Pointwise convergence to initial data

Keith Rogers

INSTITUTO DE CIENCIAS MATEMÁTICAS

August 28, 2016

Summary

```
* Part 1: Set-up and introduction to the PDEs.
- Part 2: Convergence for the heat equation.
```


Summary

- Part 1: Set-up and introduction to the PDEs.
- Part 2: Convergence for the heat equation.
- Part 3: Convergence for the Schrödinger equation.

Summary

- Part 1: Set-up and introduction to the PDEs.
- Part 2: Convergence for the heat equation.

- Part 3: Convergence for the Schrödinger equation.

 - Part 4: Counterexample for the Schrödinger equation.
Summary

- Part 1: Set-up and introduction to the PDEs.
- Part 2: Convergence for the heat equation.
- Part 3: Convergence for the Schrödinger equation.
- Part 4: Counterexample for the Schrödinger equation.
- Part 5: Decay of the Fourier transform of fractal measures.

Summary

- Part 1: Set-up and introduction to the PDEs.
- Part 2: Convergence for the heat equation.
- Part 3: Convergence for the Schrödinger equation.
- Part 4: Counterexample for the Schrödinger equation.
- Part 5: Decay of the Fourier transform of fractal measures.
- Part 6: Convergence for the wave equation.

Summary

- Part 1: Set-up and introduction to the PDEs.
- Part 2: Convergence for the heat equation.
- Part 3: Convergence for the Schrödinger equation.
- Part 4: Counterexample for the Schrödinger equation.
- Part 5: Decay of the Fourier transform of fractal measures.
- Part 6: Convergence for the wave equation.

Summary

- Part 1: Set-up and introduction to the PDEs.
- Part 2: Convergence for the heat equation.
- Part 3: Convergence for the Schrödinger equation.
- Part 4: Counterexample for the Schrödinger equation.
- Part 5: Decay of the Fourier transform of fractal measures.
- Part 6: Convergence for the wave equation.

Part 1:

Set-up and introduction to the PDEs

The heat equation

Taking the Fourier transform of the equation we obtain

$$
\left\{\begin{aligned}
\partial_{t} \hat{u}(\xi) & =-|\xi|^{2} \hat{u}(\xi) \\
\widehat{u}(\xi) & =\widehat{u}_{0}(\xi)
\end{aligned}\right.
$$

The heat equation

$$
\left\{\begin{array}{rlrl}
\partial_{t} u & =\Delta u & & \text { in } \\
& & \mathbb{R}^{n} \times[0, \infty) \\
u & =u_{0} & & \text { in }
\end{array} \quad \begin{array}{l}
\mathbb{R}^{n} \times\{0\} .
\end{array}\right.
$$

Taking the Fourier transform of the equation we obtain

Solving the ODE this yields

The heat equation

$$
\left\{\begin{array}{rlrl}
\partial_{t} u & =\Delta u & & \text { in } \\
& & \mathbb{R}^{n} \times[0, \infty) \\
u & =u_{0} & & \text { in }
\end{array} \quad \begin{array}{l}
\mathbb{R}^{n} \times\{0\} .
\end{array}\right.
$$

Taking the Fourier transform of the equation we obtain

$$
\left\{\begin{array}{rlrl}
\partial_{t} \widehat{u}(\xi) & =-|\xi|^{2} \widehat{u}(\xi) \\
\widehat{u}(\xi) & = & \widehat{u}_{0}(\xi) .
\end{array}\right.
$$

The heat equation

$$
\left\{ \quad \begin{array}{l}
\mathbb{R}^{n} \times\{0\} .
\end{array}\right.
$$

Taking the Fourier transform of the equation we obtain

$$
\left\{\begin{aligned}
\partial_{t} \widehat{u}(\xi) & =-|\xi|^{2} \widehat{u}(\xi) \\
\widehat{u}(\xi) & =\widehat{u}_{0}(\xi) .
\end{aligned}\right.
$$

Solving the ODE this yields

$$
\widehat{u}(\xi)=e^{-t|\xi|^{2}} \widehat{u}_{0}(\xi)
$$

The heat equation

$$
\left\{\begin{array}{rlrl}
\partial_{t} u & =\Delta u & \text { in } & \\
\mathbb{R}^{n} \times[0, \infty) \\
u & =u_{0} & \text { in } & \mathbb{R}^{n} \times\{0\} .
\end{array}\right.
$$

Taking the Fourier transform of the equation we obtain

$$
\left\{\begin{aligned}
\partial_{t} \widehat{u}(\xi) & =-|\xi|^{2} \widehat{u}(\xi) \\
\widehat{u}(\xi) & =\widehat{u}_{0}(\xi) .
\end{aligned}\right.
$$

Solving the ODE this yields

$$
\widehat{u}(\xi)=e^{-t|\xi|^{2}} \widehat{u}_{0}(\xi)
$$

Inverting the Fourier transform, we write

$$
u(x, t)=e^{t \Delta} u_{0}(x):=\frac{1}{(2 \pi)^{n / 2}} \int_{\mathbb{R}^{n}} e^{i x \cdot \xi} e^{-t|\xi|^{2}} \widehat{u}_{0}(\xi) d \xi
$$

The Schrödinger equation

Taking the Fourier transform of the equation we obtain

The Schrödinger equation

$$
\left\{\begin{array}{rlrl}
\partial_{t} u & =i \Delta u & & \text { in } \\
& & \mathbb{R}^{n} \times \mathbb{R} \\
u & =u_{0} & & \text { in }
\end{array} \quad \begin{array}{l}
\mathbb{R}^{n} \times\{0\} .
\end{array}\right.
$$

Taking the Fourier transform of the equation we obtain

Solving the ODE this yields

The Schrödinger equation

$$
\left\{\begin{aligned}
\partial_{t} u & =i \Delta u & & \text { in } & & \mathbb{R}^{n} \times \mathbb{R} \\
u & =u_{0} & & \text { in } & & \mathbb{R}^{n} \times\{0\}
\end{aligned}\right.
$$

Taking the Fourier transform of the equation we obtain

$$
\left\{\begin{array}{rlr}
\partial_{t} \widehat{u}(\xi) & = & -i|\xi|^{2} \widehat{u}(\xi) \\
\widehat{u}(\xi) & = & \widehat{u}_{0}(\xi) .
\end{array}\right.
$$

Inverting the Fourier transform, we write

The Schrödinger equation

$$
\left\{\begin{aligned}
\partial_{t} u & =i \Delta u & & \text { in } & & \mathbb{R}^{n} \times \mathbb{R} \\
u & =u_{0} & & \text { in } & & \mathbb{R}^{n} \times\{0\}
\end{aligned}\right.
$$

Taking the Fourier transform of the equation we obtain

$$
\left\{\begin{aligned}
\partial_{t} \widehat{u}(\xi) & = & -i|\xi|^{2} \widehat{u}(\xi) \\
\widehat{u}(\xi) & = & \widehat{u}_{0}(\xi) .
\end{aligned}\right.
$$

Solving the ODE this yields

$$
\widehat{u}(\xi)=e^{-i t|\xi|^{2}} \widehat{u}_{0}(\xi)
$$

The Schrödinger equation

$$
\left\{\begin{aligned}
\partial_{t} u & =i \Delta u & & \text { in } & & \mathbb{R}^{n} \times \mathbb{R} \\
u & =u_{0} & & \text { in } & & \mathbb{R}^{n} \times\{0\}
\end{aligned}\right.
$$

Taking the Fourier transform of the equation we obtain

$$
\left\{\begin{aligned}
\partial_{t} \widehat{u}(\xi) & = & -i|\xi|^{2} \widehat{u}(\xi) \\
\widehat{u}(\xi) & = & \widehat{u}_{0}(\xi)
\end{aligned}\right.
$$

Solving the ODE this yields

$$
\widehat{u}(\xi)=e^{-i t|\xi|^{2}} \widehat{u}_{0}(\xi)
$$

Inverting the Fourier transform, we write

$$
u(x, t)=e^{i t \Delta} u_{0}(x):=\frac{1}{(2 \pi)^{n / 2}} \int_{\mathbb{R}^{n}} e^{i x \cdot \xi} e^{-i t|\xi|^{2}} \widehat{u}_{0}(\xi) d \xi
$$

The wave equation

Taking the Fourier transform of the equation we obtain

$$
\left\{\begin{aligned}
\partial_{t t} \hat{u}(\xi) & =-\xi^{2} u(\xi) \\
\tilde{u}(\xi) & =\widehat{u}_{0}(\xi) \\
\partial_{t} \hat{u}(\xi) & =\hat{u}_{1}(\xi)
\end{aligned}\right.
$$

The wave equation

$$
\left\{\begin{array}{rlrl}
\partial_{t t} u & =\Delta u & & \text { in } \\
u & & \mathbb{R}^{n} \times \mathbb{R}_{0} \\
u & & \text { in } & \\
\mathbb{R}^{n} \times\{0\} \\
\partial_{t} u & =u_{1} & & \text { in }
\end{array}\right.
$$

The wave equation

$$
\left\{\begin{array}{rlrlr}
\partial_{t t} u & =\Delta u & & \text { in } & \\
\mathbb{R}^{n} \times \mathbb{R} \\
u & =u_{0} & & \text { in } & \\
\mathbb{R}^{n} \times\{0\} \\
\partial_{t} u & =u_{1} & & \text { in } & \\
\mathbb{R}^{n} \times\{0\}
\end{array}\right.
$$

Taking the Fourier transform of the equation we obtain

$$
\left\{\begin{array}{rlr}
\partial_{t t} \widehat{u}(\xi) & = & -|\xi|^{2} \widehat{u}(\xi) \\
\widehat{u}(\xi) & = & \widehat{u}_{0}(\xi) \\
\partial_{t} \widehat{u}(\xi) & = & \widehat{u}_{1}(\xi) .
\end{array}\right.
$$

The wave equation

$$
\left\{\begin{aligned}
\partial_{t t} u & =\Delta u & & \text { in } & & \mathbb{R}^{n} \times \mathbb{R} \\
u & =u_{0} & & \text { in } & & \mathbb{R}^{n} \times\{0\} \\
\partial_{t} u & =u_{1} & & \text { in } & & \mathbb{R}^{n} \times\{0\} .
\end{aligned}\right.
$$

Taking the Fourier transform of the equation we obtain

$$
\left\{\begin{array}{rlr}
\partial_{t t} \widehat{u}(\xi) & = & -|\xi|^{2} \widehat{u}(\xi) \\
\widehat{u}(\xi) & =\widehat{u}_{0}(\xi) \\
\partial_{t} \widehat{u}(\xi) & =\widehat{u}_{1}(\xi) .
\end{array}\right.
$$

Solving the ODE this yields

$$
\widehat{u}(\xi)=\cos (t|\xi|) \widehat{u}_{0}(\xi)+\frac{\sin (t|\xi| \mid}{|\xi|} \widehat{u}_{1}(\xi) .
$$

Inverting the Fourier transform, we write

The wave equation

$$
\left\{\begin{array}{rlrl}
\partial_{t t} u & =\Delta u & & \text { in } \\
& & \mathbb{R}^{n} \times \mathbb{R} \\
u & =u_{0} & & \text { in } \\
\mathbb{R}^{n} \times\{0\} \\
\partial_{t} u & =u_{1} & & \text { in } \\
& \mathbb{R}^{n} \times\{0\}
\end{array}\right.
$$

Taking the Fourier transform of the equation we obtain

$$
\left\{\begin{array}{rlr}
\partial_{t t} \widehat{u}(\xi) & = & -|\xi|^{2} \widehat{u}(\xi) \\
\widehat{u}(\xi) & =\widehat{u}_{0}(\xi) \\
\partial_{t} \widehat{u}(\xi) & =\widehat{u}_{1}(\xi) .
\end{array}\right.
$$

Solving the ODE this yields

$$
\widehat{u}(\xi)=\cos (t|\xi|) \widehat{u}_{0}(\xi)+\frac{\sin (t|\xi|)}{|\xi|} \widehat{u}_{1}(\xi) .
$$

Inverting the Fourier transform, we write

$$
u(\cdot, t)=\cos (t \sqrt{-\Delta}) u_{0}+\frac{\sin (t \sqrt{-\Delta})}{\sqrt{-\Delta}} u_{1} .
$$

The initial data

We take the initial data u_{0} in the Bessel potential space

$$
\begin{aligned}
H^{s}\left(\mathbb{R}^{n}\right) & :=(1-\Delta)^{-s / 2} L^{2}\left(\mathbb{R}^{n}\right) \\
& :=\left\{f: \widehat{f}=\left(1+|\cdot|^{2}\right)^{-s / 2} \widehat{g}, \quad \widehat{g} \in L^{2}\left(\mathbb{R}^{n}\right)\right\}
\end{aligned}
$$

The initial data

We take the initial data u_{0} in the Bessel potential space

$$
H^{s}\left(\mathbb{R}^{n}\right):=(1-\Delta)^{-s / 2} L^{2}\left(\mathbb{R}^{n}\right)
$$

The initial data

We take the initial data u_{0} in the Bessel potential space

$$
\begin{aligned}
H^{s}\left(\mathbb{R}^{n}\right) & :=(1-\Delta)^{-s / 2} L^{2}\left(\mathbb{R}^{n}\right) \\
& :=\left\{f: \widehat{f}=\left(1+|\cdot|^{2}\right)^{-s / 2} \widehat{g}, \quad \widehat{g} \in L^{2}\left(\mathbb{R}^{n}\right)\right\}
\end{aligned}
$$

or in the Riesz potential space

The initial data

We take the initial data u_{0} in the Bessel potential space

$$
\begin{aligned}
H^{s}\left(\mathbb{R}^{n}\right) & :=(1-\Delta)^{-s / 2} L^{2}\left(\mathbb{R}^{n}\right) \\
& :=\left\{f: \widehat{f}=\left(1+|\cdot|^{2}\right)^{-s / 2} \widehat{g}, \quad \widehat{g} \in L^{2}\left(\mathbb{R}^{n}\right)\right\}
\end{aligned}
$$

with norm

$$
\|f\|_{H^{s}}=\left(\int_{\mathbb{R}^{n}}\left(1+|\xi|^{2}\right)^{s}|\widehat{f}(\xi)|^{2} d \xi\right)^{1 / 2}=\|g\|_{L^{2}\left(\mathbb{R}^{n}\right)}
$$

or in the Riesz potential space

$$
\dot{H}^{s}\left(\mathbb{R}^{n}\right):=(-\Delta)^{-s / 2} L^{2}\left(\mathbb{R}^{n}\right)
$$

The initial data

We take the initial data u_{0} in the Bessel potential space

$$
\begin{aligned}
H^{s}\left(\mathbb{R}^{n}\right) & :=(1-\Delta)^{-s / 2} L^{2}\left(\mathbb{R}^{n}\right) \\
& :=\left\{f: \widehat{f}=\left(1+|\cdot|^{2}\right)^{-s / 2} \widehat{g}, \quad \widehat{g} \in L^{2}\left(\mathbb{R}^{n}\right)\right\}
\end{aligned}
$$

with norm

$$
\|f\|_{H^{s}}=\left(\int_{\mathbb{R}^{n}}\left(1+|\xi|^{2}\right)^{s}|\widehat{f}(\xi)|^{2} d \xi\right)^{1 / 2}=\|g\|_{L^{2}\left(\mathbb{R}^{n}\right)}
$$

or in the Riesz potential space

$$
\begin{aligned}
\dot{H}^{s}\left(\mathbb{R}^{n}\right) & :=(-\Delta)^{-s / 2} L^{2}\left(\mathbb{R}^{n}\right) \\
& :=\left\{f: \widehat{f}=|\cdot|^{-s} \widehat{g}, \quad \widehat{g} \in L^{2}\left(\mathbb{R}^{n}\right)\right\},
\end{aligned}
$$

The initial data

We take the initial data u_{0} in the Bessel potential space

$$
\begin{aligned}
H^{s}\left(\mathbb{R}^{n}\right) & :=(1-\Delta)^{-s / 2} L^{2}\left(\mathbb{R}^{n}\right) \\
& :=\left\{f: \widehat{f}=\left(1+|\cdot|^{2}\right)^{-s / 2} \widehat{g}, \quad \widehat{g} \in L^{2}\left(\mathbb{R}^{n}\right)\right\}
\end{aligned}
$$

with norm

$$
\|f\|_{H^{s}}=\left(\int_{\mathbb{R}^{n}}\left(1+|\xi|^{2}\right)^{s}|\widehat{f}(\xi)|^{2} d \xi\right)^{1 / 2}=\|g\|_{L^{2}\left(\mathbb{R}^{n}\right)}
$$

or in the Riesz potential space

$$
\begin{aligned}
\dot{H}^{s}\left(\mathbb{R}^{n}\right) & :=(-\Delta)^{-s / 2} L^{2}\left(\mathbb{R}^{n}\right) \\
& :=\left\{f: \widehat{f}=|\cdot|^{-s} \widehat{g}, \quad \widehat{g} \in L^{2}\left(\mathbb{R}^{n}\right)\right\},
\end{aligned}
$$

with norm

$$
\|f\|_{\dot{H}^{s}}=\left(\int_{\mathbb{R}^{n}}|\xi|^{2 s}|\widehat{f}(\xi)|^{2} d \xi\right)^{1 / 2}=\|g\|_{L^{2}\left(\mathbb{R}^{n}\right)}
$$

Lemma (Pointwise convergence for smooth data)
Let u solve the heat or Schrödinger equation with $u_{0} \in H^{s}\left(\mathbb{R}^{n}\right)$ with $n / 2<s<n / 2+2$. Then

Lemma (Pointwise convergence for smooth data)
Let u solve the heat or Schrödinger equation with $u_{0} \in \dot{H}^{s}\left(\mathbb{R}^{n}\right)$ with $n / 2<s<n / 2+2$. Then

$$
\lim _{t \rightarrow 0} u(x, t)=u_{0}(x) \quad \text { for all } x \in \mathbb{R}^{n} .
$$

Lemma (Pointwise convergence for smooth data)
Let u solve the heat or Schrödinger equation with $u_{0} \in \dot{H}^{s}\left(\mathbb{R}^{n}\right)$ with $n / 2<s<n / 2+2$. Then

$$
\lim _{t \rightarrow 0} u(x, t)=u_{0}(x) \quad \text { for all } x \in \mathbb{R}^{n}
$$

Proof: $\widehat{u}_{0}=|\cdot|^{-s} \widehat{g}$ with $g \in L^{2}$

Lemma (Pointwise convergence for smooth data)
Let u solve the heat or Schrödinger equation with $u_{0} \in \dot{H}^{s}\left(\mathbb{R}^{n}\right)$ with $n / 2<s<n / 2+2$. Then

$$
\lim _{t \rightarrow 0} u(x, t)=u_{0}(x) \quad \text { for all } x \in \mathbb{R}^{n}
$$

Proof: $\widehat{u}_{0}=|\cdot|^{-s} \widehat{g}$ with $g \in L^{2}$
$(2 \pi)^{n / 2}\left|e^{t \Delta} u_{0}(x)-u_{0}(x)\right|=\left|\int \frac{\widehat{g}(\xi) e^{i x \cdot \xi}\left(e^{-t|\xi|^{2}}-1\right)}{|\xi|^{s}} d \xi\right|$

Lemma (Pointwise convergence for smooth data)
Let u solve the heat or Schrödinger equation with $u_{0} \in \dot{H}^{s}\left(\mathbb{R}^{n}\right)$ with $n / 2<s<n / 2+2$. Then

$$
\lim _{t \rightarrow 0} u(x, t)=u_{0}(x) \quad \text { for all } x \in \mathbb{R}^{n} .
$$

Proof: $\widehat{u}_{0}=|\cdot|^{-s} \widehat{g}$ with $g \in L^{2}$

$$
\begin{aligned}
(2 \pi)^{n / 2}\left|e^{t \Delta} u_{0}(x)-u_{0}(x)\right| & =\left|\int \frac{\widehat{g}(\xi) e^{i x \cdot \xi}\left(e^{-t|\xi|^{2}}-1\right)}{|\xi|^{s}} d \xi\right| \\
& \leq\|\widehat{g}\|_{2}\left(\int \frac{\left|e^{-t|\xi|^{2}}-1\right|^{2}}{|\xi|^{2 s}} d \xi\right)^{1 / 2}
\end{aligned}
$$

Lemma (Pointwise convergence for smooth data)
Let u solve the heat or Schrödinger equation with $u_{0} \in \dot{H}^{s}\left(\mathbb{R}^{n}\right)$ with $n / 2<s<n / 2+2$. Then

$$
\lim _{t \rightarrow 0} u(x, t)=u_{0}(x) \quad \text { for all } x \in \mathbb{R}^{n}
$$

Proof: $\widehat{u}_{0}=|\cdot|^{-s} \widehat{g}$ with $g \in L^{2}$

$$
\begin{aligned}
(2 \pi)^{n / 2}\left|e^{t \Delta} u_{0}(x)-u_{0}(x)\right| & =\left|\int \frac{\widehat{g}(\xi) e^{i x \cdot \xi}\left(e^{-t|\xi|^{2}}-1\right)}{|\xi|^{s}} d \xi\right| \\
& \leq\|\widehat{g}\|_{2}\left(\int \frac{\left|e^{-t|\xi|^{2}}-1\right|^{2}}{|\xi|^{2 s}} d \xi\right)^{1 / 2} \\
& =t^{s / 2-n / 4}\|g\|_{2}\left(\int \frac{\left|e^{-|y|^{2}}-1\right|^{2}}{|y|^{2 s}} d y\right)^{1 / 2}
\end{aligned}
$$

Lemma (Pointwise convergence for smooth data)
Let u solve the heat or Schrödinger equation with $u_{0} \in \dot{H}^{s}\left(\mathbb{R}^{n}\right)$ with $n / 2<s<n / 2+2$. Then

$$
\lim _{t \rightarrow 0} u(x, t)=u_{0}(x) \quad \text { for all } x \in \mathbb{R}^{n}
$$

Proof: $\widehat{u}_{0}=|\cdot|^{-s} \widehat{g}$ with $g \in L^{2}$

$$
\begin{aligned}
(2 \pi)^{n / 2}\left|e^{t \Delta} u_{0}(x)-u_{0}(x)\right| & =\left|\int \frac{\hat{g}(\xi) e^{i x \cdot \xi}\left(e^{-t|\xi|^{2}}-1\right)}{|\xi|^{s}} d \xi\right| \\
& \leq\|\widehat{g}\|_{2}\left(\int \frac{\left|e^{-t|\xi|^{2}}-1\right|^{2}}{|\xi|^{2 s}} d \xi\right)^{1 / 2} \\
& =t^{s / 2-n / 4}\|g\|_{2}\left(\int \frac{\left|e^{-|y|^{2}}-1\right|^{2}}{|y|^{2 s}} d y\right)^{1 / 2} \\
& =t^{s / 2-n / 4}\|f\|_{H^{s}}\left(\int \frac{\min \left\{|y|^{2}, 1\right\}^{2}}{|y|^{2 s}} d y\right)^{1 / 2}
\end{aligned}
$$

Lemma (Pointwise convergence for smooth data)
Let u solve the heat or Schrödinger equation with $u_{0} \in \dot{H}^{s}\left(\mathbb{R}^{n}\right)$ with $n / 2<s<n / 2+2$. Then

$$
\lim _{t \rightarrow 0} u(x, t)=u_{0}(x) \quad \text { for all } x \in \mathbb{R}^{n}
$$

Proof: $\widehat{u}_{0}=|\cdot|^{-s} \widehat{g}$ with $g \in L^{2}$

$$
\begin{aligned}
(2 \pi)^{n / 2}\left|e^{t \Delta} u_{0}(x)-u_{0}(x)\right| & =\left|\int \frac{\hat{g}(\xi) e^{i x \cdot \xi}\left(e^{-t|\xi|^{2}}-1\right)}{|\xi|^{s}} d \xi\right| \\
& \leq\|\widehat{g}\|_{2}\left(\int \frac{\left|e^{-t|\xi|^{2}}-1\right|^{2}}{|\xi|^{2 s}} d \xi\right)^{1 / 2} \\
& =t^{s / 2-n / 4}\|g\|_{2}\left(\int \frac{\left|e^{-|y|^{2}}-1\right|^{2}}{|y|^{2 s}} d y\right)^{1 / 2} \\
& =t^{s / 2-n / 4}\|f\|_{\dot{H}^{s}}\left(\int \frac{\min \left\{|y|^{2}, 1\right\}^{2}}{|y|^{2 s}} d y\right)^{1 / 2} \\
& \leq C_{s} t^{s / 2-n / 4}\|f\|_{\dot{H}^{s}} .
\end{aligned}
$$

Lemma (Pointwise convergence for smooth data)
Let u solve the heat or Schrödinger equation with $u_{0} \in \dot{H}^{s}\left(\mathbb{R}^{n}\right)$ with $n / 2<s<n / 2+2$. Then

$$
\lim _{t \rightarrow 0} u(x, t)=u_{0}(x) \quad \text { for all } x \in \mathbb{R}^{n}
$$

Proof: $\widehat{u}_{0}=|\cdot|^{-s} \widehat{g}$ with $g \in L^{2}$
$(2 \pi)^{n / 2}\left|e^{t \Delta} u_{0}(x)-u_{0}(x)\right|=\left|\int \frac{\widehat{g}(\xi) e^{i x \cdot \xi}\left(e^{-t|\xi|^{2}}-1\right)}{|\xi|^{s}} d \xi\right|$ $\leq\|\widehat{g}\|_{2}\left(\int \frac{\left|e^{-t|\xi|^{2}}-1\right|^{2}}{|\xi|^{2 s}} d \xi\right)^{1 / 2}$
$=t^{s / 2-n / 4}\|g\|_{2}\left(\int \frac{\left|e^{-|y|^{2}}-1\right|^{2}}{|y|^{2 s}} d y\right)^{1 / 2}$
$=t^{s / 2-n / 4}\|f\|_{\dot{H}^{s}}\left(\int \frac{\min \left\{|y|^{2}, 1\right\}^{2}}{|y|^{2 s}} d y\right)^{1 / 2}$
$\leq C_{s} t^{s / 2-n / 4}\|f\|_{\dot{H}^{s}}$.
The same calculation works for the Schrödinger equation.

Lebesgue a.e. convergence for data in L^{2}

Recall that the Hardy-Littlewood maximal operator M is defined by

and that it is bounded from $L^{2}\left(\mathbb{R}^{n}\right)$ to $L^{2}\left(\mathbb{R}^{n}\right)$.

This allows one to conclude that

$$
\lim _{r \rightarrow 0} \frac{1}{|B(0, r)|} \mathbf{1}_{B(0, r)} * f(x) \rightarrow f(x), \quad \text { a.e. } x \in \mathbb{R}^{n}
$$

for all $f \in L^{2}\left(\mathbb{R}^{n}\right)$.

Lebesgue a.e. convergence for data in L^{2}

Recall that the Hardy-Littlewood maximal operator M is defined by

$$
M f=\sup _{r>0} \frac{1}{|B(0, r)|} \mathbf{1}_{B(0, r)} *|f|,
$$

and that it is bounded from $L^{2}\left(\mathbb{R}^{n}\right)$ to $L^{2}\left(\mathbb{R}^{n}\right)$.
for all $f \in L^{2}\left(\mathbb{R}^{n}\right)$

Later, I will remind you how to prove this using the L^{2}-bound.

Lebesgue a.e. convergence for data in L^{2}

Recall that the Hardy-Littlewood maximal operator M is defined by

$$
M f=\sup _{r>0} \frac{1}{|B(0, r)|} \mathbf{1}_{B(0, r)} *|f|,
$$

and that it is bounded from $L^{2}\left(\mathbb{R}^{n}\right)$ to $L^{2}\left(\mathbb{R}^{n}\right)$.

This allows one to conclude that

$$
\lim _{r \rightarrow 0} \frac{1}{|B(0, r)|} \mathbf{1}_{B(0, r)} * f(x) \rightarrow f(x), \quad \text { a.e. } x \in \mathbb{R}^{n}
$$

for all $f \in L^{2}\left(\mathbb{R}^{n}\right)$.

Lebesgue a.e. convergence for data in L^{2}

Recall that the Hardy-Littlewood maximal operator M is defined by

$$
M f=\sup _{r>0} \frac{1}{|B(0, r)|} \mathbf{1}_{B(0, r)} *|f|,
$$

and that it is bounded from $L^{2}\left(\mathbb{R}^{n}\right)$ to $L^{2}\left(\mathbb{R}^{n}\right)$.

This allows one to conclude that

$$
\lim _{r \rightarrow 0} \frac{1}{|B(0, r)|} \mathbf{1}_{B(0, r)} * f(x) \rightarrow f(x), \quad \text { a.e. } x \in \mathbb{R}^{n},
$$

for all $f \in L^{2}\left(\mathbb{R}^{n}\right)$.

Later, I will remind you how to prove this using the L^{2}-bound.

Now

$$
e^{-|\cdot|^{2}} \leq \sum_{j \geq 0} 2^{-j(n+1)} \mathbf{1}_{B\left(0,2^{j}\right)}
$$

Now

$$
e^{-|\cdot|^{2}} \leq \sum_{j \geq 0} 2^{-j(n+1)} \mathbf{1}_{B\left(0,2^{j}\right)}
$$

so that

$$
e^{-|\cdot|^{2} / t} \leq \sum_{j \geq 0} 2^{-j(n+1)} \mathbf{1}_{B\left(0, t^{1 / 2} 2^{j}\right)}
$$

Now

$$
e^{-|\cdot|^{2}} \leq \sum_{j \geq 0} 2^{-j(n+1)} \mathbf{1}_{B\left(0,2^{j}\right)}
$$

so that

$$
e^{-|\cdot|^{2} / t} \leq \sum_{j \geq 0} 2^{-j(n+1)} \mathbf{1}_{B\left(0, t^{1 / 2} 2^{j}\right)}
$$

so that

$$
\frac{1}{t^{n / 2}} e^{-|\cdot|^{2} / t} \leq \sum_{j \geq 0} 2^{-j} \frac{1}{\left|B\left(0, t^{1 / 2} 2^{j}\right)\right|} \mathbf{1}_{B\left(0, t^{1 / 2} 2^{j}\right)}
$$

Now

$$
e^{-|\cdot|^{2}} \leq \sum_{j \geq 0} 2^{-j(n+1)} \mathbf{1}_{B\left(0,2^{j}\right)}
$$

so that

$$
e^{-|\cdot|^{2} / t} \leq \sum_{j \geq 0} 2^{-j(n+1)} \mathbf{1}_{B\left(0, t^{1 / 2} 2^{j}\right)}
$$

so that

$$
\frac{1}{t^{n / 2}} e^{-|\cdot|^{2} / t} \leq \sum_{j \geq 0} 2^{-j} \frac{1}{\left|B\left(0, t^{1 / 2} 2^{j}\right)\right|} \mathbf{1}_{B\left(0, t^{1 / 2} 2^{j}\right)}
$$

Thus

$$
\sup _{t>0}\left|e^{t \Delta} f\right|=\sup _{t>0}\left|\frac{1}{t^{n / 2}} e^{|\cdot|^{2} / t} * f\right| \leq \sum_{j \geq 0} 2^{-j} M f \leq 2 M f
$$

Now

$$
e^{-|\cdot|^{2}} \leq \sum_{j \geq 0} 2^{-j(n+1)} \mathbf{1}_{B\left(0,2^{j}\right)}
$$

so that

$$
e^{-|\cdot|^{2} / t} \leq \sum_{j \geq 0} 2^{-j(n+1)} \mathbf{1}_{B\left(0, t^{1 / 2} 2^{j}\right)}
$$

so that

$$
\frac{1}{t^{n / 2}} e^{-|\cdot|^{2} / t} \leq \sum_{j \geq 0} 2^{-j} \frac{1}{\left|B\left(0, t^{1 / 2} 2^{j}\right)\right|} \mathbf{1}_{B\left(0, t^{1 / 2} 2^{j}\right)}
$$

Thus

$$
\sup _{t>0}\left|e^{t \Delta} f\right|=\sup _{t>0}\left|\frac{1}{t^{n / 2}} e^{|\cdot|^{2} / t} * f\right| \leq \sum_{j \geq 0} 2^{-j} M f \leq 2 M f
$$

So the L^{2}-bound for M gives an L^{2} maximal estimate for the heat equation which allows us to conclude that

$$
\lim _{t \rightarrow 0} e^{t \Delta} f(x)=f(x), \quad \text { a.e. } x \in \mathbb{R}^{n}
$$

using the same argument, which I will remind you of soon.

Hausdorff measure

Let $A \subseteq \mathbb{R}^{n}$ be a borel set, $0<\alpha<n$ and

$$
\mathcal{H}_{\delta}^{\alpha}(A):=\inf \left\{\sum_{i} \delta_{i}^{\alpha}: A \subset \bigcup_{i} B\left(x_{i}, \delta_{i}\right), \quad \delta_{i}<\delta\right\} .
$$

The α-Hausdorff measure of A is

Hausdorff measure

Let $A \subseteq \mathbb{R}^{n}$ be a borel set, $0<\alpha<n$ and

$$
\mathcal{H}_{\delta}^{\alpha}(A):=\inf \left\{\sum_{i} \delta_{i}^{\alpha}: A \subset \bigcup_{i} B\left(x_{i}, \delta_{i}\right), \quad \delta_{i}<\delta\right\}
$$

Definition
The α-Hausdorff measure of A is

$$
\mathcal{H}^{\alpha}(A):=\lim _{\delta \rightarrow 0} \mathcal{H}_{\delta}^{\alpha}(A)
$$

Hausdorff dimension

Remark
There exists a unique α_{0} such that

$$
\mathcal{H}^{\alpha}(A)=\left\{\begin{array}{lll}
\infty & \text { if } & \alpha<\alpha_{0} \\
0 & \text { if } & \alpha>\alpha_{0}
\end{array}\right.
$$

Hausdorff dimension

Remark
There exists a unique α_{0} such that

$$
\mathcal{H}^{\alpha}(A)=\left\{\begin{array}{lll}
\infty & \text { if } & \alpha<\alpha_{0} \\
0 & \text { if } & \alpha>\alpha_{0}
\end{array}\right.
$$

Definition

α_{0} is the Hausdorff dimension of the set A :

$$
\operatorname{dim}(A):=\alpha_{0} .
$$

Definition (Frostman measures)

We say that a positive Borel measure μ with $\operatorname{supp}(\mu) \subset B(0,1)$ is α-dimensional if

$$
c_{\alpha}(\mu):=\sup _{\substack{x \in \mathbb{R}^{n} \\ r>0}} \frac{\mu(B(x, r))}{r^{\alpha}}<\infty
$$

Definition (Frostman measures)

We say that a positive Borel measure μ with $\operatorname{supp}(\mu) \subset B(0,1)$ is α-dimensional if

$$
c_{\alpha}(\mu):=\sup _{\substack{x \in \mathbb{R}^{n} \\ r>0}} \frac{\mu(B(x, r))}{r^{\alpha}}<\infty
$$

$$
E_{\alpha^{\prime}}(\mu):=\iint \frac{d \mu(x) d \mu(y)}{|x-y|^{\alpha^{\prime}}}=\int \sum_{j=0}^{\infty} \int_{A\left(y, 2^{-j}\right)} \frac{d \mu(x)}{|x-y|^{\alpha^{\prime}}} d \mu(y)
$$

Definition (Frostman measures)

We say that a positive Borel measure μ with $\operatorname{supp}(\mu) \subset B(0,1)$ is α-dimensional if

$$
c_{\alpha}(\mu):=\sup _{\substack{x \in \mathbb{R}^{n} \\ r>0}} \frac{\mu(B(x, r))}{r^{\alpha}}<\infty
$$

$$
\begin{aligned}
E_{\alpha^{\prime}}(\mu):=\iint \frac{d \mu(x) d \mu(y)}{|x-y|^{\alpha^{\prime}}} & =\int \sum_{j=0}^{\infty} \int_{A\left(y, 2^{-j}\right)} \frac{d \mu(x)}{|x-y|^{\alpha^{\prime}}} d \mu(y) \\
& \leq \int \sum_{j=0}^{\infty} c_{\alpha}(\mu) 2^{-j \alpha} 2^{j \alpha^{\prime}} d \mu(y)
\end{aligned}
$$

Definition (Frostman measures)

We say that a positive Borel measure μ with $\operatorname{supp}(\mu) \subset B(0,1)$ is α-dimensional if

$$
c_{\alpha}(\mu):=\sup _{\substack{x \in \mathbb{R}^{n} \\ r>0}} \frac{\mu(B(x, r))}{r^{\alpha}}<\infty
$$

$$
\begin{aligned}
E_{\alpha^{\prime}}(\mu):=\iint \frac{d \mu(x) d \mu(y)}{|x-y|^{\alpha^{\prime}}} & =\int \sum_{j=0}^{\infty} \int_{A\left(y, 2^{-j}\right)} \frac{d \mu(x)}{|x-y|^{\alpha^{\prime}}} d \mu(y) \\
& \leq \int \sum_{j=0}^{\infty} c_{\alpha}(\mu) 2^{-j \alpha} 2^{j \alpha^{\prime}} d \mu(y) \\
& \lesssim c_{\alpha}(\mu)\|\mu\|<\infty \quad \text { if } \alpha>\alpha^{\prime}
\end{aligned}
$$

Definition (Frostman measures)

We say that a positive Borel measure μ with $\operatorname{supp}(\mu) \subset B(0,1)$ is α-dimensional if

$$
c_{\alpha}(\mu):=\sup _{\substack{x \in \mathbb{R}^{n} \\ r>0}} \frac{\mu(B(x, r))}{r^{\alpha}}<\infty
$$

$$
\begin{aligned}
E_{\alpha^{\prime}}(\mu):=\iint \frac{d \mu(x) d \mu(y)}{|x-y|^{\alpha^{\prime}}} & =\int \sum_{j=0}^{\infty} \int_{A\left(y, 2^{-j}\right)} \frac{d \mu(x)}{|x-y|^{\alpha^{\prime}}} d \mu(y) \\
& \leq \int \sum_{j=0}^{\infty} c_{\alpha}(\mu) 2^{-j \alpha} 2^{j \alpha^{\prime}} d \mu(y) \\
& \lesssim c_{\alpha}(\mu)\|\mu\|<\infty \quad \text { if } \alpha>\alpha^{\prime} .
\end{aligned}
$$

Lemma (Frostman)

Let $A \subset \mathbb{R}^{n}$ be a Borel set. The following are equivalent:

- $\mathcal{H}^{\alpha}(A)>0$;
- there is an α-dimensional measure μ such that $\mu(A)>0$.

Control of singularities

Lemma
Let $0<s<n / 2$ and $\alpha>n-2 s$.

Control of singularities

Lemma
Let $0<s<n / 2$ and $\alpha>n-2 s$. Then, for all α-dimensional μ,

$$
\|f\|_{L^{1}(d \mu)} \leq C_{\mu}\|f\|_{\dot{H}^{s}} .
$$

Control of singularities

Lemma
Let $0<s<n / 2$ and $\alpha>n-2 s$. Then, for all α-dimensional μ,

$$
\|f\|_{L^{1}(d \mu)} \leq C_{\mu}\|f\|_{\dot{H}^{s}} .
$$

Proof: $f=I_{s} * g$ with $g \in L^{2}$ and $\widehat{I}_{s}=|\cdot|^{-s}$. Suffices to prove

$$
\left\|I_{s} * g\right\|_{L^{1}(d \mu)} \lesssim \sqrt{E_{n-2 s}(\mu)}\|g\|_{L^{2}\left(\mathbb{R}^{n}\right)}
$$

Control of singularities

Lemma

Let $0<s<n / 2$ and $\alpha>n-2 s$. Then, for all α-dimensional μ,

$$
\|f\|_{L^{1}(d \mu)} \leq C_{\mu}\|f\|_{\dot{H}^{s}} .
$$

Proof: $f=I_{s} * g$ with $g \in L^{2}$ and $\hat{I}_{s}=|\cdot|^{-s}$. Suffices to prove

$$
\left\|I_{s} * g\right\|_{L^{1}(d \mu)} \lesssim \sqrt{E_{n-2 s}(\mu)}\|g\|_{L^{2}\left(\mathbb{R}^{n}\right)}
$$

By Fubini's theorem and the Cauchy-Schwarz inequality,

$$
\begin{aligned}
\left\|I_{s} * g\right\|_{L^{1}(d \mu)} & \leq \iint I_{s}(x-y) d \mu(x)|g(y)| d y \\
& \leq\left\|I_{s} * \mu\right\|_{L^{2}\left(\mathbb{R}^{n}\right)}\|g\|_{L^{2}\left(\mathbb{R}^{n}\right)}
\end{aligned}
$$

Thus it remains to prove that

$$
\left\|I_{s} * \mu\right\|_{L^{2}\left(\mathbb{R}^{n}\right)}^{2} \lesssim E_{n-2 s}(\mu)
$$

Thus it remains to prove that

$$
\left\|I_{s} * \mu\right\|_{L^{2}\left(\mathbb{R}^{n}\right)}^{2} \lesssim E_{n-2 s}(\mu)
$$

By Plancherel's theorem,

$$
\left\|I_{s} * \mu\right\|_{L^{2}\left(\mathbb{R}^{n}\right)}^{2}=\left\|\widehat{I}_{s} \widehat{\mu}\right\|_{L^{2}\left(\mathbb{R}^{n}\right)}^{2}=\int \widehat{\mu}(\xi) \widehat{\widehat{\mu}(\xi)} \widehat{I}_{2 s}(\xi) d \xi
$$

Thus it remains to prove that

$$
\left\|I_{s} * \mu\right\|_{L^{2}\left(\mathbb{R}^{n}\right)}^{2} \lesssim E_{n-2 s}(\mu)
$$

By Plancherel's theorem,

$$
\left\|I_{s} * \mu\right\|_{L^{2}\left(\mathbb{R}^{n}\right)}^{2}=\left\|\widehat{I}_{s} \widehat{\mu}\right\|_{L^{2}\left(\mathbb{R}^{n}\right)}^{2}=\int \widehat{\mu}(\xi) \widehat{\widehat{\mu}(\xi)} \widehat{I}_{2 s}(\xi) d \xi
$$

Recalling that $I_{2 s}(x)=C_{n, s}|x|^{-(n-2 s)}$,

$$
\left\|I_{s} * \mu\right\|_{L^{2}\left(\mathbb{R}^{n}\right)}^{2}=\int \mu * I_{2 s}(y) d \mu(y)
$$

Thus it remains to prove that

$$
\left\|I_{s} * \mu\right\|_{L^{2}\left(\mathbb{R}^{n}\right)}^{2} \lesssim E_{n-2 s}(\mu)
$$

By Plancherel's theorem,

$$
\left\|I_{s} * \mu\right\|_{L^{2}\left(\mathbb{R}^{n}\right)}^{2}=\left\|\widehat{I}_{s} \widehat{\mu}\right\|_{L^{2}\left(\mathbb{R}^{n}\right)}^{2}=\int \widehat{\mu}(\xi) \widehat{\widehat{\mu}(\xi)} \widehat{I}_{2 s}(\xi) d \xi
$$

Recalling that $I_{2 s}(x)=C_{n, s}|x|^{-(n-2 s)}$,

$$
\begin{aligned}
\left\|I_{s} * \mu\right\|_{L^{2}\left(\mathbb{R}^{n}\right)}^{2} & =\int \mu * I_{2 s}(y) d \mu(y) \\
& =C_{n, s} \iint \frac{d \mu(x) d \mu(y)}{|x-y|^{n-2 s}}=C_{n, s} E_{n-2 s}(\mu)
\end{aligned}
$$

and we are done.

Optimality of the control of singularities lemma

If $\operatorname{dim}(A)=\alpha$ with $\alpha<n-2 s$, then we can take a γ such that

Optimality of the control of singularities lemma

If $\operatorname{dim}(A)=\alpha$ with $\alpha<n-2 s$, then we can take a γ such that

$$
\alpha<\gamma<n-2 s .
$$

Optimality of the control of singularities lemma

If $\operatorname{dim}(A)=\alpha$ with $\alpha<n-2 s$, then we can take a γ such that

$$
\alpha<\gamma<n-2 s
$$

Then

$$
\mathbf{1}_{B(0,1)} \operatorname{dist}(\cdot, A)^{-\gamma} \in L^{2}\left(\mathbb{R}^{n}\right)
$$

Optimality of the control of singularities lemma

If $\operatorname{dim}(A)=\alpha$ with $\alpha<n-2 s$, then we can take a γ such that

$$
\alpha<\gamma<n-2 s
$$

Then

$$
\mathbf{1}_{B(0,1)} \operatorname{dist}(\cdot, A)^{-\gamma} \in L^{2}\left(\mathbb{R}^{n}\right)
$$

but on the other hand

$$
u_{0}:=I_{s} *\left[\mathbf{1}_{B(0,1)} \operatorname{dist}(\cdot, A)^{-\gamma}\right]=\infty \quad \text { on } A .
$$

Optimality of the control of singularities lemma

If $\operatorname{dim}(A)=\alpha$ with $\alpha<n-2 s$, then we can take a γ such that

$$
\alpha<\gamma<n-2 s .
$$

Then

$$
\mathbf{1}_{B(0,1)} \operatorname{dist}(\cdot, A)^{-\gamma} \in L^{2}\left(\mathbb{R}^{n}\right)
$$

but on the other hand

$$
u_{0}:=I_{s} *\left[\mathbf{1}_{B(0,1)} \operatorname{dist}(\cdot, A)^{-\gamma}\right]=\infty \quad \text { on } A .
$$

So there is initial data $u_{0} \in \dot{H}^{s}\left(\mathbb{R}^{n}\right)$ which is singular on a set of dimension $\alpha<n-2 s$.

Proposition (Maximal estimates imply convergence)

Let $\alpha>\alpha_{0} \geq n-2 s$. Suppose that, for all α-dimensional μ,

Then, for all $u_{0} \in \dot{H}^{s}$,

Proposition (Maximal estimates imply convergence)
Let $\alpha>\alpha_{0} \geq n-2 s$. Suppose that, for all α-dimensional μ,

$$
\left\|\sup _{0<t<1}|u(\cdot, t)|\right\|_{L^{1}(d \mu)} \leq C_{\mu}\left\|u_{0}\right\|_{\dot{H}^{s}}
$$

Proof: We are required to prove that for all $\alpha>\alpha_{0}$,

Proposition (Maximal estimates imply convergence)
Let $\alpha>\alpha_{0} \geq n-2 s$. Suppose that, for all α-dimensional μ,

$$
\left\|\sup _{0<t<1}|u(\cdot, t)|\right\|_{L^{1}(d \mu)} \leq C_{\mu}\left\|u_{0}\right\|_{\dot{H}^{s}}
$$

Then, for all $u_{0} \in \dot{H}^{s}$,

$$
\operatorname{dim}\left\{x \in \mathbb{R}^{n} \quad \lim _{t \rightarrow 0} u(t, x) \neq u_{0}(x)\right\} \leq \alpha_{0} .
$$

Proposition (Maximal estimates imply convergence)
Let $\alpha>\alpha_{0} \geq n-2 s$. Suppose that, for all α-dimensional μ,

$$
\left\|\sup _{0<t<1}|u(\cdot, t)|\right\|_{L^{1}(d \mu)} \leq C_{\mu}\left\|u_{0}\right\|_{\dot{H}^{s}}
$$

Then, for all $u_{0} \in \dot{H}^{s}$,

$$
\operatorname{dim}\left\{x \in \mathbb{R}^{n} \quad \lim _{t \rightarrow 0} u(t, x) \neq u_{0}(x)\right\} \leq \alpha_{0}
$$

Proof: We are required to prove that for all $\alpha>\alpha_{0}$,

$$
\mathcal{H}^{\alpha}\left\{x \in \mathbb{R}^{n} \quad \lim _{t \rightarrow 0} u(t, x) \neq u_{0}(x)\right\}=0
$$

whenever $u_{0} \in \dot{H}^{s}$.

Proposition (Maximal estimates imply convergence)
Let $\alpha>\alpha_{0} \geq n-2 s$. Suppose that, for all α-dimensional μ,

$$
\left\|\sup _{0<t<1}|u(\cdot, t)|\right\|_{L^{1}(d \mu)} \leq C_{\mu}\left\|u_{0}\right\|_{\dot{H}^{s}}
$$

Then, for all $u_{0} \in \dot{H}^{s}$,

$$
\operatorname{dim}\left\{x \in \mathbb{R}^{n} \quad \lim _{t \rightarrow 0} u(t, x) \neq u_{0}(x)\right\} \leq \alpha_{0}
$$

Proof: We are required to prove that for all $\alpha>\alpha_{0}$,

$$
\mathcal{H}^{\alpha}\left\{x \in \mathbb{R}^{n} \quad \lim _{t \rightarrow 0} u(t, x) \neq u_{0}(x)\right\}=0
$$

whenever $u_{0} \in \dot{H}^{s}$. By Frostman's lemma, this follows by showing

$$
\mu\left\{x \in \mathbb{R}^{n} \quad \lim _{t \rightarrow 0} u(t, x) \neq u_{0}(x)\right\}=0
$$

whenever μ is α-dimensional.

Take $h \in \dot{H}^{n / 2+1}$ such that $\left\|u_{0}-h\right\|_{\dot{H}^{s}}<\varepsilon$, and note that

$$
\left|u(\cdot, t)-u_{0}\right| \leq\left|u(\cdot, t)-u_{h}(\cdot, t)\right|+\left|u_{h}(\cdot, t)-h\right|+\left|h-u_{0}\right|,
$$

where u_{h} denotes the solution with initial data h.

Take $h \in \dot{H}^{n / 2+1}$ such that $\left\|u_{0}-h\right\|_{\dot{H}^{s}}<\varepsilon$, and note that

$$
\left|u(\cdot, t)-u_{0}\right| \leq\left|u_{u_{0}-h}(\cdot, t)\right|+\left|u_{h}(\cdot, t)-h\right|+\left|h-u_{0}\right| .
$$

Take $h \in \dot{H}^{n / 2+1}$ such that $\left\|u_{0}-h\right\|_{\dot{H}^{s}}<\varepsilon$, and note that

$$
\left|u(\cdot, t)-u_{0}\right| \leq\left|u_{u_{0}-h}(\cdot, t)\right|+\left|u_{h}(\cdot, t)-h\right|+\left|h-u_{0}\right| .
$$

Then,

$$
\begin{aligned}
& \mu\left\{x: \limsup _{t \rightarrow 0}\left|u(x, t)-u_{0}(x)\right|>\lambda\right\} \\
\leq & \mu\left\{x: \limsup _{t \rightarrow 0}\left|u_{u_{0}-h}(x, t)\right|>\lambda / 3\right\} \\
+ & \mu\left\{x: \limsup _{t \rightarrow 0}\left|u_{h}(x, t)-h\right|>\lambda / 3\right\} \\
+ & \mu\left\{x: \limsup _{t \rightarrow 0}\left|h(x)-u_{0}(x)\right|>\lambda / 3\right\} .
\end{aligned}
$$

Take $h \in \dot{H}^{n / 2+1}$ such that $\left\|u_{0}-h\right\|_{\dot{H}^{s}}<\varepsilon$, and note that

$$
\left|u(\cdot, t)-u_{0}\right| \leq\left|u_{u_{0}-h}(\cdot, t)\right|+\left|u_{h}(\cdot, t)-h\right|+\left|h-u_{0}\right| .
$$

Then,

$$
\begin{aligned}
& \mu\left\{x: \limsup _{t \rightarrow 0}\left|u(x, t)-u_{0}(x)\right|>\lambda\right\} \\
\leq & \mu\left\{x: \sup _{0<t<1}\left|u_{u_{0}-h}(x, t)\right|>\lambda / 3\right\} \\
+ & \mu\left\{x: \limsup _{t \rightarrow 0}\left|u_{h}(x, t)-h\right|>\lambda / 3\right\} \\
+ & \mu\left\{x:\left|h(x)-u_{0}(x)\right|>\lambda / 3\right\} .
\end{aligned}
$$

Take $h \in \dot{H}^{n / 2+1}$ such that $\left\|u_{0}-h\right\|_{\dot{H}^{s}}<\varepsilon$, and note that

$$
\left|u(\cdot, t)-u_{0}\right| \leq\left|u_{u_{0}-h}(\cdot, t)\right|+\left|u_{h}(\cdot, t)-h\right|+\left|h-u_{0}\right| .
$$

Then,

$$
\begin{aligned}
& \mu\left\{x: \limsup _{t \rightarrow 0}\left|u(x, t)-u_{0}(x)\right|>\lambda\right\} \\
\leq & \mu\left\{x: \sup _{0<t<1}\left|u_{u_{0}-h}(x, t)\right|>\lambda / 3\right\} \\
+ & \mu\left\{x: \limsup _{t \rightarrow 0}\left|u_{h}(x, t)-h\right|>\lambda / 3\right\} \\
+ & \mu\left\{x:\left|h(x)-u_{0}(x)\right|>\lambda / 3\right\} .
\end{aligned}
$$

We use the maximal estimate for the first term,

Take $h \in \dot{H}^{n / 2+1}$ such that $\left\|u_{0}-h\right\|_{\dot{H}^{s}}<\varepsilon$, and note that

$$
\left|u(\cdot, t)-u_{0}\right| \leq\left|u_{u_{0}-h}(\cdot, t)\right|+\left|u_{h}(\cdot, t)-h\right|+\left|h-u_{0}\right| .
$$

Then,

$$
\begin{aligned}
& \mu\left\{x: \limsup _{t \rightarrow 0}\left|u(x, t)-u_{0}(x)\right|>\lambda\right\} \\
\leq & \mu\left\{x: \sup _{0<t<1}\left|u_{u_{0}-h}(x, t)\right|>\lambda / 3\right\} \\
+ & \mu\left\{x: \limsup _{t \rightarrow 0}\left|u_{h}(x, t)-h\right|>\lambda / 3\right\} \\
+ & \mu\left\{x:\left|h(x)-u_{0}(x)\right|>\lambda / 3\right\} .
\end{aligned}
$$

We use the maximal estimate for the first term, the second term is zero by the smooth data lemma,

Take $h \in \dot{H}^{n / 2+1}$ such that $\left\|u_{0}-h\right\|_{\dot{H}^{s}}<\varepsilon$, and note that

$$
\left|u(\cdot, t)-u_{0}\right| \leq\left|u_{u_{0}-h}(\cdot, t)\right|+\left|u_{h}(\cdot, t)-h\right|+\left|h-u_{0}\right| .
$$

Then,

$$
\begin{aligned}
& \mu\left\{x: \limsup _{t \rightarrow 0}\left|u(x, t)-u_{0}(x)\right|>\lambda\right\} \\
\leq & \mu\left\{x: \sup _{0<t<1}\left|u_{u_{0}-h}(x, t)\right|>\lambda / 3\right\} \\
+ & \mu\left\{x: \limsup _{t \rightarrow 0}\left|u_{h}(x, t)-h\right|>\lambda / 3\right\} \\
+ & \mu\left\{x:\left|h(x)-u_{0}(x)\right|>\lambda / 3\right\} .
\end{aligned}
$$

We use the maximal estimate for the first term, the second term is zero by the smooth data lemma, and the third term can be bounded by the control of singularities lemma

Take $h \in \dot{H}^{n / 2+1}$ such that $\left\|u_{0}-h\right\|_{\dot{H}^{s}}<\varepsilon$, and note that

$$
\left|u(\cdot, t)-u_{0}\right| \leq\left|u_{u_{0}-h}(\cdot, t)\right|+\left|u_{h}(\cdot, t)-h\right|+\left|h-u_{0}\right| .
$$

Then,

$$
\begin{aligned}
& \mu\left\{x: \limsup _{t \rightarrow 0}\left|u(x, t)-u_{0}(x)\right|>\lambda\right\} \\
\leq & \mu\left\{x: \sup _{0<t<1}\left|u_{u_{0}-h}(x, t)\right|>\lambda / 3\right\} \\
+ & \mu\left\{x: \limsup _{t \rightarrow 0}\left|u_{h}(x, t)-h\right|>\lambda / 3\right\} \\
+ & \mu\left\{x:\left|h(x)-u_{0}(x)\right|>\lambda / 3\right\} .
\end{aligned}
$$

We use the maximal estimate for the first term, the second term is zero by the smooth data lemma, and the third term can be bounded by the control of singularities lemma so that
$\mu\left\{x: \lim _{t \rightarrow 0}\left|u(x, t)-u_{0}(x)\right|>\lambda\right\} \leq \lambda^{-1} C_{\mu}\left\|u_{0}-h\right\|_{\dot{H}^{s}\left(\mathbb{R}^{n}\right)} \leq \lambda^{-1} C_{\mu} \varepsilon$.

Take $h \in \dot{H}^{n / 2+1}$ such that $\left\|u_{0}-h\right\|_{\dot{H}^{s}}<\varepsilon$, and note that

$$
\left|u(\cdot, t)-u_{0}\right| \leq\left|u_{u_{0}-h}(\cdot, t)\right|+\left|u_{h}(\cdot, t)-h\right|+\left|h-u_{0}\right| .
$$

Then,

$$
\begin{aligned}
& \mu\left\{x: \limsup _{t \rightarrow 0}\left|u(x, t)-u_{0}(x)\right|>\lambda\right\} \\
\leq & \mu\left\{x: \sup _{0<t<1}\left|u_{u_{0}-h}(x, t)\right|>\lambda / 3\right\} \\
+ & \mu\left\{x: \limsup _{t \rightarrow 0}\left|u_{h}(x, t)-h\right|>\lambda / 3\right\} \\
+ & \mu\left\{x:\left|h(x)-u_{0}(x)\right|>\lambda / 3\right\} .
\end{aligned}
$$

We use the maximal estimate for the first term, the second term is zero by the smooth data lemma, and the third term can be bounded by the control of singularities lemma so that
$\mu\left\{x: \lim _{t \rightarrow 0}\left|u(x, t)-u_{0}(x)\right|>\lambda\right\} \leq \lambda^{-1} C_{\mu}\left\|u_{0}-h\right\|_{\dot{H}^{s}\left(\mathbb{R}^{n}\right)} \leq \lambda^{-1} C_{\mu} \varepsilon$.
Letting ε tend to zero, then λ tend to zero, we are done.

Part 2:

Convergence for the heat equation

Theorem (Maximal estimate for the heat equation)
Let $0<s<n / 2$ and $\alpha>n-2 s$.

Proof: By linearising the operator, it will suffice to prove

\square

Theorem (Maximal estimate for the heat equation)
Let $0<s<n / 2$ and $\alpha>n-2 s$. Then, for all α-dimensional μ,

$$
\left\|\sup _{0<t<1}\left|e^{t \Delta} f\right|\right\|_{L^{1}(d \mu)} \leq C_{\mu}\|f\|_{\dot{H}^{s}} .
$$

Theorem (Maximal estimate for the heat equation)
Let $0<s<n / 2$ and $\alpha>n-2 s$. Then, for all α-dimensional μ,

$$
\left\|\sup _{0<t<1}\left|e^{t \Delta} f\right|\right\|_{L^{1}(d \mu)} \leq C_{\mu}\|f\|_{\dot{H}^{s}}
$$

Proof: By linearising the operator, it will suffice to prove

$$
\left|\iint e^{i x \cdot \xi} e^{-t(x)|\xi|^{2}} \widehat{f}(\xi) d \xi w(x) d \mu(x)\right|^{2} \lesssim E_{n-2 s}(\mu)\|f\|_{\dot{H}^{s}}^{2}
$$

whenever $t: \mathbb{R}^{n} \rightarrow(0, \infty)$ and $w: \mathbb{R}^{n} \rightarrow \mathbb{S}^{1}$ are measurable.

Theorem (Maximal estimate for the heat equation)
Let $0<s<n / 2$ and $\alpha>n-2 s$. Then, for all α-dimensional μ,

$$
\left\|\sup _{0<t<1}\left|e^{t \Delta} f\right|\right\|_{L^{1}(d \mu)} \leq C_{\mu}\|f\|_{\dot{H}^{s}}
$$

Proof: By linearising the operator, it will suffice to prove

$$
\left|\iint e^{i x \cdot \xi} e^{-t(x)|\xi|^{2}} \widehat{f}(\xi) d \xi w(x) d \mu(x)\right|^{2} \lesssim E_{n-2 s}(\mu)\|f\|_{\dot{H}^{s}}^{2}
$$

whenever $t: \mathbb{R}^{n} \rightarrow(0, \infty)$ and $w: \mathbb{R}^{n} \rightarrow \mathbb{S}^{1}$ are measurable. Now, by Fubini and Cauchy-Schwarz, the LHS is bounded by

$$
\int|\widehat{f}(\xi)|^{2}|\xi|^{2 s} d \xi \int\left|\int e^{i x \cdot \xi} e^{-t(x)|\xi|^{2}} w(x) d \mu(x)\right|^{2} \frac{d \xi}{|\xi|^{2 s}}
$$

Theorem (Maximal estimate for the heat equation)
Let $0<s<n / 2$ and $\alpha>n-2 s$. Then, for all α-dimensional μ,

$$
\left\|\sup _{0<t<1}\left|e^{t \Delta} f\right|\right\|_{L^{1}(d \mu)} \leq C_{\mu}\|f\|_{\dot{H}^{s}}
$$

Proof: By linearising the operator, it will suffice to prove

$$
\left|\iint e^{i x \cdot \xi} e^{-t(x)|\xi|^{2}} \widehat{f}(\xi) d \xi w(x) d \mu(x)\right|^{2} \lesssim E_{n-2 s}(\mu)\|f\|_{\dot{H}^{s}}^{2}
$$

whenever $t: \mathbb{R}^{n} \rightarrow(0, \infty)$ and $w: \mathbb{R}^{n} \rightarrow \mathbb{S}^{1}$ are measurable. Now, by Fubini and Cauchy-Schwarz, the LHS is bounded by

$$
\int|\widehat{f}(\xi)|^{2}|\xi|^{2 s} d \xi \int\left|\int e^{i x \cdot \xi} e^{-t(x)|\xi|^{2}} w(x) d \mu(x)\right|^{2} \frac{d \xi}{|\xi|^{2 s}} .
$$

Squaring out the integral, it will suffice to show that

$$
\iiint e^{i(x-y) \cdot \xi} e^{-(t(x)+t(y))|\xi|^{2}} \frac{d \xi}{|\xi|^{2 s}} w(x) w(y) d \mu(x) d \mu(y) \lesssim E_{n-2 s}(\mu) .
$$

Thus, it remains to prove that, for $0<s<n / 2$,

$$
\left|\int e^{i(x-y) \cdot \xi} e^{-(t(x)+t(y))|\xi|^{2}} \frac{d \xi}{|\xi|^{2 s}}\right| \lesssim \frac{1}{|x-y|^{n-2 s}}
$$

uniformly for all choices of $t(x), t(y)>0$.
uniformly in λ. By changing variables, this would follow from

Thus, it remains to prove that, for $0<s<n / 2$,

$$
\left|\int e^{i(x-y) \cdot \xi} e^{-(t(x)+t(y))|\xi|^{2}} \frac{d \xi}{|\xi|^{2 s}}\right| \lesssim \frac{1}{|x-y|^{n-2 s}}
$$

uniformly for all choices of $t(x), t(y)>0$. Recalling that $\widehat{|\cdot|^{-2 s}}=C_{n, s}|\cdot|^{2 s-n}$, this would follow from

$$
\frac{1}{\lambda^{n / 2}} e^{-|\cdot|^{2} / \lambda} * \frac{1}{|\cdot|^{n-2 s}} \lesssim \frac{1}{|\cdot|^{n-2 s}}
$$

uniformly in λ.

Thus, it remains to prove that, for $0<s<n / 2$,

$$
\left|\int e^{i(x-y) \cdot \xi} e^{-(t(x)+t(y))|\xi|^{2}} \frac{d \xi}{|\xi|^{2 s}}\right| \lesssim \frac{1}{|x-y|^{n-2 s}}
$$

uniformly for all choices of $t(x), t(y)>0$. Recalling that $\widehat{|\cdot|^{-2 s}}=C_{n, s}|\cdot|^{2 s-n}$, this would follow from

$$
\frac{1}{\lambda^{n / 2}} e^{-|\cdot|^{2} / \lambda} * \frac{1}{|\cdot|^{n-2 s}} \lesssim \frac{1}{|\cdot|^{n-2 s}}
$$

uniformly in λ. By changing variables, this would follow from

$$
e^{-|\cdot|^{2}} * \frac{1}{|\cdot|^{n-2 s}} \lesssim \frac{1}{|\cdot|^{n-2 s}},
$$

Thus, it remains to prove that, for $0<s<n / 2$,

$$
\left|\int e^{i(x-y) \cdot \xi} e^{-(t(x)+t(y))|\xi|^{2}} \frac{d \xi}{|\xi|^{2 s}}\right| \lesssim \frac{1}{|x-y|^{n-2 s}}
$$

uniformly for all choices of $t(x), t(y)>0$. Recalling that $\widehat{|\cdot|^{-2 s}}=C_{n, s}|\cdot|^{2 s-n}$, this would follow from

$$
\frac{1}{\lambda^{n / 2}} e^{-|\cdot|^{2} / \lambda} * \frac{1}{|\cdot|^{n-2 s}} \lesssim \frac{1}{|\cdot|^{n-2 s}}
$$

uniformly in λ. By changing variables, this would follow from

$$
e^{-|\cdot|^{2}} * \frac{1}{|\cdot|^{n-2 s}} \lesssim \frac{1}{|\cdot|^{n-2 s}},
$$

which can be checked by direct calculation.

Corollary

Let $0<s<n / 2$ and let u be a solution to the heat equation with initial data $u_{0} \in \dot{H}^{s}$. Then

$$
\operatorname{dim}\left\{x \in \mathbb{R}^{n} \quad \lim _{t \rightarrow 0} u(t, x) \neq u_{0}(x)\right\} \leq n-2 s
$$

Corollary

Let $0<s<n / 2$ and let u be a solution to the heat equation with initial data $u_{0} \in \dot{H}^{s}$. Then

$$
\operatorname{dim}\left\{x \in \mathbb{R}^{n} \quad \lim _{t \rightarrow 0} u(t, x) \neq u_{0}(x)\right\} \leq n-2 s
$$

As we saw before, $u_{0} \in \dot{H}^{s}$ can be singular on a set of dimension less than $n-2 s$ and so this is optimal.

Part 3:

Convergence for the Schrödinger equation

Lebesgue a.e. convergence for Schrödinger

Studied by many authors:
Carleson (1979), Dahlberg-Kenig (1982), Cowling (1983),
Carbery (1985), Sjölin (1987), Vega (1988), Bourgain (1992/95), Moyua-Vargas-Vega (1996/99), Tao-Vargas (2000), Tao (2003), Lee (2006), Bourgain (2013).

Best known sufficient condition for Lebesgue a.e. convergence:

Lebesgue a.e. convergence for Schrödinger

Studied by many authors:
Carleson (1979), Dahlberg-Kenig (1982), Cowling (1983),
Carbery (1985), Sjölin (1987), Vega (1988), Bourgain (1992/95), Moyua-Vargas-Vega (1996/99), Tao-Vargas (2000), Tao (2003), Lee (2006), Bourgain (2013).

Best known sufficient condition for Lebesgue a.e. convergence:

- $s \geq 1 / 4$ in dimension $n=1$ (Carleson);
- $s>\frac{1}{2}-\frac{1}{4 n}$ in dimension $n \geq 2$ (Lee, Bourgain).

Lebesgue a.e. convergence for Schrödinger

Studied by many authors:
Carleson (1979), Dahlberg-Kenig (1982), Cowling (1983),
Carbery (1985), Sjölin (1987), Vega (1988), Bourgain (1992/95), Moyua-Vargas-Vega (1996/99), Tao-Vargas (2000), Tao (2003), Lee (2006), Bourgain (2013).

Best known sufficient condition for Lebesgue a.e. convergence:

- $s \geq 1 / 4$ in dimension $n=1$ (Carleson);
- $s>\frac{1}{2}-\frac{1}{4 n}$ in dimension $n \geq 2$ (Lee, Bourgain).

Best known necessary condition for Lebesgue a.e. convergence:

- $s \geq 1 / 4$ in dimension $n=1$ (Dahlberg-Kenig);
- $s \geq \frac{1}{2}-\frac{1}{n+2}$ in dimension $n \geq 2$ (Lucà-R.).

Maximal estimate for the Schrödinger equation

Theorem (Barceló-Bennett-Carbery-R.)
Let $n / 4 \leq s<n / 2$ and $\alpha>n-2 s$.

Proof: By the same proof as for the heat equation, one finally arrives to the inequality

Maximal estimate for the Schrödinger equation

Theorem (Barceló-Bennett-Carbery-R.)
Let $n / 4 \leq s<n / 2$ and $\alpha>n-2 s$. Then, for all α-dimensional μ,

$$
\left\|\sup _{0<t<1}\left|e^{i t \Delta} f\right|\right\|_{L^{1}(d \mu)} \leq C_{\mu}\|f\|_{\dot{H}^{s}} .
$$

Maximal estimate for the Schrödinger equation

Theorem (Barceló-Bennett-Carbery-R.)
Let $n / 4 \leq s<n / 2$ and $\alpha>n-2 s$. Then, for all α-dimensional μ,

$$
\left\|\sup _{0<t<1}\left|e^{i t \Delta} f\right|\right\|_{L^{1}(d \mu)} \leq C_{\mu}\|f\|_{\dot{H}^{s}} .
$$

Proof: By the same proof as for the heat equation, one finally arrives to the inequality

$$
\left|e^{-i|\cdot|^{2}} * \frac{1}{|\cdot|^{n-2 s}}\right| \leq C_{n-2 s} \frac{1}{|\cdot|^{n-2 s}},
$$

Maximal estimate for the Schrödinger equation

Theorem (Barceló-Bennett-Carbery-R.)
Let $n / 4 \leq s<n / 2$ and $\alpha>n-2 s$. Then, for all α-dimensional μ,

$$
\left\|\sup _{0<t<1}\left|e^{i t \Delta} f\right|\right\|_{L^{1}(d \mu)} \leq C_{\mu}\|f\|_{\dot{H}^{s}}
$$

Proof: By the same proof as for the heat equation, one finally arrives to the inequality

$$
\left|e^{-i|\cdot|^{2}} * \frac{1}{|\cdot|^{n-2 s}}\right| \leq C_{n-2 s} \frac{1}{|\cdot|^{n-2 s}},
$$

This can also be shown to be true by more difficult direct calculation as long as $n / 4 \leq s<n / 2$.

Corollary

Let $n / 4 \leq s<n / 2$ and let u be a solution to the Schrödinger equation with initial data $u_{0} \in \dot{H}^{s}$. Then

$$
\operatorname{dim}\left\{x \in \mathbb{R}^{n} \quad \lim _{t \rightarrow 0} u(t, x) \neq u_{0}(x)\right\} \leq n-2 s
$$

Corollary

Let $n / 4 \leq s<n / 2$ and let u be a solution to the Schrödinger equation with initial data $u_{0} \in \dot{H}^{s}$. Then

$$
\operatorname{dim}\left\{x \in \mathbb{R}^{n} \quad \lim _{t \rightarrow 0} u(t, x) \neq u_{0}(x)\right\} \leq n-2 s
$$

Again this is sharp in the range $s \geq n / 4$.

Corollary

Let $n / 4 \leq s<n / 2$ and let u be a solution to the Schrödinger equation with initial data $u_{0} \in \dot{H}^{s}$. Then

$$
\operatorname{dim}\left\{x \in \mathbb{R}^{n} \quad \lim _{t \rightarrow 0} u(t, x) \neq u_{0}(x)\right\} \leq n-2 s
$$

Again this is sharp in the range $s \geq n / 4$.
We cannot go below this regularity in one dimension due to the necessary condition of Dahlberg-Kenig.

Corollary

Let $n / 4 \leq s<n / 2$ and let u be a solution to the Schrödinger equation with initial data $u_{0} \in \dot{H}^{s}$. Then

$$
\operatorname{dim}\left\{x \in \mathbb{R}^{n} \quad \lim _{t \rightarrow 0} u(t, x) \neq u_{0}(x)\right\} \leq n-2 s
$$

Again this is sharp in the range $s \geq n / 4$.
We cannot go below this regularity in one dimension due to the necessary condition of Dahlberg-Kenig.

In the next section we will see that we cannot go below this regularity in higher dimensions either via a fractal version of the Lucà-R.-necessary condition.

$$
\alpha_{n}(s):=\sup _{u_{0} \in H^{s}\left(\mathbb{R}^{n}\right)} \operatorname{dim}\left\{x \in \mathbb{R}^{n}: \lim _{t \rightarrow 0} u(x, t) \neq u_{0}(x)\right\}
$$

$$
\alpha_{n}(s):=\sup _{u_{0} \in H^{s}\left(\mathbb{R}^{n}\right)} \operatorname{dim}\left\{x \in \mathbb{R}^{n}: \lim _{t \rightarrow 0} u(x, t) \neq u_{0}(x)\right\}
$$

$$
\alpha_{n}(s):=\sup _{u_{0} \in H^{s}\left(\mathbb{R}^{n}\right)} \operatorname{dim}\left\{x \in \mathbb{R}^{n}: \lim _{t \rightarrow 0} u(x, t) \neq u_{0}(x)\right\}
$$

$$
\alpha_{n}(s):=\sup _{u_{0} \in H^{s}\left(\mathbb{R}^{n}\right)} \operatorname{dim}\left\{x \in \mathbb{R}^{n}: \lim _{t \rightarrow 0} u(x, t) \neq u_{0}(x)\right\}
$$

What about lower regularity $(s<n / 4)$ in higher dimensions?

Part 4:

Counterexample for the Schrödinger equation:

lower bounds for α_{n}

$$
\alpha_{n}(s):=\sup _{u_{0} \in H^{s}\left(\mathbb{R}^{n}\right)} \operatorname{dim}\left\{x \in \mathbb{R}^{n}: \lim _{t \rightarrow 0} e^{i t \Delta} u_{0}(x) \neq u_{0}(x)\right\}
$$

$$
\alpha_{n}(s):=\sup _{u_{0} \in H^{s}\left(\mathbb{R}^{n}\right)} \operatorname{dim}\left\{x \in \mathbb{R}^{n}: \lim _{t \rightarrow 0} e^{i t \Delta} u_{0}(x) \neq u_{0}(x)\right\}
$$

Theorem (Lucà-R.)

$$
\alpha_{n}(s) \geq\left\{\begin{array}{cll}
n & & s \leq \frac{n}{2(n+2)} \\
n+1-\frac{2(n+2) s}{n}, & \text { when } & \text { when } \frac{n}{2(n+2)} \leq s \leq \frac{n}{4} \\
n-2 s & , & \text { when } \frac{n}{4} \leq s \leq \frac{n}{2} \\
0 & , & \text { when } \frac{n}{2} \leq s
\end{array}\right.
$$

$\alpha_{n}(s) \geq n$ when $s<\frac{n}{2(n+2)}$

This bound follows from:

Theorem (Lucà-R.)
Suppose that

$$
\lim _{t \rightarrow 0} e^{i t \Delta} u_{0}(x)=u_{0}(x), \quad \text { a.e. } x \in \mathbb{R}^{n}
$$

for all $u_{0} \in H^{s}\left(\mathbb{R}^{n}\right)$. Then

$$
s \geq \frac{n}{2(n+2)}
$$

which improves Dahlberg-Kenig for $n \geq 3$ (coinciding when $n=2$).

$\alpha_{n}(s) \geq n$ when $s<\frac{n}{2(n+2)}$

This bound follows from:
Theorem (Lucà-R.)
Suppose that

$$
\lim _{t \rightarrow 0} e^{i t \Delta} u_{0}(x)=u_{0}(x), \quad \text { a.e. } x \in \mathbb{R}^{n}
$$

for all $u_{0} \in H^{s}\left(\mathbb{R}^{n}\right)$. Then

$$
s \geq \frac{n}{2(n+2)}
$$

$\alpha_{n}(s) \geq n$ when $s<\frac{n}{2(n+2)}$

This bound follows from:

Theorem (Lucà-R.)
Suppose that

$$
\lim _{t \rightarrow 0} e^{i t \Delta} u_{0}(x)=u_{0}(x), \quad \text { a.e. } x \in \mathbb{R}^{n}
$$

for all $u_{0} \in H^{s}\left(\mathbb{R}^{n}\right)$. Then

$$
s \geq \frac{n}{2(n+2)}
$$

which improves Dahlberg-Kenig for $n \geq 3$ (coinciding when $n=2$).

Proof

Lemma (Nikišin-Stein maximal principle)
Modulo endpoints:

$$
\lim _{t \rightarrow 0} e^{i t \Delta} u_{0}(x)=u_{0}(x), \quad \text { a.e. } x \in \mathbb{R}^{n}
$$

for all $u_{0} \in H^{s}\left(\mathbb{R}^{n}\right)$ if and only if there is a constant C such that

$$
\left\|\sup _{0<t<1}\left|e^{i t \Delta} u_{0}\right|\right\|_{L^{2}(B(0,1))} \leq C\left\|u_{0}\right\|_{H^{s}\left(\mathbb{R}^{n}\right)}
$$

Proof

Lemma (Nikišin-Stein maximal principle)
Modulo endpoints:

$$
\lim _{t \rightarrow 0} e^{i t \Delta} u_{0}(x)=u_{0}(x), \quad \text { a.e. } x \in \mathbb{R}^{n}
$$

for all $u_{0} \in H^{s}\left(\mathbb{R}^{n}\right)$ if and only if there is a constant C such that

$$
\left\|\sup _{0<t<1}\left|e^{i t \Delta} u_{0}\right|\right\|_{L^{2}(B(0,1))} \leq C\left\|u_{0}\right\|_{H^{s}\left(\mathbb{R}^{n}\right)}
$$

So it suffices to show that $s \geq \frac{n}{2(n+2)}$ is necessary for

$$
\left\|\sup _{0<t<1}\left|e^{i t \Delta} f\right|\right\|_{L^{2}(B(0,1))} \lesssim R^{s}\|f\|_{2},
$$

whenever $\operatorname{supp} \widehat{f} \subset\{\xi:|\xi| \leq R\}$.

Young's Double Slit Experiment

Constructive interference

The initial data

We consider the frequencies

$$
\Omega:=\left\{\xi \in 2 \pi R^{1-\kappa} \mathbb{Z}^{n}:|\xi| \leq R\right\}+B\left(0, \frac{1}{10}\right),
$$

$$
\text { for } 0<\kappa<\frac{1}{n+2}
$$

The initial data

We consider the frequencies

$$
\Omega:=\left\{\xi \in 2 \pi R^{1-\kappa} \mathbb{Z}^{n}:|\xi| \leq R\right\}+B\left(0, \frac{1}{10}\right),
$$

$$
\text { for } 0<\kappa<\frac{1}{n+2} \text {, }
$$

The initial data

We consider the frequencies

$$
\Omega:=\left\{\xi \in 2 \pi R^{1-\kappa} \mathbb{Z}^{n}:|\xi| \leq R\right\}+B\left(0, \frac{1}{10}\right),
$$

for $0<\kappa<\frac{1}{n+2}$,
and initial data defined by

$$
\widehat{f}=\frac{1}{\sqrt{|\Omega|}} \chi_{\Omega}, \quad \text { so that } \quad\|f\|_{2}=1
$$

This data was introduced in the context of Mattila's question by Barceló-Bennett-Carbery-Ruiz-Vilela (2007)
\qquad

The initial data

We consider the frequencies

$$
\Omega:=\left\{\xi \in 2 \pi R^{1-\kappa} \mathbb{Z}^{n}:|\xi| \leq R\right\}+B\left(0, \frac{1}{10}\right),
$$

for $0<\kappa<\frac{1}{n+2}$,
and initial data defined by

$$
\widehat{f}=\frac{1}{\sqrt{|\Omega|}} \chi_{\Omega}, \quad \text { so that } \quad\|f\|_{2}=1
$$

This data was introduced in the context of Mattila's question by Barceló-Bennett-Carbery-Ruiz-Vilela (2007).

The initial data

We consider the frequencies

$$
\Omega:=\left\{\xi \in 2 \pi R^{1-\kappa} \mathbb{Z}^{n}:|\xi| \leq R\right\}+B\left(0, \frac{1}{10}\right),
$$

for $0<\kappa<\frac{1}{n+2}$,
and initial data defined by

$$
\widehat{f}=\frac{1}{\sqrt{|\Omega|}} \chi_{\Omega}, \quad \text { so that } \quad\|f\|_{2}=1
$$

This data was introduced in the context of Mattila's question by Barceló-Bennett-Carbery-Ruiz-Vilela (2007).

Note that
$|\Omega| \simeq$ number of frequencies $\simeq R^{n \kappa}$.

Periodic constructive interference

The constructive interference reappears periodically in time:

$$
\left|e^{i t \Delta} f(x)\right| \gtrsim \sqrt{|\Omega|} \quad \text { for all } \quad(x, t) \in X \times T
$$

where

Periodic constructive interference

The constructive interference reappears periodically in time:

$$
\left|e^{i t \Delta} f(x)\right| \gtrsim \sqrt{|\Omega|} \quad \text { for all } \quad(x, t) \in X \times T
$$

where

$$
X:=\left\{x \in R^{\kappa-1} \mathbb{Z}^{n}:|x| \leq 2\right\}+B\left(0, R^{-1}\right)
$$

and

$$
T:=\left\{t \in \frac{1}{2 \pi} R^{2(\kappa-1)} \mathbb{Z}: 0<t<R^{-1}\right\} .
$$

Periodically coherent solutions

X is the dual-set of Ω :

Periodically coherent solutions

X is the dual-set of Ω :

$$
x \cdot \xi \in\left(R^{\kappa-1} \mathbb{Z}^{n}\right) \cdot\left(2 \pi R^{1-\kappa} \mathbb{Z}^{n}\right)=2 \pi \mathbb{Z}
$$

Periodically coherent solutions

X is the dual-set of Ω :

$$
x \cdot \xi \in\left(R^{\kappa-1} \mathbb{Z}^{n}\right) \cdot\left(2 \pi R^{1-\kappa} \mathbb{Z}^{n}\right)=2 \pi \mathbb{Z}
$$

T is the dual-set of $\Omega \cdot \Omega$:

Periodically coherent solutions

X is the dual-set of Ω :

$$
x \cdot \xi \in\left(R^{\kappa-1} \mathbb{Z}^{n}\right) \cdot\left(2 \pi R^{1-\kappa} \mathbb{Z}^{n}\right)=2 \pi \mathbb{Z}
$$

T is the dual-set of $\Omega \cdot \Omega$:

$$
t \xi \cdot \xi \in\left(\frac{1}{2 \pi} R^{2(\kappa-1)} \mathbb{Z}\right)\left(2 \pi R^{1-\kappa} \mathbb{Z}^{n}\right) \cdot\left(2 \pi R^{1-\kappa} \mathbb{Z}^{n}\right)=2 \pi \mathbb{Z}
$$

Periodically coherent solutions

X is the dual-set of Ω :

$$
x \cdot \xi \in\left(R^{\kappa-1} \mathbb{Z}^{n}\right) \cdot\left(2 \pi R^{1-\kappa} \mathbb{Z}^{n}\right)=2 \pi \mathbb{Z}
$$

T is the dual-set of $\Omega \cdot \Omega$:

$$
t \xi \cdot \xi \in\left(\frac{1}{2 \pi} R^{2(\kappa-1)} \mathbb{Z}\right)\left(2 \pi R^{1-\kappa} \mathbb{Z}^{n}\right) \cdot\left(2 \pi R^{1-\kappa} \mathbb{Z}^{n}\right)=2 \pi \mathbb{Z}
$$

So that there is no cancellation in the integral:

Periodically coherent solutions

X is the dual-set of Ω :

$$
x \cdot \xi \in\left(R^{\kappa-1} \mathbb{Z}^{n}\right) \cdot\left(2 \pi R^{1-\kappa} \mathbb{Z}^{n}\right)=2 \pi \mathbb{Z}
$$

T is the dual-set of $\Omega \cdot \Omega$:

$$
t \xi \cdot \xi \in\left(\frac{1}{2 \pi} R^{2(\kappa-1)} \mathbb{Z}\right)\left(2 \pi R^{1-\kappa} \mathbb{Z}^{n}\right) \cdot\left(2 \pi R^{1-\kappa} \mathbb{Z}^{n}\right)=2 \pi \mathbb{Z}
$$

So that there is no cancellation in the integral:

$$
e^{i t \Delta} f(x) \simeq \frac{1}{\sqrt{|\Omega|}} \int_{\Omega} e^{i x \cdot \xi-i t|\xi|^{2}} d \xi \simeq \frac{|\Omega|}{\sqrt{|\Omega|}}
$$

Periodically coherent solutions

Thus

$$
\left|e^{i t \Delta} f(x)\right| \gtrsim \sqrt{|\Omega|} \quad \text { for all } \quad(x, t) \in X \times T
$$

But the interference always reappears in the same places so

Periodically coherent solutions

Thus

$$
\left|e^{i t \Delta} f(x)\right| \gtrsim \sqrt{|\Omega|} \quad \text { for all } \quad(x, t) \in X \times T
$$

But the interference always reappears in the same places so

$$
\sup _{0<t<1}\left|e^{i t \Delta} f(x)\right| \gtrsim \sqrt{|\Omega|} \quad \text { only for } \quad x \in X
$$

Travelling periodically coherent solutions

Instead we take

$$
f_{\theta}(x)=e^{i \frac{1}{2} \theta \cdot x} f(x), \quad \text { where } \quad \theta \in \mathbb{S}^{n-1}
$$

so that

$$
\left|e^{i t \Delta} f_{\theta}(x)\right|=\left|e^{i t \Delta} f(x-t \theta)\right|,
$$

which yields

Travelling periodically coherent solutions

Instead we take

$$
f_{\theta}(x)=e^{i \frac{1}{2} \theta \cdot x} f(x), \quad \text { where } \quad \theta \in \mathbb{S}^{n-1}
$$

so that

$$
\left|e^{i t \Delta} f_{\theta}(x)\right|=\left|e^{i t \Delta} f(x-t \theta)\right|,
$$

which yields

$$
\sup _{0<t<1}\left|e^{i t \Delta} f_{\theta}(x)\right| \gtrsim \sqrt{|\Omega|} \quad \text { for all } \quad x \in \bigcup_{t \in T} X+t \theta
$$

Lemma

Let $0<\kappa<\frac{1}{n+2}$. Then there exists $\theta \in \mathbb{S}^{n-1}$ such that

$$
B(0,1 / 2) \subset \bigcup_{t \in T} X+t \theta
$$

Lemma

Let $0<\kappa<\frac{1}{n+2}$. Then there exists $\theta \in \mathbb{S}^{n-1}$ such that

$$
B(0,1 / 2) \subset \bigcup_{t \in T} X+t \theta
$$

This is optimal in the sense that it is not true for $\kappa \geq \frac{1}{n+2}$.

Lemma

Let $0<\kappa<\frac{1}{n+2}$. Then there exists $\theta \in \mathbb{S}^{n-1}$ such that

$$
B(0,1 / 2) \subset \bigcup_{t \in T} X+t \theta
$$

This is optimal in the sense that it is not true for $\kappa \geq \frac{1}{n+2}$.
After scaling and quotienting out \mathbb{Z}^{n}, this follows from quantitive ergodic theory on the torus \mathbb{T}^{n}.

Lemma (Lucà-R.)
There exists $\theta \in \mathbb{S}^{n-1}$ such that for all $y \in \mathbb{T}^{n}$ there is a $t \in R^{\delta} \mathbb{Z} \cap(0, R)$ such that

$$
|y-t \theta| \leq R^{-(1-\delta) / n} \log R
$$

Conclusion of the proof

Plugging into the maximal estimate,

$$
\left\|\sup _{0<t<1}\left|e^{i t \Delta} f_{\theta}\right|\right\|_{L^{2}(B(0,1))} \lesssim R^{s}\left\|f_{\theta}\right\|_{2}
$$

we obtain

Conclusion of the proof

Plugging into the maximal estimate,

$$
\left\|\sup _{0<t<1}\left|e^{i t \Delta} f_{\theta}\right|\right\|_{L^{2}(B(0,1))} \lesssim R^{s}\left\|f_{\theta}\right\|_{2}
$$

recalling that

$$
\sup _{0<t<1}\left|e^{i t \Delta} f_{\theta}\right| \geq \sqrt{|\Omega|} \quad \text { on } \quad B(0,1 / 2)
$$

we obtain

Then as $|\Omega| \gtrsim R^{n \kappa}$ and $\left\|f_{\theta}\right\|_{2}=1$, this yields

Conclusion of the proof

Plugging into the maximal estimate,

$$
\left\|\sup _{0<t<1}\left|e^{i t \Delta} f_{\theta}\right|\right\|_{L^{2}(B(0,1))} \lesssim R^{s}\left\|f_{\theta}\right\|_{2}
$$

recalling that

$$
\sup _{0<t<1}\left|e^{i t \Delta} f_{\theta}\right| \geq \sqrt{|\Omega|} \quad \text { on } \quad B(0,1 / 2) \text {, }
$$

we obtain

$$
\sqrt{|\Omega|} \lesssim R^{s}\left\|f_{\theta}\right\|_{2} .
$$

Then as $|\Omega| \gtrsim R^{n \kappa}$ and $\mid f_{\theta} \|_{2}=1$, this yields

Conclusion of the proof

Plugging into the maximal estimate,

$$
\left\|\sup _{0<t<1}\left|e^{i t \Delta} f_{\theta}\right|\right\|_{L^{2}(B(0,1))} \lesssim R^{s}\left\|f_{\theta}\right\|_{2}
$$

recalling that

$$
\sup _{0<t<1}\left|e^{i t \Delta} f_{\theta}\right| \geq \sqrt{|\Omega|} \quad \text { on } \quad B(0,1 / 2)
$$

we obtain

$$
\sqrt{|\Omega|} \lesssim R^{s}\left\|f_{\theta}\right\|_{2}
$$

Then as $|\Omega| \gtrsim R^{n \kappa}$ and $\left\|f_{\theta}\right\|_{2}=1$, this yields

$$
\Rightarrow s \geq \frac{n \kappa}{2} \quad \text { and then we take } \quad \kappa \rightarrow \frac{1}{n+2} .
$$

$\alpha_{n}(s) \geq n+1-\frac{2(n+2) s}{n}$ when $\frac{n}{2(n+2)} \leq s \leq \frac{n}{4}$

This follows from:

Theorem (Lucà-Rogers)
Let $n / 2<\alpha<n$ and suppose that, for all $\omega_{0} \in H^{s}\left(\mathbb{R}^{n}\right)$,
for all x off an α-dimensional set. Then

$$
\alpha_{n}(s) \geq n+1-\frac{2(n+2) s}{n} \text { when } \frac{n}{2(n+2)} \leq s \leq \frac{n}{4}
$$

This follows from:

Theorem (Lucà-Rogers)
Let $n / 2 \leq \alpha \leq n$ and suppose that, for all $u_{0} \in H^{s}\left(\mathbb{R}^{n}\right)$,

$$
\lim _{t \rightarrow 0} e^{i t \Delta} u_{0}(x)=u_{0}(x)
$$

for all x off an α-dimensional set.

$$
\alpha_{n}(s) \geq n+1-\frac{2(n+2) s}{n} \text { when } \frac{n}{2(n+2)} \leq s \leq \frac{n}{4}
$$

This follows from:

Theorem (Lucà-Rogers)
Let $n / 2 \leq \alpha \leq n$ and suppose that, for all $u_{0} \in H^{s}\left(\mathbb{R}^{n}\right)$,

$$
\lim _{t \rightarrow 0} e^{i t \Delta} u_{0}(x)=u_{0}(x)
$$

for all x off an α-dimensional set. Then

$$
s \geq \frac{n}{2(n+2)}(n-\alpha+1)
$$

Proof

The Nikišin-Stein maximal principle does not hold in this context, and so we first give a direct proof of the Lebesgue measure result.

We consider a sum of the previous initial data where we take $R=2^{j}$ and normalise in a different way, so that

Proof

The Nikišin-Stein maximal principle does not hold in this context, and so we first give a direct proof of the Lebesgue measure result.

We consider a sum of the previous initial data

$$
f:=\sum_{j>1} f_{\theta_{j}}, \quad \theta_{j} \in \mathbb{S}^{d-1}
$$

where we take $R=2^{j}$ and normalise in a different way, so that

$$
\begin{gathered}
f_{\theta_{j}}(x):=e^{i \frac{1}{2} \theta_{j} \cdot x} f_{j}(x), \quad \widehat{f}_{j}=2^{-j(n \kappa-\varepsilon)} \chi_{\Omega_{j}}, \\
\Omega_{j}:=\left\{\xi \in 2 \pi 2^{j(1-\kappa)} \mathbb{Z}^{n}:|\xi| \leq 2^{j}\right\}+B\left(0, \frac{1}{10}\right) .
\end{gathered}
$$

Proof

The Nikišin-Stein maximal principle does not hold in this context, and so we first give a direct proof of the Lebesgue measure result.

We consider a sum of the previous initial data

$$
f:=\sum_{j>1} f_{\theta_{j}}, \quad \theta_{j} \in \mathbb{S}^{d-1}
$$

where we take $R=2^{j}$ and normalise in a different way, so that

$$
\begin{gathered}
f_{\theta_{j}}(x):=e^{i \frac{1}{2} \theta_{j} \cdot x} f_{j}(x), \quad \widehat{f}_{j}=2^{-j(n \kappa-\varepsilon)} \chi_{\Omega_{j}}, \\
\Omega_{j}:=\left\{\xi \in 2 \pi 2^{j(1-\kappa)} \mathbb{Z}^{n}:|\xi| \leq 2^{j}\right\}+B\left(0, \frac{1}{10}\right) .
\end{gathered}
$$

Note that $\left|\Omega_{j}\right| \simeq 2^{j n \kappa}$, so that $\left\|f_{j}\right\|_{H^{s}} \simeq 2^{-j \frac{n \kappa}{2}+j \varepsilon+j s}$.

Proof

The Nikišin-Stein maximal principle does not hold in this context, and so we first give a direct proof of the Lebesgue measure result.

We consider a sum of the previous initial data

$$
f:=\sum_{j>1} f_{\theta_{j}}, \quad \theta_{j} \in \mathbb{S}^{d-1}
$$

where we take $R=2^{j}$ and normalise in a different way, so that

$$
\begin{gathered}
f_{\theta_{j}}(x):=e^{i \frac{1}{2} \theta_{j} \cdot x} f_{j}(x), \quad \widehat{f}_{j}=2^{-j(n \kappa-\varepsilon)} \chi_{\Omega_{j}}, \\
\Omega_{j}:=\left\{\xi \in 2 \pi 2^{j(1-\kappa)} \mathbb{Z}^{n}:|\xi| \leq 2^{j}\right\}+B\left(0, \frac{1}{10}\right) .
\end{gathered}
$$

Note that $\left|\Omega_{j}\right| \simeq 2^{j n \kappa}$, so that $\left\|f_{j}\right\|_{H^{s}} \simeq 2^{-j \frac{n \kappa}{2}+j \varepsilon+j s}$.
Then if $s<\frac{n \kappa}{2}-\varepsilon$ we can sum so that $f \in H^{s}$.

Proof

The Nikišin-Stein maximal principle does not hold in this context, and so we first give a direct proof of the Lebesgue measure result.

We consider a sum of the previous initial data

$$
f:=\sum_{j>1} f_{\theta_{j}}, \quad \theta_{j} \in \mathbb{S}^{d-1}
$$

where we take $R=2^{j}$ and normalise in a different way, so that

$$
\begin{gathered}
f_{\theta_{j}}(x):=e^{i \frac{1}{2} \theta_{j} \cdot x} f_{j}(x), \quad \widehat{f}_{j}=2^{-j(n \kappa-\varepsilon)} \chi_{\Omega_{j}}, \\
\Omega_{j}:=\left\{\xi \in 2 \pi 2^{j(1-\kappa)} \mathbb{Z}^{n}:|\xi| \leq 2^{j}\right\}+B\left(0, \frac{1}{10}\right) .
\end{gathered}
$$

Note that $\left|\Omega_{j}\right| \simeq 2^{j n \kappa}$, so that $\left\|f_{j}\right\|_{H^{s}} \simeq 2^{-j \frac{n \kappa}{2}+j \varepsilon+j s}$.
Then if $s<\frac{n \kappa}{2}-\varepsilon$ we can sum so that $f \in H^{s}$.
To generalise to the fractal case we will take $\frac{1}{n+2} \leq \kappa<\frac{n-\alpha+1}{n+2}$.

By the previous calculations, for all $x \in E_{j}:=\cup_{t \in T_{j}} X_{j}+t \theta_{j}$, where

$$
\begin{gathered}
X_{j}:=\left\{x \in 2^{j(\kappa-1)} \mathbb{Z}^{n}:|x| \leq 2\right\}+B\left(0,2^{-j}\right), \\
T_{j}:=\left\{t \in \frac{1}{2 \pi} 2^{2 j(\kappa-1)} \mathbb{Z}: 0<t<2^{-j}\right\},
\end{gathered}
$$

there is a $t_{j}(x) \in T_{j}$ such that $\left|e^{i t_{j}(x) \Delta} f_{\theta_{j}}(x)\right| \gtrsim 2^{j \varepsilon}$.

By the previous calculations, for all $x \in E_{j}:=\cup_{t \in T_{j}} X_{j}+t \theta_{j}$, where

$$
\begin{gathered}
X_{j}:=\left\{x \in 2^{j(\kappa-1)} \mathbb{Z}^{n}:|x| \leq 2\right\}+B\left(0,2^{-j}\right), \\
T_{j}:=\left\{t \in \frac{1}{2 \pi} 2^{2 j(\kappa-1)} \mathbb{Z}: 0<t<2^{-j}\right\},
\end{gathered}
$$

there is a $t_{j}(x) \in T_{j}$ such that $\left|e^{i t_{j}(x) \Delta} f_{\theta_{j}}(x)\right| \gtrsim 2^{j \varepsilon}$.
One can also show (essentially) that $\left|e^{i t_{j}(x) \Delta} \sum_{k \neq j} f_{\theta_{k}}(x)\right| \leq C$.

By the previous calculations, for all $x \in E_{j}:=\cup_{t \in T_{j}} X_{j}+t \theta_{j}$, where

$$
\begin{gathered}
X_{j}:=\left\{x \in 2^{j(\kappa-1)} \mathbb{Z}^{n}:|x| \leq 2\right\}+B\left(0,2^{-j}\right), \\
T_{j}:=\left\{t \in \frac{1}{2 \pi} 2^{2 j(\kappa-1)} \mathbb{Z}: 0<t<2^{-j}\right\},
\end{gathered}
$$

there is a $t_{j}(x) \in T_{j}$ such that $\left|e^{i t_{j}(x) \Delta} f_{\theta_{j}}(x)\right| \gtrsim 2^{j \varepsilon}$.
One can also show (essentially) that $\left|e^{i t_{j}(x) \Delta} \sum_{k \neq j} f_{\theta_{k}}(x)\right| \leq C$.
If $\kappa<\frac{1}{n+2}$, then $B(0,1 / 2) \subset \bigcap_{j>1} E_{j}$, and we are done.

By the previous calculations, for all $x \in E_{j}:=\cup_{t \in T_{j}} X_{j}+t \theta_{j}$, where

$$
\begin{gathered}
X_{j}:=\left\{x \in 2^{j(\kappa-1)} \mathbb{Z}^{n}:|x| \leq 2\right\}+B\left(0,2^{-j}\right), \\
T_{j}:=\left\{t \in \frac{1}{2 \pi} 2^{2 j(\kappa-1)} \mathbb{Z}: 0<t<2^{-j}\right\},
\end{gathered}
$$

there is a $t_{j}(x) \in T_{j}$ such that $\left|e^{i t_{j}(x) \Delta} f_{\theta_{j}}(x)\right| \gtrsim 2^{j \varepsilon}$.
One can also show (essentially) that $\left|e^{i t_{j}(x) \Delta} \sum_{k \neq j} f_{\theta_{k}}(x)\right| \leq C$.
If $\kappa<\frac{1}{n+2}$, then $B(0,1 / 2) \subset \bigcap_{j>1} E_{j}$, and we are done.
If $\kappa \geq \frac{1}{n+2}$, we consider the limit set

$$
\limsup _{j \rightarrow \infty} E_{j}:=\bigcap_{j>1} \bigcup_{k>j} E_{k}
$$

and prove that this is α-dimensional.

By the previous calculations, for all $x \in E_{j}:=\cup_{t \in T_{j}} X_{j}+t \theta_{j}$, where

$$
\begin{gathered}
X_{j}:=\left\{x \in 2^{j(\kappa-1)} \mathbb{Z}^{n}:|x| \leq 2\right\}+B\left(0,2^{-j}\right), \\
T_{j}:=\left\{t \in \frac{1}{2 \pi} 2^{2 j(\kappa-1)} \mathbb{Z}: 0<t<2^{-j}\right\},
\end{gathered}
$$

there is a $t_{j}(x) \in T_{j}$ such that $\left|e^{i t_{j}(x) \Delta} f_{\theta_{j}}(x)\right| \gtrsim 2^{j \varepsilon}$.
One can also show (essentially) that $\left|e^{i t_{j}(x) \Delta} \sum_{k \neq j} f_{\theta_{k}}(x)\right| \leq C$.
If $\kappa<\frac{1}{n+2}$, then $B(0,1 / 2) \subset \bigcap_{j>1} E_{j}$, and we are done.
If $\kappa \geq \frac{1}{n+2}$, we consider the limit set

$$
\limsup _{j \rightarrow \infty} E_{j}:=\bigcap_{j>1} \bigcup_{k>j} E_{k}
$$

and prove that this is α-dimensional.
For this we use that the limit is ' α-Hausdorff dense'.

Falconer's density theorem

Consider the Hausdorff content $\mathcal{H}_{\infty}^{\alpha}$ defined by

$$
\mathcal{H}_{\infty}^{\alpha}(E):=\inf \left\{\sum_{i} \delta_{i}^{\alpha}: E \subset \bigcup_{i} B\left(x_{i}, \delta_{i}\right)\right\} .
$$

Then $\operatorname{dim}\left(\lim \sup _{j \rightarrow \infty} E_{j}\right) \geq \alpha$.

Falconer's density theorem

Consider the Hausdorff content $\mathcal{H}_{\infty}^{\alpha}$ defined by

$$
\mathcal{H}_{\infty}^{\alpha}(E):=\inf \left\{\sum_{i} \delta_{i}^{\alpha}: E \subset \bigcup_{i} B\left(x_{i}, \delta_{i}\right)\right\} .
$$

Theorem (Falconer (1985))
Suppose that, for all balls $B_{r} \subset B(0,1)$ of radius r,

$$
\liminf _{j \rightarrow \infty} \mathcal{H}_{\infty}^{\alpha}\left(E_{j} \cap B(x, r)\right) \geq c r^{\alpha}
$$

Then $\operatorname{dim}\left(\lim \sup _{j \rightarrow \infty} E_{j}\right) \geq \alpha$.

Falconer's density theorem

Consider the Hausdorff content $\mathcal{H}_{\infty}^{\alpha}$ defined by

$$
\mathcal{H}_{\infty}^{\alpha}(E):=\inf \left\{\sum_{i} \delta_{i}^{\alpha}: E \subset \bigcup_{i} B\left(x_{i}, \delta_{i}\right)\right\} .
$$

Theorem (Falconer (1985))
Suppose that, for all balls $B_{r} \subset B(0,1)$ of radius r,

$$
\liminf _{j \rightarrow \infty} \mathcal{H}_{\infty}^{\alpha}\left(E_{j} \cap B(x, r)\right) \geq c r^{\alpha}
$$

Then $\operatorname{dim}\left(\lim \sup _{j \rightarrow \infty} E_{j}\right) \geq \alpha$.

The proof is completed by checking the density condition (\dagger) with $E_{j}=\bigcup_{t \in T_{j}} X_{j}+t \theta_{j}$ using a variant of the ergodic lemma.

Part 5:
 Decay for the Fourier transform of fractal measures

$$
\widehat{\delta_{X_{n}}=0}\left(R\left(\bar{\xi}, \xi_{n}\right)\right)=\frac{1}{(2 \pi)^{n / 2}} \int_{\mathbb{R}^{n-1}} e^{i R \bar{x} \cdot \bar{\xi}} d \bar{x} \text { is independent of } \xi_{n} .
$$

$$
\widehat{\delta_{x_{n}}=0}\left(R\left(\bar{\xi}, \xi_{n}\right)\right)=\frac{1}{(2 \pi)^{n / 2}} \int_{\mathbb{R}^{n-1}} e^{i R \bar{x} \cdot \bar{\xi}} d \bar{x} \text { is independent of } \xi_{n} .
$$

Thus, the Fourier transform of certain ($n-1$)-dimensional measures do not decay in every direction.

$$
\widehat{\delta_{x_{n}}=0}\left(R\left(\bar{\xi}, \xi_{n}\right)\right)=\frac{1}{(2 \pi)^{n / 2}} \int_{\mathbb{R}^{n-1}} e^{i R \bar{x} \cdot \bar{\xi}} d \bar{x} \text { is independent of } \xi_{n} .
$$

Thus, the Fourier transform of certain ($n-1$)-dimensional measures do not decay in every direction.

But perhaps they decay on average......
$\widehat{\delta_{X_{n}=0}}\left(R\left(\bar{\xi}, \xi_{n}\right)\right)=\frac{1}{(2 \pi)^{n / 2}} \int_{\mathbb{R}^{n-1}} e^{i R \bar{x} \cdot \bar{\xi}} d \bar{x}$ is independent of ξ_{n}.
Thus, the Fourier transform of certain ($n-1$)-dimensional measures do not decay in every direction.

But perhaps they decay on average......
Let $\beta_{n}(\alpha)$ denote the supremum of the numbers β for which

$$
\|\widehat{\mu}(R \cdot)\|_{L^{2}\left(\mathbb{S}^{n-1}\right)}^{2} \lesssim c_{\alpha}(\mu)\|\mu\| R^{-\beta}
$$

whenever $R>1$ and μ is α-dimensional and supported in $B(0,1)$.
$\widehat{\delta_{X_{n}=0}}\left(R\left(\bar{\xi}, \xi_{n}\right)\right)=\frac{1}{(2 \pi)^{n / 2}} \int_{\mathbb{R}^{n-1}} e^{i R \bar{x} \cdot \bar{\xi}} d \bar{x}$ is independent of ξ_{n}.
Thus, the Fourier transform of certain ($n-1$)-dimensional measures do not decay in every direction.

But perhaps they decay on average......
Let $\beta_{n}(\alpha)$ denote the supremum of the numbers β for which

$$
\|\widehat{\mu}(R \cdot)\|_{L^{2}\left(\mathbb{S}^{n-1}\right)}^{2} \lesssim c_{\alpha}(\mu)\|\mu\| R^{-\beta}
$$

whenever $R>1$ and μ is α-dimensional and supported in $B(0,1)$.

Question (Mattila (1987))
Who is $\beta_{n}(\alpha)$?
$\widehat{\delta_{X_{n}=0}}\left(R\left(\bar{\xi}, \xi_{n}\right)\right)=\frac{1}{(2 \pi)^{n / 2}} \int_{\mathbb{R}^{n-1}} e^{i R \bar{x} \cdot \bar{\xi}} d \bar{x}$ is independent of ξ_{n}.
Thus, the Fourier transform of certain ($n-1$)-dimensional measures do not decay in every direction.

But perhaps they decay on average......
Let $\beta_{n}(\alpha)$ denote the supremum of the numbers β for which

$$
\|\widehat{\mu}(R \cdot)\|_{L^{2}\left(\mathbb{S}^{n-1}\right)}^{2} \lesssim c_{\alpha}(\mu)\|\mu\| R^{-\beta}
$$

whenever $R>1$ and μ is α-dimensional and supported in $B(0,1)$.

Question (Mattila (1987))
Who is $\beta_{n}(\alpha)$?

Equivalently $\beta_{n}(\alpha)$ is the supremum of the numbers β for which

$$
\left\|(g d \sigma)^{\vee}(R \cdot)\right\|_{L^{1}(d \mu)} \lesssim \sqrt{c_{\alpha}(\mu)\|\mu\|} R^{-\beta / 2}\|g\|_{L^{2}\left(\mathbb{S}^{n-1}\right)}
$$

Previous results

$$
\beta_{2}(\alpha)=\left\{\begin{array}{lll}
\alpha, & \alpha \in(0,1 / 2], & \text { Mattila (1987) } \\
1 / 2, & \alpha \in[1 / 2,1], & \\
\alpha / 2, & \alpha \in[1,2], & \text { Wolff (1999) }
\end{array}\right.
$$

Previous results

$$
\begin{gathered}
\beta_{2}(\alpha)=\left\{\begin{array}{ll}
\alpha, & \alpha \in(0,1 / 2], \\
1 / 2, & \alpha \in[1 / 2,1], \\
\alpha / 2, & \alpha \in[1,2],
\end{array} \quad\right. \text { Mattila (1987) } \\
\beta_{n}(\alpha) \geq\left\{\begin{array}{ll}
\alpha, & \alpha \in\left(0, \frac{n-1}{2}\right], \\
\frac{n-1}{2}, & \alpha \in\left[\frac{n-1}{2}, \frac{n}{2}\right], \\
\alpha-1+\frac{n+2-2 \alpha}{4}, & \alpha \in\left[\frac{n}{2}, \frac{n+2}{2}\right],
\end{array} \quad\right. \text { Mattila (1999). } \\
\alpha-1, \\
\alpha \in\left[\frac{n+2}{2}, n\right],
\end{gathered} \quad \text { Sjölin (1993). }
$$

Lemma (Bridging lemma)
Let u be a solution to $\partial_{t} u=i(-\Delta)^{m / 2} u$ with initial data $u \in \dot{H}^{s}\left(\mathbb{R}^{n}\right)$ with $0<s<n / 2$. Then if $\beta_{n}(\alpha)>n-2 s$, then

$$
\operatorname{dim}\left\{x \in \mathbb{R}^{n}: \lim _{t \rightarrow 0} u(x, t) \neq u_{0}(x)\right\} \leq \alpha
$$

Lemma (Bridging lemma)

Let u be a solution to $\partial_{t} u=i(-\Delta)^{m / 2} u$ with initial data $u \in \dot{H}^{s}\left(\mathbb{R}^{n}\right)$ with $0<s<n / 2$. Then if $\beta_{n}(\alpha)>n-2 s$, then

$$
\operatorname{dim}\left\{x \in \mathbb{R}^{n}: \lim _{t \rightarrow 0} u(x, t) \neq u_{0}(x)\right\} \leq \alpha
$$

Proof: It will suffice to prove, for all α-dimensional μ,

$$
\left\|\sup _{0<t<1} \mid e^{i t(-\Delta)^{m / 2}} f\right\|_{L^{1}(d \mu)} \lesssim C_{\mu}\|f\|_{\dot{H}^{s}}
$$

Lemma (Bridging lemma)

Let u be a solution to $\partial_{t} u=i(-\Delta)^{m / 2} u$ with initial data $u \in \dot{H}^{s}\left(\mathbb{R}^{n}\right)$ with $0<s<n / 2$. Then if $\beta_{n}(\alpha)>n-2 s$, then

$$
\operatorname{dim}\left\{x \in \mathbb{R}^{n}: \lim _{t \rightarrow 0} u(x, t) \neq u_{0}(x)\right\} \leq \alpha
$$

Proof: It will suffice to prove, for all α-dimensional μ,

$$
\left\|\sup _{0<t<1} \mid e^{i t(-\Delta)^{m / 2}} f\right\|_{L^{1}(d \mu)} \lesssim C_{\mu}\|f\|_{\dot{H}^{s}}
$$

Writing $\widehat{f}=|\cdot|^{-s} \widehat{g}$ and using polar coordinates,

$$
(2 \pi)^{n / 2}\left|e^{i t(-\Delta)^{m / 2}} f(x)\right|
$$

Lemma (Bridging lemma)

Let u be a solution to $\partial_{t} u=i(-\Delta)^{m / 2} u$ with initial data $u \in \dot{H}^{s}\left(\mathbb{R}^{n}\right)$ with $0<s<n / 2$. Then if $\beta_{n}(\alpha)>n-2 s$, then

$$
\operatorname{dim}\left\{x \in \mathbb{R}^{n}: \lim _{t \rightarrow 0} u(x, t) \neq u_{0}(x)\right\} \leq \alpha .
$$

Proof: It will suffice to prove, for all α-dimensional μ,

$$
\left\|\sup _{0<t<1} \mid e^{i t(-\Delta)^{m / 2}} f\right\|_{L^{1}(d \mu)} \lesssim C_{\mu}\|f\|_{\dot{H}^{s}}
$$

Writing $\widehat{f}=|\cdot|^{-s} \widehat{g}$ and using polar coordinates,

$$
\begin{aligned}
& (2 \pi)^{n / 2}\left|e^{i t(-\Delta)^{m / 2}} f(x)\right| \\
= & \left.\left|\int_{\mathbb{R}^{n}} e^{-i t|\xi|^{m}}\right| \xi\right|^{-s} \widehat{g}(\xi) e^{i x \cdot \xi} d \xi \mid
\end{aligned}
$$

Lemma (Bridging lemma)

Let u be a solution to $\partial_{t} u=i(-\Delta)^{m / 2} u$ with initial data $u \in \dot{H}^{s}\left(\mathbb{R}^{n}\right)$ with $0<s<n / 2$. Then if $\beta_{n}(\alpha)>n-2 s$, then

$$
\operatorname{dim}\left\{x \in \mathbb{R}^{n}: \lim _{t \rightarrow 0} u(x, t) \neq u_{0}(x)\right\} \leq \alpha .
$$

Proof: It will suffice to prove, for all α-dimensional μ,

$$
\left\|\sup _{0<t<1} \mid e^{i t(-\Delta)^{m / 2}} f\right\|_{L^{1}(d \mu)} \lesssim C_{\mu}\|f\|_{\dot{H}^{s}}
$$

Writing $\widehat{f}=|\cdot|^{-s} \widehat{g}$ and using polar coordinates,

$$
\begin{aligned}
& (2 \pi)^{n / 2}\left|e^{i t(-\Delta)^{m / 2}} f(x)\right| \\
= & \left.\left|\int_{\mathbb{R}^{n}} e^{-i t|\xi|^{m}}\right| \xi\right|^{-s} \widehat{g}(\xi) e^{i x \cdot \xi} d \xi \mid \\
= & \left|\int_{0}^{\infty} e^{-i t R^{m}} R^{n-1-s} \int_{\mathbb{S}^{n-1}} \widehat{g}(R \omega) e^{i R x \cdot \omega} d \sigma(\omega) d R\right| .
\end{aligned}
$$

$$
\left|e^{i t(-\Delta)^{m / 2}} f(x)\right| \lesssim \int_{0}^{\infty} R^{n-1-s}\left|\int_{\mathbb{S}^{n-1}} \widehat{g}(R \omega) e^{i R x \cdot \omega} d \sigma(\omega)\right| d R
$$

$$
\left|e^{i t(-\Delta)^{m / 2}} f(x)\right| \lesssim \int_{0}^{\infty} R^{n-1-s}\left|\int_{\mathbb{S}^{n-1}} \widehat{g}(R \omega) e^{i R x \cdot \omega} d \sigma(\omega)\right| d R
$$

so that, by Fubini,

$$
\left\|\sup _{t \in \mathbb{R}}\left|e^{i t(-\Delta)^{m / 2}} f\right|\right\|_{L^{1}(d \mu)} \lesssim \int_{0}^{\infty} R^{n-1-s}\left\|(\widehat{g}(R \cdot) d \sigma)^{\vee}(R \cdot)\right\|_{L^{1}(d \mu)} d R .
$$

$$
\left|e^{i t(-\Delta)^{m / 2}} f(x)\right| \lesssim \int_{0}^{\infty} R^{n-1-s}\left|\int_{\mathbb{S}^{n-1}} \widehat{g}(R \omega) e^{i R x \cdot \omega} d \sigma(\omega)\right| d R
$$

so that, by Fubini,
$\left\|\sup _{t \in \mathbb{R}}\left|e^{i t(-\Delta)^{m / 2}} f\right|\right\|_{L^{1}(d \mu)} \lesssim \int_{0}^{\infty} R^{n-1-s}\left\|(\widehat{g}(R \cdot) d \sigma)^{\vee}(R \cdot)\right\|_{L^{1}(d \mu)} d R$.
By the dual version of the Mattila inequality,

$$
\left\|(\widehat{g}(R \cdot) d \sigma)^{\vee}(R \cdot)\right\|_{L^{1}(d \mu)} \leq C_{\mu}(1+R)^{-\beta / 2}\|\widehat{g}(R \cdot)\|_{L^{2}\left(\mathbb{S}^{n-1}\right)}
$$

for all $\beta<\beta_{n}(\alpha)$,

$$
\left|e^{i t(-\Delta)^{m / 2}} f(x)\right| \lesssim \int_{0}^{\infty} R^{n-1-s}\left|\int_{\mathbb{S}^{n-1}} \widehat{g}(R \omega) e^{i R x \cdot \omega} d \sigma(\omega)\right| d R
$$

so that, by Fubini,
$\left\|\sup _{t \in \mathbb{R}}\left|e^{i t(-\Delta)^{m / 2}} f\right|\right\|_{L^{1}(d \mu)} \lesssim \int_{0}^{\infty} R^{n-1-s}\left\|(\widehat{g}(R \cdot) d \sigma)^{\vee}(R \cdot)\right\|_{L^{1}(d \mu)} d R$.
By the dual version of the Mattila inequality,

$$
\left\|(\widehat{g}(R \cdot) d \sigma)^{\vee}(R \cdot)\right\|_{L^{1}(d \mu)} \leq C_{\mu}(1+R)^{-\beta / 2}\|\widehat{g}(R \cdot)\|_{L^{2}\left(\mathbb{S}^{n-1}\right)}
$$

for all $\beta<\beta_{n}(\alpha)$, so that

$$
\left\|\sup _{t \in \mathbb{R}} \mid e^{i t(-\Delta)^{m / 2}} f\right\|_{L^{1}(d \mu)} \leq C_{\mu} \int_{0}^{\infty} \frac{R^{n-1-s}}{(1+R)^{\beta / 2}}\|\widehat{g}(R \cdot)\|_{L^{2}\left(\mathbb{S}^{n-1}\right)} d R
$$

$$
\left|e^{i t(-\Delta)^{m / 2}} f(x)\right| \lesssim \int_{0}^{\infty} R^{n-1-s}\left|\int_{\mathbb{S}^{n-1}} \widehat{g}(R \omega) e^{i R x \cdot \omega} d \sigma(\omega)\right| d R
$$

so that, by Fubini,
$\left\|\sup _{t \in \mathbb{R}}\left|e^{i t(-\Delta)^{m / 2}} f\right|\right\|_{L^{1}(d \mu)} \lesssim \int_{0}^{\infty} R^{n-1-s}\left\|(\widehat{g}(R \cdot) d \sigma)^{\vee}(R \cdot)\right\|_{L^{1}(d \mu)} d R$.
By the dual version of the Mattila inequality,

$$
\left\|(\widehat{g}(R \cdot) d \sigma)^{\vee}(R \cdot)\right\|_{L^{1}(d \mu)} \leq C_{\mu}(1+R)^{-\beta / 2}\|\widehat{g}(R \cdot)\|_{L^{2}\left(\mathbb{S}^{n-1}\right)}
$$

for all $\beta<\beta_{n}(\alpha)$, so that
$\left\|\sup _{t \in \mathbb{R}} \mid e^{i t(-\Delta)^{m / 2}} f\right\|_{L^{1}(d \mu)} \leq C_{\mu} \int_{0}^{\infty} \frac{R^{n-1-s}}{(1+R)^{\beta / 2}}\|\widehat{g}(R \cdot)\|_{L^{2}\left(\mathbb{S}^{n-1}\right)} d R$.
Finally, by Cauchy-Schwarz,

$$
\leq C_{\mu}\left(\int_{0}^{\infty} \frac{R^{n-1-2 s}}{(1+R)^{\beta}} d R\right)^{1 / 2}\left(\int_{0}^{\infty}\|\widehat{g}(R \cdot)\|_{L^{2}\left(\mathbb{S}^{n-1}\right)}^{2} R^{n-1} d R\right)^{1 / 2}
$$

$$
\left|e^{i t(-\Delta)^{m / 2}} f(x)\right| \lesssim \int_{0}^{\infty} R^{n-1-s}\left|\int_{\mathbb{S}^{n-1}} \widehat{g}(R \omega) e^{i R x \cdot \omega} d \sigma(\omega)\right| d R
$$

so that, by Fubini,
$\left\|\sup _{t \in \mathbb{R}}\left|e^{i t(-\Delta)^{m / 2}} f\right|\right\|_{L^{1}(d \mu)} \lesssim \int_{0}^{\infty} R^{n-1-s}\left\|(\widehat{g}(R \cdot) d \sigma)^{\vee}(R \cdot)\right\|_{L^{1}(d \mu)} d R$.
By the dual version of the Mattila inequality,

$$
\left\|(\widehat{g}(R \cdot) d \sigma)^{\vee}(R \cdot)\right\|_{L^{1}(d \mu)} \leq C_{\mu}(1+R)^{-\beta / 2}\|\widehat{g}(R \cdot)\|_{L^{2}\left(\mathbb{S}^{n-1}\right)}
$$

for all $\beta<\beta_{n}(\alpha)$, so that

$$
\left\|\sup _{t \in \mathbb{R}} \mid e^{i t(-\Delta)^{m / 2}} f\right\|_{L^{1}(d \mu)} \leq C_{\mu} \int_{0}^{\infty} \frac{R^{n-1-s}}{(1+R)^{\beta / 2}}\|\widehat{g}(R \cdot)\|_{L^{2}\left(\mathbb{S}^{n-1}\right)} d R
$$

Finally, by Cauchy-Schwarz,

$$
\begin{aligned}
& \leq C_{\mu}\left(\int_{0}^{\infty} \frac{R^{n-1-2 s}}{(1+R)^{\beta}} d R\right)^{1 / 2}\left(\int_{0}^{\infty}\|\widehat{g}(R \cdot)\|_{L^{2}\left(\mathbb{S}^{n-1}\right)}^{2} R^{n-1} d R\right)^{1 / 2} \\
& \leq C_{\mu}\|g\|_{L^{2}\left(\mathbb{R}^{n}\right)}
\end{aligned}
$$

where for the final inequality we must take $\beta>n-2 s$.

Part 6:
 Convergence for the wave equation

Recall that, with initial data $u(\cdot, 0)=u_{0}$ and $\partial_{t} u(\cdot, 0)=u_{1}$, the solution to the wave equation satisfies

$$
\widehat{u}(\xi)=\cos (t|\xi|) \widehat{u}_{0}(\xi) \quad+\frac{\sin (t|\xi|)}{|\xi|} \widehat{u}_{1}(\xi)
$$

Recall that, with initial data $u(\cdot, 0)=u_{0}$ and $\partial_{t} u(\cdot, 0)=u_{1}$, the solution to the wave equation satisfies

$$
\begin{aligned}
\widehat{u}(\xi) & =\cos (t|\xi|) \widehat{u}_{0}(\xi) \quad+\frac{\sin (t|\xi|)}{|\xi|} \widehat{u}_{1}(\xi) \\
& =\frac{1}{2}\left(e^{i t|\xi|}+e^{-i t|\xi|}\right) \widehat{u}_{0}(\xi)+\frac{1}{2} \frac{\left(e^{i t|\xi|}-e^{-i t|\xi|}\right)}{i|\xi|} \widehat{u}_{1}(\xi)
\end{aligned}
$$

Recall that, with initial data $u(\cdot, 0)=u_{0}$ and $\partial_{t} u(\cdot, 0)=u_{1}$, the solution to the wave equation satisfies

$$
\begin{aligned}
& \widehat{u}(\xi)=\cos (t|\xi|) \widehat{u}_{0}(\xi) \\
&=\frac{1}{2}\left(e^{i t|\xi|}+e^{-i t|\xi|}\right) \widehat{u}_{0}(\xi)+\frac{\sin (t|\xi|)}{|\xi|} \widehat{u}_{1}(\xi) \\
&=e^{i t|\xi|} \frac{1}{2}\left(e^{i t|\xi|}-e^{-i t|\xi|}\right) \\
& i|\xi| \\
&\left.\widehat{u}_{1}(\xi)+\frac{\widehat{u}_{1}(\xi)}{i|\xi|}\right)+e^{-i t|\xi|} \frac{1}{2}\left(\widehat{u}_{0}(\xi)-\frac{\widehat{u}_{1}(\xi)}{i|\xi|}\right)
\end{aligned}
$$

Recall that, with initial data $u(\cdot, 0)=u_{0}$ and $\partial_{t} u(\cdot, 0)=u_{1}$, the solution to the wave equation satisfies

$$
\begin{aligned}
& \widehat{u}(\xi)=\cos (t|\xi|) \widehat{u}_{0}(\xi) \\
&=\frac{1}{2}\left(e^{i t|\xi|}+e^{-i t|\xi|}\right) \widehat{u}_{0}(\xi)+\frac{\sin (t|\xi|)}{|\xi|} \widehat{u}_{1}(\xi) \\
&=e^{i t|\xi|} \frac{1}{2}\left(e^{i t|\xi|}-e^{-i t|\xi|}\right) \\
&\left.\widehat{u}_{0}(\xi)+\frac{\widehat{u}_{1}(\xi)}{i|\xi|}\right)+e^{-i t|\xi|} \frac{1}{2}\left(\widehat{u}_{0}(\xi)-\frac{\widehat{u}_{1}(\xi)}{i|\xi|}\right) \\
&=e^{i t|\xi|} \widehat{f}_{+}(\xi) \\
& \quad+e^{-i t|\xi|} \widehat{f}_{-}(\xi) .
\end{aligned}
$$

Recall that, with initial data $u(\cdot, 0)=u_{0}$ and $\partial_{t} u(\cdot, 0)=u_{1}$, the solution to the wave equation satisfies

$$
\begin{aligned}
& \widehat{u}(\xi)=\cos (t|\xi|) \widehat{u}_{0}(\xi) \\
&=\frac{1}{2}\left(e^{i t|\xi|}+e^{-i t|\xi|}\right) \widehat{u}_{0}(\xi)+\frac{\sin (t|\xi|)}{|\xi|} \widehat{u}_{1}(\xi) \\
&=e^{i t|\xi|} \frac{1}{2}\left(e^{i t|\xi|}-e^{-i t|\xi|}\right) \\
&\left.\widehat{u}_{0}(\xi)+\frac{\widehat{u}_{1}(\xi)}{i|\xi|}\right)+e^{-i t|\xi|} \frac{1}{2}\left(\widehat{u}_{0}(\xi)-\frac{\widehat{u}_{1}(\xi)}{i|\xi|}\right) \\
&=e^{i t|\xi|} \widehat{f}_{+}(\xi) \\
& \quad+e^{-i t|\xi|} \widehat{f_{-}}(\xi) .
\end{aligned}
$$

With this notation, we can write

$$
u(\cdot, t)=e^{i t(-\Delta)^{1 / 2}} f_{+}+e^{-i t(-\Delta)^{1 / 2}} f_{-} .
$$

Recall that, with initial data $u(\cdot, 0)=u_{0}$ and $\partial_{t} u(\cdot, 0)=u_{1}$, the solution to the wave equation satisfies

$$
\begin{aligned}
\widehat{u}(\xi) & =\cos (t|\xi|) \widehat{u}_{0}(\xi) \\
& =\frac{1}{2}\left(e^{i t|\xi|}+e^{-i t|\xi|}\right) \widehat{u}_{0}(\xi) \\
= & +\frac{1}{2} \frac{\left(e^{i t|\xi|}(t|\xi|)\right.}{|\xi|} \widehat{u}_{1}(\xi) \\
& \left.=e^{-i t|\xi| \xi \mid}\right) \\
& =: e^{i t|\xi|} \frac{1}{2}\left(\widehat{u}_{1}(\xi)\right. \\
\widehat{f}_{+} & \left.(\xi)+\frac{\widehat{u}_{1}(\xi)}{i|\xi|}\right)+e^{-i t|\xi|} \frac{1}{2}\left(\widehat{u}_{0}(\xi)-\frac{\widehat{u}_{1}(\xi)}{i|\xi|}\right) \\
& +e^{-i t|\xi|} \widehat{f}_{-}(\xi) .
\end{aligned}
$$

With this notation, we can write

$$
u(\cdot, t)=e^{i t(-\Delta)^{1 / 2}} f_{+}+e^{-i t(-\Delta)^{1 / 2}} f_{-} .
$$

If the initial data is in $\dot{H}^{s} \times \dot{H}^{s-1}$, both f_{+}and f_{-}belong to \dot{H}^{s}.

Recall that, with initial data $u(\cdot, 0)=u_{0}$ and $\partial_{t} u(\cdot, 0)=u_{1}$, the solution to the wave equation satisfies

$$
\begin{aligned}
& \widehat{u}(\xi)=\cos (t|\xi|) \widehat{u}_{0}(\xi) \\
&=\frac{1}{2}\left(e^{i t|\xi|}+e^{-i t|\xi|}\right) \widehat{u}_{0}(\xi) \\
&=+\frac{1}{2} \frac{\left(e^{i t|\xi|}(t|\xi|)\right.}{|\xi|} \widehat{u}_{1}(\xi) \\
&\left.=e^{-i t|\xi| \xi \mid}\right) \\
&=: e^{i t|\xi|} \frac{1}{2}\left(\widehat{u}_{1}(\xi)\right. \\
&\left.\widehat{u}_{+}(\xi)+\frac{\widehat{u}_{1}(\xi)}{i|\xi|}\right)+e^{-i t|\xi|} \frac{1}{2}\left(\widehat{u}_{0}(\xi)-\frac{\widehat{u}_{1}(\xi)}{i|\xi|}\right) \\
&+e^{-i t|\xi|} \widehat{f}_{-}(\xi) .
\end{aligned}
$$

With this notation, we can write

$$
u(\cdot, t)=e^{i t(-\Delta)^{1 / 2}} f_{+}+e^{-i t(-\Delta)^{1 / 2}} f_{-} .
$$

If the initial data is in $\dot{H}^{s} \times \dot{H}^{s-1}$, both f_{+}and f_{-}belong to \dot{H}^{s}.
Thus convergence of $e^{i t(-\Delta)^{1 / 2}} f$ to f for all $f \in \dot{H}^{s}$ implies convergence of $u(\cdot, t)$ to u_{0} for all $\left(u_{0}, u_{1}\right) \in \dot{H}^{s} \times \dot{H}^{s-1}$

Corollary (of bridging lemma and Sjölin's estimate)
Let u be a solution to the Schrödinger equation with initial data in \dot{H}^{s} or to the wave equation with initial data in $\dot{H}^{s} \times \dot{H}^{s-1}$. Then

$$
\operatorname{dim}\left\{x \in \mathbb{R}^{n}: \lim _{t \rightarrow 0} u(x, t) \neq u_{0}(x)\right\} \leq n-2 s+1
$$

Corollary (of bridging lemma and Sjölin's estimate)

Let u be a solution to the Schrödinger equation with initial data in \dot{H}^{s} or to the wave equation with initial data in $\dot{H}^{s} \times \dot{H}^{s-1}$. Then

$$
\operatorname{dim}\left\{x \in \mathbb{R}^{n}: \lim _{t \rightarrow 0} u(x, t) \neq u_{0}(x)\right\} \leq n-2 s+1
$$

Proof: By the result of Sj ölin, $\beta(\alpha) \geq \alpha-1$ so that $\beta(\alpha)>n-2 s$ as long as $\alpha>n-2 s+1$. Thus, by the bridging lemma,

$$
\operatorname{dim}\left\{x \in \mathbb{R}^{n}: \lim _{t \rightarrow 0} u(x, t) \neq u_{0}(x)\right\} \leq n-2 s+1
$$

Corollary (of bridging lemma and Sjölin's estimate)

Let u be a solution to the Schrödinger equation with initial data in \dot{H}^{s} or to the wave equation with initial data in $\dot{H}^{s} \times \dot{H}^{s-1}$. Then

$$
\operatorname{dim}\left\{x \in \mathbb{R}^{n}: \lim _{t \rightarrow 0} u(x, t) \neq u_{0}(x)\right\} \leq n-2 s+1
$$

Proof: By the result of $\mathrm{Sjöl}$ lin, $\beta(\alpha) \geq \alpha-1$ so that $\beta(\alpha)>n-2 s$ as long as $\alpha>n-2 s+1$. Thus, by the bridging lemma,

$$
\operatorname{dim}\left\{x \in \mathbb{R}^{n}: \lim _{t \rightarrow 0} u(x, t) \neq u_{0}(x)\right\} \leq n-2 s+1
$$

Corollary (of the corollary)

Let u be a solution to the Schrödinger equation with initial data in \dot{H}^{1} or to the wave equation with initial data in $\dot{H}^{1} \times L^{2}$. Then

$$
\operatorname{dim}\left\{x \in \mathbb{R}^{n}: \lim _{t \rightarrow 0} u(x, t) \neq u_{0}(x)\right\} \leq n-1
$$

Theorem (Lucà-R.)
Let $n \geq 3$. Then

$$
\beta_{n}(\alpha) \geq \alpha-1+\frac{(n-\alpha)^{2}}{(n-1)(2 n-\alpha-1)}
$$

Theorem (Lucà-R.)
Let $n \geq 3$. Then

$$
\beta_{n}(\alpha) \geq \alpha-1+\frac{(n-\alpha)^{2}}{(n-1)(2 n-\alpha-1)}
$$

This is an improvement in the range $n / 2+1 \leq \alpha<n$.

Theorem (Lucà-R.)
Let $n \geq 3$. Then

$$
\beta_{n}(\alpha) \geq \alpha-1+\frac{(n-\alpha)^{2}}{(n-1)(2 n-\alpha-1)}
$$

This is an improvement in the range $n / 2+1 \leq \alpha<n$.
The proof takes advantage of:

Theorem (Lucà-R.)
Let $n \geq 3$. Then

$$
\beta_{n}(\alpha) \geq \alpha-1+\frac{(n-\alpha)^{2}}{(n-1)(2 n-\alpha-1)}
$$

This is an improvement in the range $n / 2+1 \leq \alpha<n$.
The proof takes advantage of:

- 'multilinear restriction' estimates due to Bennett-Carbery-Tao

Theorem (Lucà-R.)
Let $n \geq 3$. Then

$$
\beta_{n}(\alpha) \geq \alpha-1+\frac{(n-\alpha)^{2}}{(n-1)(2 n-\alpha-1)}
$$

This is an improvement in the range $n / 2+1 \leq \alpha<n$.
The proof takes advantage of:

- 'multilinear restriction' estimates due to Bennett-Carbery-Tao
- 'decomposition' of Bourgain-Guth.

Theorem (Lucà-R.)
Let $n \geq 3$. Then

$$
\beta_{n}(\alpha) \geq \alpha-1+\frac{(n-\alpha)^{2}}{(n-1)(2 n-\alpha-1)}
$$

This is an improvement in the range $n / 2+1 \leq \alpha<n$.
The proof takes advantage of:

- 'multilinear restriction' estimates due to Bennett-Carbery-Tao
- 'decomposition' of Bourgain-Guth.
- 'interpolation' with the argument of Sjölin.

Theorem (Lucà-R.)
Let $n \geq 3$. Then

$$
\beta_{n}(\alpha) \geq \alpha-1+\frac{(n-\alpha)^{2}}{(n-1)(2 n-\alpha-1)}
$$

This is an improvement in the range $n / 2+1 \leq \alpha<n$.
The proof takes advantage of:

- 'multilinear restriction' estimates due to Bennett-Carbery-Tao
- 'decomposition' of Bourgain-Guth.
- 'interpolation' with the argument of Sjölin.

Corollary

Let u be a solution to the Schrödinger equation with initial data in \dot{H}^{1} or to the wave equation with initial data in $\dot{H}^{1} \times L^{2}$. Then

$$
\operatorname{dim}\left\{x \in \mathbb{R}^{n}: \lim _{t \rightarrow 0} u(x, t) \neq u_{0}(x)\right\}<n-1
$$

Thus the solution cannot diverge on spheres.

Arigatou gozaimasu!

