to the example o(x) = x| *sin(|x|™¢). It is not
hard to show that one can write

n(q—p+1)
o(x) = divf(x) where |f| € L T 10

Thus the last theorem is applicable to this datum.
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The case g > p with Morrey oscillatory data

q(1+e) q(l+e) . 9 1._4
e In the case g = p, one can replace £ 71 >a—r+1 with Mpr—1""g-p+1

(Adimurthi-P., in preparation). This case was also studied by many
authors Jaye-Maz’ya-Verbitsky 2012, 2013, Ferone-Murat 2000,
2014, etc. This case has a connection to the Schrodinger type
equation —A,v = ovP~l v > 0.
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The case g > p with Morrey oscillatory data

q(1+e) q(l+e) . 9 1._4
e In the case g = p, one can replace £ 71 >a—r+1 with Mpr—1""g-p+1

(Adimurthi-P., in preparation). This case was also studied by many
authors Jaye-Maz’ya-Verbitsky 2012, 2013, Ferone-Murat 2000,
2014, etc. This case has a connection to the Schrodinger type
equation —A,v = ovP~l v > 0.

e In the linear case p = 2, the existence result holds for all g > 1.

q(1+e)
Moreover, the Morrey space £9+)7ET can be replaced by the

Maz’ya space MaLd (Adimurthi-Mengesha-P., in preparation).
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The case g > p with Morrey oscillatory data

q(1+e) q(l+e) . 9 1._4
e In the case g = p, one can replace £ 71 >a—r+1 with Mpr—1""g-p+1

(Adimurthi-P., in preparation). This case was also studied by many
authors Jaye-Maz’ya-Verbitsky 2012, 2013, Ferone-Murat 2000,
2014, etc. This case has a connection to the Schrodinger type
equation —A,v = ovP~l v > 0.

e In the linear case p = 2, the existence result holds for all g > 1.

q(1+e)
Moreover, the Morrey space £90+) T can be replaced by the

Maz’ya space MaLd (Adimurthi-Mengesha-P., in preparation).

. 11,9 . 9 q_4a
e Comparison to measure data: M7 a=r1 C div(Mpr—1"a=p1),
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A necessary condition

Theorem

Let p>1, g > p— 1. Suppose that o is a distribution in a bounded
domain €2 such that the Riccati type equation

—Apu=|Vulf+0o inD'(Q)

admits a solution u € WY 9(Q) with |Vu| € Mq’l’q—Z“(Q). Then there
exists a vector field f on Q such that

o=divf and \f]e_/\/lp%vl’ﬁ(g).

- . 1,—9 .
e A similar result also holds if we replace M a=r1 with

£q(1+6)7 3(,1;::)[ .
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Some open problems

¢ Pointwise gradient estimate for —A,u = p in the singular case
l<p<2-1/n.
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Some open problems

¢ Pointwise gradient estimate for —A,u = p in the singular case
l<p<2-1/n.

e Estimate on the size of the singular sets of —A,u = u9 and
Fx[—u] = u9. Conjecture: capy, g (5( )) = 0 for the first equation

and cap, ﬁ( (u)) = 0 for the second equation. Pacard 1992,
7q7
1993, and Adams 2012 considered the case p =2 (or k = 1).
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Some open problems

¢ Pointwise gradient estimate for —A,u = p in the singular case
l<p<2-1/n.

e Estimate on the size of the singular sets of —A,u = u9 and

Fx[—u] = u9. Conjecture: capy, g (5( )) = 0 for the first equation
and capzkjﬂ( (u)) = 0 for the second equation. Pacard 1992,
1993, and Adams 2012 considered the case p =2 (or k = 1).

e W19 estimate for —A,u = div |f|P~?f when p— 1< qg<p
(Iwaniec’s conjecture), or WP weighted estimate for A, weights.
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Some open problems

¢ Pointwise gradient estimate for —A,u = p in the singular case
l<p<2-1/n.

e Estimate on the size of the singular sets of —A,u = u9 and
Fx[—u] = u9. Conjecture: capy, g (5( )) = 0 for the first equation

and cap, ﬁ( (u)) = 0 for the second equation. Pacard 1992,
7q7
1993, and Adams 2012 considered the case p =2 (or k = 1).

e W19 estimate for —A,u = div |f|P~?f when p— 1< qg<p
(Iwaniec’s conjecture), or WP weighted estimate for A, weights.

e Existence results for —A,u = |Vu|9 + divf in the case g > p—1
and |f| € MP%I’l’q*ZH. This is known in the case p =2 or g = p.
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Stationary Navier-Stokes equations
First, the Cauchy problem for non-stationary N-S equations:
ur+(u-Vu+Vp=Au, divu=0, u(x,0)= up(x).

u=u(x,t) = (u1, uz,...u,).

Time-global existence with small initial data:
o T. Kato: ug € L".
@ T. Kato, Cannone, Federbush, Y. Meyer, M. Taylor:

ug € L™, up € LPP 1< p<n.

o Koch-Tataru: ug € BMO~L.

o Bourgain-Pavlovi¢: lll-posedness in B3!,.
@ Yoneda 2010: lll-posedness in a space smaller than BO_o?q for
any g > 2.
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Stationary Navier-Stokes equations
For1<p<oo,0<A<n,

1
1#llgor = sup <RA-" / |f|de)" .
Bg B

1 R? :
BMO-1 — =N .
If] sup | / / e f ()| dtdy
Br | R| Br J0O

s

1

fllg-1 =supt2 .

£l = sup -
One has the continuous emdeddings: 1 < p <n

L"C LM c PP Cc BMO™' C B ...

Critical spaces:

Iflle = [IAF(A)lle,  vA>0.
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Stationary Navier-Stokes equations

Stationary Navier-Stokes:
-AU+U-VU+VP =F, divU = 0.

U= (U, Us,...,Uy), F=(F,F...,Fn).

It is invariant under the scaling
(U, P,F) = (Ux, Py, Fy),
where

Uy = AUN),  Py=XP(\), Fy=XF(\) VYA>0.
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Stationary Navier-Stokes equations

Integral form:
U=A"'PV. (U U) - A'PF, (10)

where P := |d — VA~V is the Laray projection onto the
divergence-free vector fields.
A simple observation:

IATIV - Al < CILA].
Thus equation (10) can be treated similarly to the integral equation

u=ly(v?)+f.
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The role of £%?2

L£%? is the largest Banach space E C L2

translation and that |[AU(X)||g = ||U]|g.
Thus one is tempted to look for solutions in £%2 under the
smallness condition

(R™) that is invariant under

I(=2)7 | 22 < e

However, it seems impossible to prove such existence results under
this condition as for U € £%? the matrix U ® U would belong to
£2, but unfortunately the first order Riesz potentials of functions
in £1:2 may not even belong to L} (R").

e Kozono-Yamazaki 1995: Existence in the space £27¢27¢, ¢ > 0.
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The space V*2

We define

V2AR") = {u € Le(R") : [[ullye2gan < +00},
where .
fK wldx |2
u m = sup | —"———
lullvz. 2y Koo [Cap1,2(K)
That is, V22(R") = M?12(R").
Embeddings:

L2re2te c Y22 c 22 Ve > 0.
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Main result

Theorem (Phan-P., 2013)

There exists a sufficiently small number 69 > 0 such that if
[(=A)71F||,,2 < b0, then the equation (10) has unique solution U
satisfying

||U||V2>2 <C H(_A)_IFHVZT
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Stationary Navier-Stokes equations

Bilinear estimates: Let
B(U,V)=A"'PV - (U V).

One has
B:V2,2xv2,2_)v2,2

with
[1B(U, V)[ly2.2 < C||U[[y2.2 [[V][y2.2 -
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Stability results

Let U € V%2 be the solution of (10) with external force F satisfying
[(=A) 7 F[ .2 < bo.
Consider the Cauchy problem

Otu+u-Vu+Vp=Au+F, inR"x][0,00),
V-u=0, in R” x [0, 00), (11)
U(O) = up, in Rn,

where uy € V%2 with divug = 0.
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Stability results

Let U € V%2 be the solution of (10) with external force F satisfying
[(=A) 7 F[ .2 < bo.
Consider the Cauchy problem

Otu+u-Vu+Vp=~Au+F, inR" x[0,00),
V-u=0, in R” x [0, 00), (11)
u(0) = wp, in R",

where vy € V*2 with divug = 0.
Goal: To show that for uy near U there exists a unique time-global

solution u(t) of (11) such that as time t — co we have u(t) — U in
some sense.
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Stability results

Theorem (Phan-P., 2013)

Let oo € (1/2,1). There exists a number 0 < 01 < dq such that for
[[(=A)"LF||\2.2 < d1, the following results hold:

There is a positive number ey > 0 such that for every ug satisfying

[|uo — Ul||y2,2 < €o, there exists uniquely a time-global solution u(x,t) of
(11) with the initial condition being understood as

sup t*/2||(=2)Z [u(-, t) — wo]lly2 < Clluo — Ully2.2
t>0

for all o € [—1,0]. Moreover, for every o € [0, 09|, the solution u enjoys
the time-decay estimate

I(=2)[u(-, £) = Ulllya2 < Ct7 [Jup — Ully2.2. (12) |
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Stability results

Remarks:

@ When o = 0, the estimate (12) provides the Lyapunov stability
of the stationary solution U. Moreover, it also implies that the
solution v remains in V%2 at all time.

@ When o € (0, 0¢], we have the asymptotic stability
lim [[(=A)2[u(:, t) = U|ly22 = 0.

t——+o0o

o Kozono-Yamazaki 1995: Stability in smaller Morrey spaces.
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