Bilinear operators, commutators and smoothing

Árpád Bényi Department of Mathematics Western Washington University, USA

Harmonic Analysis and its Applications Matsumoto, August 24-28, 2016

- Review of linear theory: classical results and tools
- Bilinear Calderón-Zygmund and related operators
- Commutators
- Compact bilinear operators
- The weighted case
- Beyond bilinear Calderón-Zygmund theory
- Smoothing of commutators
- Further connections

- Review of linear theory: classical results and tools
- Bilinear Calderón-Zygmund and related operators
- Commutators
- Compact bilinear operators
- The weighted case
- Beyond bilinear Calderón-Zygmund theory
- Smoothing of commutators
- Further connections

- Review of linear theory: classical results and tools
- Bilinear Calderón-Zygmund and related operators
- Commutators
- Compact bilinear operators
- The weighted case
- Beyond bilinear Calderón-Zygmund theory
- Smoothing of commutators
- Further connections

- Review of linear theory: classical results and tools
- Bilinear Calderón-Zygmund and related operators
- Commutators
- Compact bilinear operators
- The weighted case
- Beyond bilinear Calderón-Zygmund theory
- Smoothing of commutators
- Further connections

- Review of linear theory: classical results and tools
- Bilinear Calderón-Zygmund and related operators
- Commutators
- Compact bilinear operators
- The weighted case
- Beyond bilinear Calderón-Zygmund theory
- Smoothing of commutators
- Further connections

- Review of linear theory: classical results and tools
- Bilinear Calderón-Zygmund and related operators
- Commutators
- Compact bilinear operators
- The weighted case
- Beyond bilinear Calderón-Zygmund theory
- Smoothing of commutators
- Further connections

- Review of linear theory: classical results and tools
- Bilinear Calderón-Zygmund and related operators
- Commutators
- Compact bilinear operators
- The weighted case
- Beyond bilinear Calderón-Zygmund theory
- Smoothing of commutators
- Further connections

- Review of linear theory: classical results and tools
- Bilinear Calderón-Zygmund and related operators
- Commutators
- Compact bilinear operators
- The weighted case
- Beyond bilinear Calderón-Zygmund theory
- Smoothing of commutators
- Further connections

The space of bounded mean oscillations

John-Nirenberg ('61): Given $f \in L^1_{loc}(\mathbb{R}^n)$, $f \in BMO$ if

$$||f||_{BMO} := \sup_{Q} \frac{1}{|Q|} \int_{Q} |f(x) - f_{Q}| dx = \int_{Q} |f - f_{Q}| < \infty$$

where the supremum is taken over all cubes Q in \mathbb{R}^n . Equivalently, one could consider the supremum over all balls in \mathbb{R}^n .

- 1) BMO is a Banach space (identify f, g with f g = const.),
- 2) It is invariant under translations and dilations,
- It is a lattice, and
- 4) $L^{\infty} \subset BMO$.

The space of bounded mean oscillations

John-Nirenberg ('61): Given $f \in L^1_{loc}(\mathbb{R}^n)$, $f \in BMO$ if

$$||f||_{BMO} := \sup_{Q} \frac{1}{|Q|} \int_{Q} |f(x) - f_{Q}| dx = \int_{Q} |f - f_{Q}| < \infty$$

where the supremum is taken over all cubes Q in \mathbb{R}^n . Equivalently, one could consider the supremum over all balls in \mathbb{R}^n .

- 1) BMO is a Banach space (identify f, g with f g = const.),
- 2) It is invariant under translations and dilations,
- 3) It is a lattice, and
- 4) $L^{\infty} \subset BMO$.

The L^p and Orlicz characterizations

For all 0 ,

$$\sup_{Q} \left(\int_{Q} |f(x) - f_{Q}|^{p} dx \right)^{1/p} \leq C_{p,n} \|f\|_{BMO}.$$

In fact

$$||f||_{BMO} \sim \sup_{Q} \left(\oint_{Q} |f(x) - f_{Q}|^{p} dx \right)^{1/p}, 1$$

Moreover

$$||f||_{BMO} \sim \sup_{Q} ||f - f_Q||_{\exp L,Q}$$

$$(\text{with } \varphi(t) = e^t - 1, \ \|g\|_{\varphi,Q} := \inf \Big\{ \lambda > 0 : f_Q \, \varphi\Big(\frac{|g(x)|}{\lambda}\Big) \leq 1 \Big\}.)$$

Proof: John-Nirenberg's inequality.

The L^p and Orlicz characterizations

For all 0 ,

$$\sup_{Q} \left(\int_{Q} |f(x) - f_{Q}|^{p} dx \right)^{1/p} \leq C_{p,n} \|f\|_{BMO}.$$

In fact,

$$||f||_{BMO} \sim \sup_{Q} \left(\oint_{Q} |f(x) - f_{Q}|^{p} dx \right)^{1/p}, 1$$

Moreover,

$$||f||_{BMO} \sim \sup_{Q} ||f - f_Q||_{\exp L, Q}$$

$$(\text{with } \varphi(t) = \mathrm{e}^t - 1, \ \|g\|_{\varphi,Q} := \inf \Big\{ \lambda > 0 : f_Q \, \varphi\Big(\frac{|g(x)|}{\lambda}\Big) \leq 1 \Big\}.)$$

Proof: John-Nirenberg's inequality.

The L^p and Orlicz characterizations

For all 0 ,

$$\sup_{Q} \left(\oint_{Q} |f(x) - f_{Q}|^{p} dx \right)^{1/p} \leq C_{p,n} \|f\|_{BMO}.$$

In fact,

$$||f||_{BMO} \sim \sup_{Q} \left(\oint_{Q} |f(x) - f_{Q}|^{p} dx \right)^{1/p}, 1$$

Moreover,

$$\|f\|_{BMO}\sim \sup_{Q}\|f-f_{Q}\|_{\exp L,Q}.$$

$$(\text{with } \varphi(t) = \mathrm{e}^t - 1, \ \|g\|_{\varphi,Q} := \inf \Big\{ \lambda > 0 : f_Q \, \varphi\Big(\frac{|g(x)|}{\lambda}\Big) \leq 1 \Big\}.)$$

Proof: John-Nirenberg's inequality.

Muckenhoupt weights

• The A_p class: for $w \ge 0$, 1 ,

$$w \in A_p \Leftrightarrow [w]_{A_p} := \sup_{Q} \left(\oint_{Q} w \right) \left(\oint_{Q} w^{1-p'} \right)^{\frac{p}{p'}} < \infty.$$

• The Hardy-Littlewood maximal function:

$$M(f)(x) = \sup_{Q \ni x} \oint_Q f(y) \, dy$$

Theorem (Muckenhoupt, '72; Coifman-Fefferman, '74)

If $p \in (1, \infty)$, $w \in A_p$ if and only if $M : L^p(w) \to L^p(w)$ is bounded.

Proof: All A_p weights satisfy a reverse Hölder inequality.

A_p and BMO

• The A_1 class: for $w \ge 0$,

$$w \in A_1 \Leftrightarrow M(w)(x) \lesssim w(x)$$
.

• The A_{∞} class: $A_{\infty} = \cup_{p \geq 1} A_p$.

Theorem

- (a) $w \in A_{\infty} \Rightarrow \log(w) \in BMO$.
- (b) $f \in BMO \Rightarrow e^{\delta f} \in A_{\infty}$, for sufficiently small $\delta > 0$.

Calderón-Zygmund operators

The **canonical example** is the Hilbert transform:

$$H(f)(x) = \text{p.v.} \frac{1}{x} * f = \lim_{\epsilon \to 0} \int_{|y| > \epsilon} \frac{f(x - y)}{y}, f \in \mathcal{S}(\mathbb{R}).$$

Formally,

$$H(f)(x) = \int \underbrace{\kappa(x-y)}_{k(x,y)} f(y) \, dy, \, \kappa(x) = \frac{1}{x};$$

$$\widehat{H(f)}(\xi) = -i\operatorname{sign}(\xi)\widehat{f}(\xi).$$

k(x,y) is singular along the diagonal $\Delta:=\{(x,y)\in\mathbb{R}^2:x=y\}$, yet $H:L^p\to L^p, 1< p<\infty$ and $H:L^\infty\to BMO$.

The n-dimensional versions of H are the Riesz transforms

Calderón-Zygmund operators

The **canonical example** is the Hilbert transform:

$$H(f)(x) = \text{p.v.} \frac{1}{x} * f = \lim_{\epsilon \to 0} \int_{|y| > \epsilon} \frac{f(x-y)}{y}, f \in \mathcal{S}(\mathbb{R}).$$

Formally,

$$H(f)(x) = \int \underbrace{\kappa(x-y)}_{k(x,y)} f(y) \, dy, \, \kappa(x) = \frac{1}{x};$$

$$\widehat{H(f)}(\xi) = -i\operatorname{sign}(\xi)\widehat{f}(\xi).$$

k(x,y) is singular along the diagonal $\Delta := \{(x,y) \in \mathbb{R}^2 : x = y\}$, yet $H: L^p \to L^p, 1 and <math>H: L^\infty \to BMO$.

The n-dimensional versions of H are the Riesz transforms

Calderón-Zygmund operators

The **canonical example** is the Hilbert transform:

$$H(f)(x) = \text{p.v.} \frac{1}{x} * f = \lim_{\epsilon \to 0} \int_{|y| > \epsilon} \frac{f(x - y)}{y}, f \in \mathcal{S}(\mathbb{R}).$$

Formally,

$$H(f)(x) = \int \underbrace{\kappa(x-y)}_{k(x,y)} f(y) \, dy, \, \kappa(x) = \frac{1}{x};$$

$$\widehat{H(f)}(\xi) = -i\operatorname{sign}(\xi)\widehat{f}(\xi).$$

k(x,y) is singular along the diagonal $\Delta:=\{(x,y)\in\mathbb{R}^2:x=y\}$, yet $H:L^p\to L^p, 1< p<\infty$ and $H:L^\infty\to BMO$.

The n-dimensional versions of H are the Riesz transforms.

Definition of Calderón-Zygmund kernel and operator

It captures the essential properties (of the kernel) of the Hilbert transform:

Definition

 $K: \mathbb{R}^n \times \mathbb{R}^n \setminus \Delta \to \mathbb{C}$ is a Calderón-Zygmund (CZ) kernel if

$$|K(x,y)| \lesssim |x-y|^{-n}$$

$$|\nabla_{x,y}K(x,y)|\lesssim |x-y|^{-n-1}.$$

Definition

T is a (linear) Calderón-Zygmund operator if

- (a) T is bounded on $L^2(\mathbb{R}^n)$;
- (b) There exists a CZ kernel K such that for all $f \in \mathcal{D}$

$$T(f)(x) = \int_{\mathbb{R}^n} K(x, y) f(y) \, dy, x \notin \text{supp}(f)$$

Definition of Calderón-Zygmund kernel and operator

It captures the essential properties (of the kernel) of the Hilbert transform:

Definition

 $K: \mathbb{R}^n \times \mathbb{R}^n \setminus \Delta \to \mathbb{C}$ is a Calderón-Zygmund (CZ) kernel if

$$|K(x,y)| \lesssim |x-y|^{-n}$$

$$|\nabla_{x,y}K(x,y)|\lesssim |x-y|^{-n-1}.$$

Definition

T is a (linear) Calderón-Zygmund operator if

- (a) T is bounded on $L^2(\mathbb{R}^n)$;
- (b) There exists a CZ kernel K such that for all $f \in \mathcal{D}$,

$$T(f)(x) = \int_{\mathbb{D}_R} K(x, y) f(y) \, dy, x \notin \text{supp}(f).$$

Boundedness of Calderón-Zygmund operators

Theorem (Calderón-Zygmund, '50s)

Let T be a CZ operator. Then:

- (1) $T: L^p \to L^p, 1 ;$
- (2) $T: L^1 \to L^{1,\infty}$;
- (3) $T:L^{\infty}\to BMO$.

Theorem (Coifman-Fefferman, '74)

Let T be a CZ operator. Then:

- (a) $T: L^p(w) \to L^p(w)$ for all $w \in A_p, 1 ;$
- (b) $w(\lbrace x: |T(f)(x)| > \lambda \rbrace) \lesssim \frac{1}{\lambda} \int_{\mathbb{R}^n} |f|w, \text{ for all } w \in A_1, \lambda > 0$

Boundedness of Calderón-Zygmund operators

Theorem (Calderón-Zygmund, '50s)

Let T be a CZ operator. Then:

- (1) $T: L^p \to L^p, 1 ;$
- (2) $T: L^1 \to L^{1,\infty}$;
- (3) $T: L^{\infty} \to BMO$.

Theorem (Coifman-Fefferman, '74)

Let T be a CZ operator. Then:

- (a) $T: L^p(w) \to L^p(w)$ for all $w \in A_p, 1 ;$
- (b) $w(\lbrace x: |T(f)(x)| > \lambda \rbrace) \lesssim \frac{1}{\lambda} \int_{\mathbb{R}^n} |f|w, \text{ for all } w \in A_1, \lambda > 0.$

Pseudo-differential operators as CZ operators

$$\mathcal{T}_{\sigma}(f)(x) := \int_{\mathbb{R}^n} \sigma(x,\xi) \widehat{f}(\xi) e^{2\pi i x \cdot \xi} d\xi$$

- $\sigma(x,\xi) = m(x) : T_{\sigma}(f) = m \cdot f$
- $\sigma(x,\xi) = m(\xi) : T_{\sigma}(f) = m * f$

$$\sigma \in S^m_{\rho,\delta} \Leftrightarrow |\partial_x^\alpha \partial_\xi^\beta \sigma(x,\xi)| \lesssim (1+|\xi|)^{m-\rho|\beta|+\delta|\alpha|}, \, \forall x,\xi, \, \forall \alpha,\beta$$

Proposition (Mihlin, '50s; also Hörmander)

If $\sigma \in S_{1,0}^0$, then T_{σ} is a Calderón-Zygmund operator.

Proposition (Bourdaud, '80s)

If $\sigma \in S^0_{1,1}$, then T_σ has CZ kernel, but is not necessarily a CZ operator.

The Coifman-Rochberg-Weiss commutator

Let *H* be the Hilbert transform.

Define

$$[H, b](f)(x) = b(x)H(f)(x) - H(bf)(x)$$
$$= p.v. \int \frac{b(x) - b(y)}{x - y} f(y) dy$$

If $f \in L^p$ and $b \in L^q$, $1 , <math>1 < q \le \infty$, and 1/p + 1/q = 1/r, we trivially have

$$||[H,b](f)||_{L^r} \lesssim ||b||_{L^q}||f||_{L^p}.$$

Coifman-Rochberg-Weiss ('76): If $b \in BMO$, $f \in L^p$, 1 ,

$$||[H,b](f)||_{L^p} \lesssim ||b||_{BMO}||f||_{L^p}.$$

The result is also true if $H \rightsquigarrow T$ (CZ operator)

The Coifman-Rochberg-Weiss commutator

Let H be the Hilbert transform.

Define

$$[H, b](f)(x) = b(x)H(f)(x) - H(bf)(x)$$
$$= p.v. \int \frac{b(x) - b(y)}{x - y} f(y) dy$$

If $f \in L^p$ and $b \in L^q$, $1 , <math>1 < q \le \infty$, and 1/p + 1/q = 1/r, we trivially have

$$||[H,b](f)||_{L^r} \lesssim ||b||_{L^q} ||f||_{L^p}.$$

Coifman-Rochberg-Weiss ('76): If $b \in BMO$, $f \in L^p$, 1 ,

$$||[H,b](f)||_{L^p} \lesssim ||b||_{BMO} ||f||_{L^p}.$$

The result is also true if $H \rightsquigarrow T$ (CZ operator).

The idea of C-R-W was to represent [T, b] as a Cauchy integral and use known weighted estimates for T.

Let

$$T_z(f) = e^{zb}T(e^{-zb})$$

Then

$$[T, b](f)(x) = \frac{1}{2\pi i} \int_{|z|=\delta} \frac{T_z(f)(x)}{z^2} dz,$$

and to estimate the L^p -norm of $[\, {\cal T}, \, b]$ with p>1 it is enough to estimate

$$\sup_{|z|=\delta} \|T_z(f)\|_{L^p}$$

The idea of C-R-W was to represent [T, b] as a Cauchy integral and use known weighted estimates for T. Let

$$T_z(f) = e^{zb} T(e^{-zb}).$$

Then

$$[T,b](f)(x) = \frac{1}{2\pi i} \int_{|z|=\delta} \frac{T_z(f)(x)}{z^2} dz,$$

and to estimate the L^p -norm of [T, b] with p > 1 it is enough to estimate

$$\sup_{|z|=\delta} \|T_z(f)\|_{L^p}$$

The idea of C-R-W was to represent [T, b] as a Cauchy integral and use known weighted estimates for T. Let

$$T_z(f) = e^{zb} T(e^{-zb}).$$

Then

$$[T,b](f)(x) = \frac{1}{2\pi i} \int_{|z|=\delta} \frac{T_z(f)(x)}{z^2} dz,$$

and to estimate the L^p -norm of [T,b] with p>1 it is enough to estimate

$$\sup_{|z|=\delta} \|T_z(f)\|_{L^p}$$

The idea of C-R-W was to represent [T, b] as a Cauchy integral and use known weighted estimates for T. Let

$$T_z(f) = e^{zb} T(e^{-zb}).$$

Then

$$[T,b](f)(x) = \frac{1}{2\pi i} \int_{|z|=\delta} \frac{T_z(f)(x)}{z^2} dz,$$

and to estimate the L^p -norm of [T,b] with p>1 it is enough to estimate

$$\sup_{|z|=\delta} \|T_z(f)\|_{L^p}$$

• Alvarez-Bagby- Kurtz-Pérez ('93): $L^p \rightarrow L^p$ boundedness of iterated commutators

$$[T,b]^k := [[[T, \underline{b}], \underline{b}], ..., \underline{b}] \qquad k \ge 1,$$

provided a linear operator T satisfies weighted estimates.

 Despite the great generality of the Cauchy integral trick approach, the method can produce in some situations sharp estimates. • Chung-Pereyra-Pérez (2011): If

$$||T||_{L^2(w)} \lesssim [w]_{A_2}^r,$$

then

$$||[T,b]^k||_{L^2(w)} \lesssim [w]_{A_2}^{r+k}.$$

• When T=H, the Hilbert transform on \mathbb{R} , or $T=R_j$, a Riesz transform on \mathbb{R}^n ,

$$||[T,b]^k||_{L^2(w)} \lesssim [w]_{A_2}^{1+k};$$

this is sharp in terms of powers of the A_2 -norm of the weight.

Let $CMO = \overline{C_c^{\infty}}^{\|\cdot\|_{BMO}}$ (the closure of $C_c^{\infty}(\mathbb{R}^n)$ in the BMO norm)

• Uchiyama ('78): If $b \in CMO$, T is CZ operator and $1 , then <math>[T,b]: L^p \to L^p$ is compact.

- Coifman, Lions, Meyer, Semmes ('93): Compensated compactness.
- Iwaniec-Sbordone ('98): Fredholm alternative for equations with CMO coefficients.
- Iwaniec-Sbordone ('92): Integrability of Jacobians

Let $CMO = \overline{C_c^{\infty}}^{\|\cdot\|_{BMO}}$ (the closure of $C_c^{\infty}(\mathbb{R}^n)$ in the BMO norm)

• Uchiyama ('78): If $b \in CMO$, T is CZ operator and $1 , then <math>[T,b]: L^p \to L^p$ is compact.

- Coifman, Lions, Meyer, Semmes ('93): Compensated compactness.
- Iwaniec-Sbordone ('98): Fredholm alternative for equations with *CMO* coefficients.
- Iwaniec-Sbordone ('92): Integrability of Jacobians

Let $CMO = \overline{C_c^{\infty}}^{\|\cdot\|_{BMO}}$ (the closure of $C_c^{\infty}(\mathbb{R}^n)$ in the BMO norm)

• Uchiyama ('78): If $b \in CMO$, T is CZ operator and $1 , then <math>[T,b]: L^p \to L^p$ is compact.

- Coifman, Lions, Meyer, Semmes ('93): Compensated compactness.
- Iwaniec-Sbordone ('98): Fredholm alternative for equations with CMO coefficients.
- Iwaniec-Sbordone ('92): Integrability of Jacobians.

Let $CMO = \overline{C_c^{\infty}}^{\|\cdot\|_{BMO}}$ (the closure of $C_c^{\infty}(\mathbb{R}^n)$ in the BMO norm)

• Uchiyama ('78): If $b \in CMO$, T is CZ operator and $1 , then <math>[T,b]: L^p \to L^p$ is compact.

- Coifman, Lions, Meyer, Semmes ('93): Compensated compactness.
- Iwaniec-Sbordone ('98): Fredholm alternative for equations with *CMO* coefficients.
- Iwaniec-Sbordone ('92): Integrability of Jacobians.

Compactness of commutators

Let $CMO = \overline{C_c^{\infty}}^{\|\cdot\|_{BMO}}$ (the closure of $C_c^{\infty}(\mathbb{R}^n)$ in the BMO norm)

• Uchiyama ('78): If $b \in CMO$, T is CZ operator and $1 , then <math>[T,b]: L^p \to L^p$ is compact.

Relevant applications:

- Coifman, Lions, Meyer, Semmes ('93): Compensated compactness.
- Iwaniec-Sbordone ('98): Fredholm alternative for equations with *CMO* coefficients.
- Iwaniec-Sbordone ('92): Integrability of Jacobians.

The argument relies on the **Fréchet-Kolmogorov** characterization of precompactness in L^p , namely

X is precompact in L^p if and only if

- $(1) \sup_{f \in X} \|f\|_{L^p} < \infty;$
- (2) $\lim_{A\to\infty} ||f||_{L^p(\{|x|>A\})} = 0$ uniformly in $f\in X$;
- (3) $\lim_{t\to 0} \|(f(t+\cdot)-f(\cdot))\|_{L^p} = 0$ uniformly in $f\in X$.

$$T(f,g)(x) = \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} K(x,y,z) f(y) g(z) dydz$$

$$|\partial^{\beta}K(x,y,z)|\lesssim \Big(|x-y|+|y-z|+|z-x|\Big)^{-2n-|\beta|},\ |\beta|\leq 1$$

- Bilinear Calderón-Zygmund operator (BCZO): T has a BCZ kernel and $T: L^{p_0} \times L^{q_0} \to L^{r_0}$, for some $1 < p_0, q_0 < \infty$, $\frac{1}{p_0} + \frac{1}{q_0} = \frac{1}{r_0} \le 1$.
- Grafakos-Torres (2002): If T is BCZO, ther

$$T: L^p imes L^q o L^r, ext{for all } 1 < p, q < \infty: rac{1}{p} + rac{1}{q} = rac{1}{r}.$$

$$T(f,g)(x) = \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} K(x,y,z) f(y) g(z) dydz$$

$$|\partial^{\beta}K(x,y,z)|\lesssim \left(|x-y|+|y-z|+|z-x|\right)^{-2n-|\beta|},\ |\beta|\leq 1.$$

- Bilinear Calderón-Zygmund operator (BCZO): T has a BCZ kernel and $T: L^{p_0} \times L^{q_0} \to L^{r_0}$, for some $1 < p_0, q_0 < \infty$, $\frac{1}{p_0} + \frac{1}{q_0} = \frac{1}{r_0} \le 1$.
- Grafakos-Torres (2002): If *T* is BCZO, then

$$T: L^p \times L^q \to L^r$$
, for all $1 < p, q < \infty: \frac{1}{p} + \frac{1}{q} = \frac{1}{r}$

$$T(f,g)(x) = \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} K(x,y,z) f(y) g(z) dydz$$

$$|\partial^{\beta}K(x,y,z)|\lesssim \left(|x-y|+|y-z|+|z-x|\right)^{-2n-|\beta|},\ |\beta|\leq 1.$$

- Bilinear Calderón-Zygmund operator (BCZO): T has a BCZ kernel and $T: L^{p_0} \times L^{q_0} \to L^{r_0}$, for some $1 < p_0, q_0 < \infty$, $\frac{1}{p_0} + \frac{1}{q_0} = \frac{1}{r_0} \le 1$.
- Grafakos-Torres (2002): If *T* is BCZO, then

$$T: L^p \times L^q \to L^r$$
, for all $1 < p, q < \infty: \frac{1}{p} + \frac{1}{q} = \frac{1}{r}$

$$T(f,g)(x) = \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} K(x,y,z) f(y) g(z) dydz$$

$$|\partial^{\beta}K(x,y,z)|\lesssim \left(|x-y|+|y-z|+|z-x|\right)^{-2n-|\beta|},\ |\beta|\leq 1.$$

- Bilinear Calderón-Zygmund operator (BCZO): T has a BCZ kernel and $T: L^{p_0} \times L^{q_0} \to L^{r_0}$, for some $1 < p_0, q_0 < \infty$, $\frac{1}{p_0} + \frac{1}{q_0} = \frac{1}{r_0} \le 1$.
- Grafakos-Torres (2002): If *T* is BCZO, then

$$T: L^p \times L^q \to L^r$$
, for all $1 < p, q < \infty : \frac{1}{p} + \frac{1}{q} = \frac{1}{r}$.

Examples of BCZO

Example (Bilinear Riesz transform)

$$R_1(f,g)(x) = \text{p.v.} \int_{\mathbb{R}} \int_{\mathbb{R}} \frac{x-y}{|(x-y,x-z)|^3} f(y)g(z) \, dydz.$$

Example (Translation invariant)

Let $\Omega \in L^1(\mathbf{R}^{2n})$ and Lipschitz of order $\epsilon \in (0,1)$, with $\int_{\mathbb{S}^{2n-1}} \Omega(u,v) d\sigma = 0$. Define

$$K_0(u,v) = |(u,v)|^{-2n} \Omega\left(\frac{(u,v)}{|(u,v)|}\right),$$

$$T(f,g)(x) = \int_{\mathbb{R}^{2n}} K_0(x-y,x-z)f(y)g(z) \, dydz$$

Examples of BCZO

Example (Bilinear Riesz transform)

$$R_1(f,g)(x) = \text{p.v.} \int_{\mathbb{D}} \int_{\mathbb{D}} \frac{x-y}{|(x-y,x-z)|^3} f(y)g(z) \, dydz.$$

Example (Translation invariant)

Let $\Omega \in L^1(\mathbf{R}^{2n})$ and Lipschitz of order $\epsilon \in (0,1)$, with $\int_{\mathbb{S}^{2n-1}} \Omega(u,v) d\sigma = 0$. Define

$$K_0(u,v)=|(u,v)|^{-2n}\Omega\Big(\frac{(u,v)}{|(u,v)|}\Big),$$

$$T(f,g)(x) = \int_{\mathbb{R}^{2n}} K_0(x-y,x-z)f(y)g(z) \, dydz.$$

Example (Bilinear Hörmander PSDO)

$$T_{\sigma}(f,g)(x) = \int_{\mathbb{R}^{2n}} \sigma(x,\xi,\eta) \widehat{f}(\xi) \widehat{g}(\eta) e^{ix\cdot(\xi+\eta)} d\xi d\eta,$$

with $\sigma \in BS_{1,\delta}^0, 0 \le \delta < 1$.

$$\sigma \in \mathit{BS}^m_{\rho,\delta} \Leftrightarrow |\partial_x^\alpha \partial_\xi^\beta \partial_\eta^\gamma \sigma(x,\xi,\eta)| \lesssim (1+|\xi|+|\eta|)^{m-\rho(|\beta|+|\gamma|)+\delta|\alpha|}$$

• B.-Bernicot-Maldonado-Naibo-Torres (2013): The "threshold" for $T_{\sigma}: L^{p} \times L^{q} \to L^{r}, 1/r = 1/p + 1/q$ with $\sigma \in BS_{\rho,\delta}^{m}, 0 \leq \delta \leq \rho \leq 1, \delta < 1$ is m < m(p,q),

$$m(p,q) := n(\rho-1) \Big[\max(1/2,1/p,1/q,1-1/r) + \max(0,-1+1/r) \Big].$$

Example (Bilinear Hörmander PSDO)

$$\mathcal{T}_{\sigma}(f,g)(x) = \int_{\mathbb{R}^{2n}} \sigma(x,\xi,\eta) \widehat{f}(\xi) \widehat{g}(\eta) e^{ix\cdot(\xi+\eta)} d\xi d\eta,$$

with $\sigma \in BS_{1,\delta}^0, 0 \le \delta < 1$.

$$\sigma \in BS^{m}_{\rho,\delta} \Leftrightarrow |\partial_{x}^{\alpha}\partial_{\xi}^{\beta}\partial_{\eta}^{\gamma}\sigma(x,\xi,\eta)| \lesssim (1+|\xi|+|\eta|)^{m-\rho(|\beta|+|\gamma|)+\delta|\alpha|}$$

• B.-Bernicot-Maldonado-Naibo-Torres (2013): The "threshold" for $T_{\sigma}: L^{p} \times L^{q} \to L^{r}, 1/r = 1/p + 1/q$ with $\sigma \in BS_{\rho,\delta}^{m}, 0 \leq \delta \leq \rho \leq 1, \delta < 1$ is m < m(p,q),

$$m(p,q) := n(\rho-1) \Big\lceil \max(1/2,1/p,1/q,1-1/r) + \max(0,-1+1/r) \Big\rceil.$$

- Based on BBMNT 2013, for $\sigma \in BS_{1,\delta}^m, 0 \le \delta < 1$, we need m < 0 to guarantee $T_\sigma : L^p \times L^q \to L^r$. For example, $BS_{1,\delta}^1 : L^p \times L^q \not\to L^r$.
- In previous example, if Ω is odd on \mathbb{S}^{2n-1} , we have

$$2T(f,g) = \int_{\mathbb{S}^{2n-1}} \Omega(\theta,\omega) BH_{\theta,\omega}(f,g)(x) d\theta d\omega,$$

$$BH_{ heta,\omega}(f,g)(x) = \int_{\mathbb{R}} f(x-t heta)g(x-t\omega)rac{dt}{t}.$$

- The trilinear Hilbert transform is not well-understood.
- Tao (2016): Cancelation in the multi-linear Hilbert transform; tools from arithmetic combinatorics.

- Based on BBMNT 2013, for $\sigma \in BS_{1,\delta}^m, 0 \le \delta < 1$, we need m < 0 to guarantee $T_\sigma : L^p \times L^q \to L^r$. For example, $BS_{1,\delta}^1 : L^p \times L^q \not\to L^r$.
- In previous example, if Ω is odd on \mathbb{S}^{2n-1} , we have

$$2T(f,g) = \int_{\mathbb{S}^{2n-1}} \Omega(\theta,\omega) BH_{\theta,\omega}(f,g)(x) d\theta d\omega,$$

$$BH_{\theta,\omega}(f,g)(x) = \int_{\mathbb{R}} f(x-t\theta)g(x-t\omega)\frac{dt}{t}.$$

- The trilinear Hilbert transform is not well-understood.
- Tao (2016): Cancelation in the multi-linear Hilbert transform; tools from arithmetic combinatorics.

- Based on BBMNT 2013, for $\sigma \in BS_{1,\delta}^m, 0 \le \delta < 1$, we need m < 0 to guarantee $T_\sigma : L^p \times L^q \to L^r$. For example, $BS_{1,\delta}^1 : L^p \times L^q \not\to L^r$.
- In previous example, if Ω is odd on \mathbb{S}^{2n-1} , we have

$$2T(f,g) = \int_{\mathbb{S}^{2n-1}} \Omega(\theta,\omega) BH_{\theta,\omega}(f,g)(x) d\theta d\omega,$$

$$BH_{\theta,\omega}(f,g)(x) = \int_{\mathbb{R}} f(x-t\theta)g(x-t\omega)\frac{dt}{t}.$$

- The trilinear Hilbert transform is not well-understood.
- Tao (2016): Cancelation in the multi-linear Hilbert transform; tools from arithmetic combinatorics.

- Based on BBMNT 2013, for $\sigma \in BS_{1,\delta}^m, 0 \le \delta < 1$, we need m < 0 to guarantee $T_\sigma : L^p \times L^q \to L^r$. For example, $BS_{1,\delta}^1 : L^p \times L^q \not\to L^r$.
- In previous example, if Ω is odd on \mathbb{S}^{2n-1} , we have

$$2T(f,g) = \int_{\mathbb{S}^{2n-1}} \Omega(\theta,\omega) BH_{\theta,\omega}(f,g)(x) d\theta d\omega,$$

$$BH_{\theta,\omega}(f,g)(x) = \int_{\mathbb{R}} f(x-t\theta)g(x-t\omega)\frac{dt}{t}.$$

- The trilinear Hilbert transform is not well-understood.
- Tao (2016): Cancelation in the multi-linear Hilbert transform; tools from arithmetic combinatorics.

Bilinear commutators

- $(T, b]_1(f, g) = T(bf, g) bT(f, g)$
- **2** $[T, b]_2(f, g) = T(f, bg) bT(f, g)$
- **3** $[T, \mathbf{b}](f, g) = [[T, b_1]_1, b_2]_2(f, g)$, where $\mathbf{b} = (b_1, b_2)$

Formally, if T has kernel K, then

$$C_{1} = \int \int K(x, y, z)(b(y) - b(x))f(y)g(z) dydz,$$

$$C_{2} = \int \int K(x, y, z)(b(z) - b(x))f(y)g(z) dydz,$$

$$C_{3} = \int \int K(x, y, z)(b_{1}(y) - b_{1}(x))(b_{2}(z) - b_{2}(x))f(y)g(z)dydz$$

Bilinear commutators

$$(T, b]_1(f, g) = T(bf, g) - bT(f, g)$$

②
$$[T, b]_2(f, g) = T(f, bg) - bT(f, g)$$

3
$$[T, \mathbf{b}](f, g) = [[T, b_1]_1, b_2]_2(f, g)$$
, where $\mathbf{b} = (b_1, b_2)$

Formally, if T has kernel K, then

$$C_{1} = \int \int K(x, y, z)(b(y) - b(x))f(y)g(z) dydz,$$

$$C_{2} = \int \int K(x, y, z)(b(z) - b(x))f(y)g(z) dydz,$$

$$C_{3} = \int \int K(x, y, z)(b_{1}(y) - b_{1}(x))(b_{2}(z) - b_{2}(x))f(y)g(z)dydz$$

Boundedness of commutators

Theorem

Let T BCZO and $b \in BMO$, $\mathbf{b} = (b_1, b_2) \in BMO \times BMO$. Then, for all 1/p + 1/q = 1/r, $1 < p, q < \infty$:

$$||[T,b]_1(f,g)||_{L^r}, ||[T,b]_2(f,g)||_{L^r} \lesssim ||b||_{BMO} ||f||_{L^p} ||g||_{L^q}$$

$$||[T,\mathbf{b}](f,g)||_{L^r} \lesssim ||b_1||_{BMO} ||b_2||_{BMO} ||f||_{L^p} ||g||_{L^q}.$$

 Perez-Torres (2003); Tang (2008); Lerner, Ombrosi, Pérez, Torres, Trujillo-González (2009); Perez, Pradolini, Torres, Trujillo-Gonzalez (2011)

Question

Are $C_1 - C_3$ "better" if b, **b** are assumed smoother?

Boundedness of commutators

Theorem

Let T BCZO and $b \in BMO$, $\mathbf{b} = (b_1, b_2) \in BMO \times BMO$. Then, for all 1/p + 1/q = 1/r, $1 < p, q < \infty$:

$$||[T,b]_1(f,g)||_{L^r}, ||[T,b]_2(f,g)||_{L^r} \lesssim ||b||_{BMO} ||f||_{L^p} ||g||_{L^q}$$

$$||[T,\mathbf{b}](f,g)||_{L^r} \lesssim ||b_1||_{BMO} ||b_2||_{BMO} ||f||_{L^p} ||g||_{L^q}.$$

 Perez-Torres (2003); Tang (2008); Lerner, Ombrosi, Pérez, Torres, Trujillo-González (2009); Perez, Pradolini, Torres, Trujillo-Gonzalez (2011)

Question

Are $C_1 - C_3$ "better" if b, **b** are assumed smoother?

Compact bilinear operators

Definition (Calderón, '64)

Let X, Y, Z be normed spaces and $T: X \times Y \to Z$ bilinear operator.

T is compact if $\{T(x,y): \|x\|, \|y\| \le 1\}$ is precompact in Z. T is separately compact if $T_x: Y \to Z$ and $T_y: X \to Z$ are compact for all $x \in X$, $y \in Y$.

- If *T* is bilinear compact, then *T* is separately compact. The converse is false.
- ullet If Z is Banach, the space of compact bilinear operators is a closed linear subspace of the space of $X \times Y \to Z$ bounded operators.

Compact bilinear operators

Definition (Calderón, '64)

Let X, Y, Z be normed spaces and $T: X \times Y \to Z$ bilinear operator.

T is compact if $\{T(x,y): \|x\|, \|y\| \le 1\}$ is precompact in Z. T is separately compact if $T_x: Y \to Z$ and $T_y: X \to Z$ are compact for all $x \in X$, $y \in Y$.

- ullet If T is bilinear compact, then T is separately compact. The converse is false.
- ullet If Z is Banach, the space of compact bilinear operators is a closed linear subspace of the space of $X \times Y \to Z$ bounded operators.

Simple examples

Example (Bounded, not separately compact)

$$\mathcal{T}: C[0,1] \times C[0,1] \to C[0,1]$$
 (with $\|\cdot\|_{L^{\infty}}$):

$$T(f,g)=f\cdot g;$$

T is not separately compact (hence not compact): $T_{f=1} = Id$ is not compact (Riesz's theorem).

Example (Compact)

$$S: C[0,1] \times C[0,1] \rightarrow C[0,1]$$
 (with $\|\cdot\|_{L^{\infty}}$):

$$S(f,g)(x) = \int_0^x f(t)g(t) dt$$

(Arzelà-Ascoli's theorem).

Simple examples

Example (Bounded, not separately compact)

$$T:C[0,1]\times C[0,1]\to C[0,1]$$
 (with $\|\cdot\|_{L^\infty}$):

$$T(f,g)=f\cdot g;$$

T is not separately compact (hence not compact): $T_{f=1} = Id$ is not compact (Riesz's theorem).

Example (Compact)

$$S: C[0,1] \times C[0,1] \rightarrow C[0,1]$$
 (with $\|\cdot\|_{L^{\infty}}$):

$$S(f,g)(x) = \int_0^x f(t)g(t) dt;$$

(Arzelà-Ascoli's theorem).

Digression: continuous vs separately continuous operators

Definition

Let X, Y, Z be normed spaces and $T: X \times Y \to Z$ a bilinear op. T is *continuous* if $||T|| < \infty$, where

$$||T|| := \inf\{M > 0 : ||T(x,y)||_Z \le M||x|| ||y||, \forall (x,y) \in X \times Y\}.$$

Equivalently, $T: X \times Y \to Z$ is continuous, with the product space endowed by $\|(x,y)\| := \|x\|_X + \|y\|_Y, \forall (x,y) \in X \times Y$. T is separately continuous if $T_x: Y \to Z$ and $T_y: X \to Z$ are continuous for all $x \in X$, $y \in Y$.

- ullet If T is a continuous bilinear operator, then T is separately continuous.
- In general, the converse is false.

Digression: continuous vs separately continuous operators

Definition

Let X, Y, Z be normed spaces and $T: X \times Y \to Z$ a bilinear op. T is *continuous* if $||T|| < \infty$, where

$$||T|| := \inf\{M > 0 : ||T(x,y)||_Z \le M||x|| ||y||, \forall (x,y) \in X \times Y\}.$$

Equivalently, $T: X \times Y \to Z$ is continuous, with the product space endowed by $\|(x,y)\| := \|x\|_X + \|y\|_Y, \forall (x,y) \in X \times Y$. T is separately continuous if $T_x: Y \to Z$ and $T_y: X \to Z$ are continuous for all $x \in X$, $y \in Y$.

- ullet If T is a continuous bilinear operator, then T is separately continuous.
- In general, the converse is false.

Digression: continuous vs separately continuous operators

Definition

Let X, Y, Z be normed spaces and $T: X \times Y \to Z$ a bilinear op. T is *continuous* if $||T|| < \infty$, where

$$||T|| := \inf\{M > 0 : ||T(x,y)||_Z \le M||x|| ||y||, \forall (x,y) \in X \times Y\}.$$

Equivalently, $T: X \times Y \to Z$ is continuous, with the product space endowed by $\|(x,y)\| := \|x\|_X + \|y\|_Y, \forall (x,y) \in X \times Y$. T is separately continuous if $T_x: Y \to Z$ and $T_y: X \to Z$ are continuous for all $x \in X$, $y \in Y$.

- ullet If T is a continuous bilinear operator, then T is separately continuous.
- In general, the converse is false.

Example (Separately continuous, not continuous)

$$\mathcal{T}: \mathcal{C}[0,1] \times \mathcal{C}[0,1] \to \mathcal{C}[0,1]$$
 (with $\|\cdot\|_{\mathcal{L}^1}$):

$$T(f,g)=f\cdot g$$

 BUT, interestingly, if X or Y is Banach, T continuous if and only of T is separately continuous! (Uniform boundedness principle)

Question: Is it possible to understand bilinear compactness via separate compactness? NO! Even if we assume ALL spaces X, Y, Z Banach, there are simple examples that show separate compactness DOES NOT IMPLY compactness.

Example (Separately continuous, not continuous)

$$T: C[0,1] \times C[0,1] \to C[0,1] \text{ (with } \|\cdot\|_{L^1})$$
:

$$T(f,g)=f\cdot g$$

• **BUT**, interestingly, if X or Y is Banach, T continuous if and only of T is separately continuous! (Uniform boundedness principle)

Question: Is it possible to understand bilinear compactness via separate compactness? NO! Even if we assume ALL spaces X, Y, Z Banach, there are simple examples that show separate compactness DOES NOT IMPLY compactness.

Example (Separately continuous, not continuous)

$$T: C[0,1] \times C[0,1] \to C[0,1] \text{ (with } \|\cdot\|_{L^1})$$
:

$$T(f,g)=f\cdot g$$

• **BUT,** interestingly, if X or Y is Banach, T continuous if and only of T is separately continuous! (Uniform boundedness principle)

Question: Is it possible to understand bilinear compactness via separate compactness? NO! Even if we assume ALL spaces X, Y, Z Banach, there are simple examples that show separate compactness DOES NOT IMPLY compactness.

Commutators as compact bilinear operators

• Fernandez-da Silva (2010): The notion of compactness in multilinear setting was previously considered only in the context of interpolation.

Theorem (B.-Torres, 2013)

Let T be a BCZO, $b \in CMO$, 1/p + 1/q = 1/r, $1 < p, q < \infty$ and $1 \le r < \infty$. Then

$$[T,b]_1,[T,b]_2:L^p\times L^q\to L^r$$
 are compact.

Similarly, if $\mathbf{b} \in CMO \times CMO$, then

 $[T, \mathbf{b}]$ is compact.

Commutators as compact bilinear operators

• Fernandez-da Silva (2010): The notion of compactness in multilinear setting was previously considered only in the context of interpolation.

Theorem (B.-Torres, 2013)

Let T be a BCZO, $b \in$ CMO, 1/p + 1/q = 1/r, $1 < p, q < \infty$ and $1 \le r < \infty$. Then

$$[T,b]_1,[T,b]_2:L^p\times L^q\to L^r$$
 are compact.

Similarly, if $\mathbf{b} \in CMO \times CMO$, then

 $[T, \mathbf{b}]$ is compact.

Fractional versions of BCZO

For 0 < a < 2n,

$$T_a(f,g)(x) = \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} K_a(x,y,z) f(y)g(z) dydz;$$

$$|\partial^{\beta} K_{a}(x,y,z)| \lesssim (|x-y|+|y-z|+|z-x|)^{-2n+a-|\beta|}, |\beta| \leq 1.$$

• a = 0: BCZ kernel

Example

$$K_a(x, y, z) = (|x - y| + |x - z|)^{-2n+a}, 0 < a < 2n$$

 T_a is the bilinear Riesz potential operator.

Fractional versions of BCZO

For $0 \le a < 2n$,

$$T_a(f,g)(x) = \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} K_a(x,y,z) f(y)g(z) dydz;$$

$$|\partial^{\beta} K_{\mathsf{a}}(x,y,z)| \lesssim (|x-y|+|y-z|+|z-x|)^{-2n+\mathsf{a}-|\beta|}, |\beta| \leq 1.$$

• a = 0: BCZ kernel

Example

$$K_a(x, y, z) = (|x - y| + |x - z|)^{-2n+a}, 0 < a < 2n$$

 T_a is the bilinear Riesz potential operator.

Fractional versions of BCZO

For $0 \le a < 2n$,

$$T_a(f,g)(x) = \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} K_a(x,y,z) f(y)g(z) dydz;$$

$$|\partial^{\beta} K_{a}(x,y,z)| \lesssim (|x-y|+|y-z|+|z-x|)^{-2n+a-|\beta|}, |\beta| \leq 1.$$

• a = 0: BCZ kernel

Example

$$K_a(x, y, z) = (|x - y| + |x - z|)^{-2n+a}, 0 < a < 2n;$$

 T_a is the bilinear Riesz potential operator.

Compactness of commutators of fractional BCZO

Theorem (B.-Damián-Moen-Torres, 2015)

Let 0 < a < 2n, $1 < p, q < \infty$, $1 \le r < \infty$ and

$$\frac{1}{r} = \frac{1}{p} + \frac{1}{q} - \frac{a}{n}.$$

Let T_a be the bilinear fractional operator with kernel K_a , and $b \in CMO$. Then

$$[T_a,b]_1,[T_a,b]_2:L^p\times L^q\to L^r$$
 are compact.

Similarly, if $\mathbf{b} \in CMO \times CMO$, then

 $[T_a, \mathbf{b}]$ is compact.

Fractional versions of Bilinear Hilbert Transform

• Grafakos ('92), Kenig-Stein ('99), Grafakos-Kalton (2001):

$$BI_a(f,g)(x) = \int_{\mathbb{R}^n} \frac{f(x-y)g(x+y)}{|y|^{n-a}} dy...$$

"close" to $BHT = BH_{-1,1}$ (in dimension n = 1).

Theorem (BDMT, 2015)

Let $0 < a < n, \ 1 < p, q, r < \infty, \ \frac{1}{p} + \frac{1}{q} < 1, \ \frac{1}{r} = \frac{1}{p} + \frac{1}{q} - \frac{a}{n}$, and $b \in CMO$. Then,

$$[BI_a,b]_1,[BI_a,b]_2:L^p\times L^q\to L^r.$$

Moreover,

$$[Bl_a,b]_1,[Bl_a,b]_2:L^p\times L^q\to L^r$$
 are separately compact.

Fractional versions of Bilinear Hilbert Transform

• Grafakos ('92), Kenig-Stein ('99), Grafakos-Kalton (2001):

$$BI_a(f,g)(x) = \int_{\mathbb{R}^n} \frac{f(x-y)g(x+y)}{|y|^{n-a}} dy...$$

"close" to $BHT = BH_{-1,1}$ (in dimension n = 1).

Theorem (BDMT, 2015)

Let $0 < a < n, \ 1 < p, q, r < \infty, \ \frac{1}{p} + \frac{1}{q} < 1, \ \frac{1}{r} = \frac{1}{p} + \frac{1}{q} - \frac{a}{n}$, and $b \in CMO$. Then,

$$BI_a, b]_1, [BI_a, b]_2 : L^p \times L^q \to L^r.$$

Moreover,

$$[Bl_a,b]_1,[Bl_a,b]_2:L^p\times L^q\to L^r$$
 are separately compact.

Fractional versions of Bilinear Hilbert Transform

• Grafakos ('92), Kenig-Stein ('99), Grafakos-Kalton (2001):

$$BI_a(f,g)(x) = \int_{\mathbb{R}^n} \frac{f(x-y)g(x+y)}{|y|^{n-a}} dy...$$

"close" to $BHT = BH_{-1,1}$ (in dimension n = 1).

Theorem (BDMT, 2015)

Let 0 < a < n, $1 < p, q, r < \infty$, $\frac{1}{p} + \frac{1}{q} < 1$, $\frac{1}{r} = \frac{1}{p} + \frac{1}{q} - \frac{a}{n}$, and $b \in CMO$. Then,

$$[BI_a,b]_1,[BI_a,b]_2:L^p\times L^q\to L^r.$$

Moreover,

$$[Bl_a,b]_1,[Bl_a,b]_2:L^p\times L^q\to L^r$$
 are separately compact.

• Chaffee-Torres (2015): CMO characterizes the compactness of

Fractional versions of Bilinear Hilbert Transform

• Grafakos ('92), Kenig-Stein ('99), Grafakos-Kalton (2001):

$$BI_a(f,g)(x) = \int_{\mathbb{R}^n} \frac{f(x-y)g(x+y)}{|y|^{n-a}} dy...$$

"close" to $BHT = BH_{-1,1}$ (in dimension n = 1).

Theorem (BDMT, 2015)

Let 0 < a < n, $1 < p, q, r < \infty$, $\frac{1}{p} + \frac{1}{q} < 1$, $\frac{1}{r} = \frac{1}{p} + \frac{1}{q} - \frac{a}{n}$, and $b \in CMO$. Then,

$$[BI_a, b]_1, [BI_a, b]_2 : L^p \times L^q \to L^r.$$

Moreover,

$$[Bl_a, b]_1, [Bl_a, b]_2 : L^p \times L^q \to L^r$$
 are separately compact.

• Chaffee-Torres (2015): CMO characterizes the compactness of commutators of BI_a .

30

Bilinear pseudodifferential operators of Hörmander type

• $\sigma \in BS_{o,\delta}^m$:

$$|\partial_x^\alpha \partial_\xi^\beta \partial_\eta^\gamma \sigma(x,\xi,\eta)| \lesssim (1+|\xi|+|\eta|)^{m+\delta|\alpha|-\rho(|\beta|+|\gamma|)}.$$

Bilinear pseudodifferential operators of Hörmander type

• $\sigma \in BS_{\rho,\delta}^m$:

$$|\partial_x^\alpha \partial_\xi^\beta \partial_\eta^\gamma \sigma(x,\xi,\eta)| \lesssim (1+|\xi|+|\eta|)^{m+\delta|\alpha|-\rho(|\beta|+|\gamma|)}.$$

• Associated BPSDO:

$$T_{\sigma}(f,g)(x) = \int \int \sigma(x,\xi,\eta) \widehat{f}(\xi) \widehat{g}(\eta) e^{ix\cdot(\xi+\eta)} d\xi d\eta$$

Bilinear pseudodifferential operators of Hörmander type

• $\sigma \in BS_{\rho,\delta}^m$:

$$|\partial_x^\alpha \partial_\xi^\beta \partial_\eta^\gamma \sigma(x,\xi,\eta)| \lesssim (1+|\xi|+|\eta|)^{m+\delta|\alpha|-\rho(|\beta|+|\gamma|)}.$$

• Associated BPSDO:

$$T_{\sigma}(f,g)(x) = \int \int \sigma(x,\xi,\eta) \widehat{f}(\xi) \widehat{g}(\eta) e^{ix\cdot(\xi+\eta)} d\xi d\eta$$

Commutators of BPSDOs and compactness

Corollary (to BT 2013)

Let
$$\sigma \in BS_{1,\delta}^0$$
, $0 \le \delta < 1$, $b \in CMO$, $1/p + 1/q = 1/r$, $1 < p, q < \infty$ and $1 \le r < \infty$. Then

$$[T_{\sigma},b]_1,[T_{\sigma},b]_2:L^p\times L^q\to L^r$$
 are compact.

Similarly, if $\mathbf{b} \in \mathit{CMO} \times \mathit{CMO}$, then

 $[T_{\sigma}, \mathbf{b}]$ is compact.

Commutators of BPSDOs and compactness

Corollary (to BT 2013)

Let
$$\sigma \in BS_{1,\delta}^0$$
, $0 \le \delta < 1$, $b \in CMO$, $1/p + 1/q = 1/r$, $1 < p, q < \infty$ and $1 \le r < \infty$. Then

$$[T_{\sigma},b]_1,[T_{\sigma},b]_2:L^p\times L^q\to L^r$$
 are compact.

Similarly, if $\mathbf{b} \in \mathit{CMO} \times \mathit{CMO}$, then

 $[T_{\sigma}, \mathbf{b}]$ is compact.

$T \in BCZO, b \in CMO \Rightarrow [T, b]_1 : L^p \times L^q \rightarrow L^r \text{ compact}$

- The proof relies on the Fréchet-Kolmogorov-Riesz theorem characterizing the pre-compactness of a set in L^r .
- ullet By density arguments: enough to check that for $b,f,g\in \mathcal{C}_c^\infty$:
- (a) For all $\epsilon > 0$, there exists an A > 0 ($A = A(\epsilon)$, but independent of f and g):

$$\left(\int_{|x|>A}\left|[T,b]_1(f,g)(x)\right|^rdx\right)^{1/r}\lesssim \epsilon\|f\|_{L^p}\|g\|_{L^q}.$$

(b) For $\epsilon \in (0,1)$ there exists a sufficiently small t_0 ($t_0 = t_0(\epsilon)$, but independent of f and g) such that for all $0 < |t| < t_0$:

$$||[T,b]_1(f,g)(\cdot)-[T,b]_1(f,g)(\cdot+t)||_{L^r} \lesssim \epsilon ||f||_{L^p}||g||_{L^q}$$

$\overline{T} \in BCZO, b \in CMO \Rightarrow [\overline{T}, b]_1 : L^p \times L^q \rightarrow L^r$ compact

- The proof relies on the Fréchet-Kolmogorov-Riesz theorem characterizing the pre-compactness of a set in L^r .
- By density arguments: enough to check that for $b, f, g \in C_c^{\infty}$:
- (a) For all $\epsilon > 0$, there exists an A > 0 ($A = A(\epsilon)$, but independent of f and g):

$$\left(\int_{|x|>A}\left|[T,b]_1(f,g)(x)\right|^rdx\right)^{1/r}\lesssim \epsilon\|f\|_{L^p}\|g\|_{L^q}.$$

(b) For $\epsilon \in (0,1)$ there exists a sufficiently small t_0 ($t_0 = t_0(\epsilon)$, but independent of f and g) such that for all $0 < |t| < t_0$:

$$||[T,b]_1(f,g)(\cdot)-[T,b]_1(f,g)(\cdot+t)||_{L^r}\lesssim \epsilon||f||_{L^p}||g||_{L^q}.$$

$\overline{T \in BCZO, b} \in CMO \Rightarrow [T, b]_1 : L^p \times L^q \rightarrow L^r$ compact

- The proof relies on the Fréchet-Kolmogorov-Riesz theorem characterizing the pre-compactness of a set in L^r .
- By density arguments: enough to check that for $b, f, g \in C_c^{\infty}$:
- (a) For all $\epsilon > 0$, there exists an A > 0 ($A = A(\epsilon)$, but independent of f and g):

$$\left(\int_{|x|>A}\left|[T,b]_1(f,g)(x)\right|^rdx\right)^{1/r}\lesssim \epsilon\|f\|_{L^p}\|g\|_{L^q}.$$

(b) For $\epsilon \in (0,1)$ there exists a sufficiently small t_0 ($t_0=t_0(\epsilon)$, but independent of f and g) such that for all $0<|t|< t_0$:

$$||[T,b]_1(f,g)(\cdot)-[T,b]_1(f,g)(\cdot+t)||_{L^r} \lesssim \epsilon ||f||_{L^p}||g||_{L^q}.$$

$\overline{T \in BCZO, b} \in CMO \Rightarrow [T, b]_1 : L^p \times L^q \rightarrow L^r$ compact

- The proof relies on the Fréchet-Kolmogorov-Riesz theorem characterizing the pre-compactness of a set in L^r .
- By density arguments: enough to check that for $b, f, g \in C_c^{\infty}$:
- (a) For all $\epsilon > 0$, there exists an A > 0 ($A = A(\epsilon)$, but independent of f and g):

$$\left(\int_{|x|>A}\left|[T,b]_1(f,g)(x)\right|^rdx\right)^{1/r}\lesssim \epsilon\|f\|_{L^p}\|g\|_{L^q}.$$

(b) For $\epsilon \in (0,1)$ there exists a sufficiently small t_0 ($t_0=t_0(\epsilon)$, but independent of f and g) such that for all $0<|t|< t_0$:

$$||[T,b]_1(f,g)(\cdot)-[T,b]_1(f,g)(\cdot+t)||_{L^r} \lesssim \epsilon ||f||_{L^p}||g||_{L^q}.$$

The proof of estimate (a)

• Let |x| > A (sufficiently large).

$$\begin{split} & |[T,b]_{1}(f,g)(x)| \leq \int \int_{y \in \text{supp } b} |K(x,y,z)| |b(y)| |f(y)| |g(z)| \, dy dz \\ & \lesssim \|b\|_{L^{\infty}} \int \int_{y \in \text{supp } b} \frac{|f(y)| |g(z)|}{(|x-y|+|x-z|)^{2n}} \, dy dz \\ & \lesssim \int_{y \in \text{supp } b} \frac{|f(y)|}{|x-y|^{n}} \int \frac{|g(z)|}{(|x-y|+|x-z|)^{n}} \, dz \, dy \\ & \lesssim 2^{n} |x|^{-n} \int_{y \in \text{supp } b} |f(y)| \, \Big(\int (|x-y|+|x-z|)^{-nq'} \, dz \Big)^{1/q'} \, dy \, \|g\|_{L^{q}} \\ & \lesssim 2^{n} |x|^{-n} |\text{supp } b|^{1/p'} |\|f\|_{L^{p}} \Big(\int (1/2+|z|)^{-nq'} \, dz \Big)^{1/q'} \|g\|_{L^{q}} \\ & \lesssim |x|^{-n} |\text{supp } b|^{1/p'} \|f\|_{L^{p}} \|g\|_{L^{q}}. \end{split}$$

The proof of estimate (a)

• Let |x| > A (sufficiently large).

$$\begin{split} & \big| [T,b]_1(f,g)(x) \big| \leq \int \int_{y \in \text{supp } b} |K(x,y,z)| |b(y)| |f(y)| |g(z)| \, dy dz \\ & \lesssim \|b\|_{L^{\infty}} \int \int_{y \in \text{supp } b} \frac{|f(y)| |g(z)|}{(|x-y|+|x-z|)^{2n}} \, dy dz \\ & \lesssim \int_{y \in \text{supp } b} \frac{|f(y)|}{|x-y|^n} \int \frac{|g(z)|}{(|x-y|+|x-z|)^n} \, dz \, dy \\ & \lesssim 2^n |x|^{-n} \int_{y \in \text{supp } b} |f(y)| \, \Big(\int (|x-y|+|x-z|)^{-nq'} \, dz \Big)^{1/q'} \, dy \, \|g\|_{L^q} \\ & \lesssim 2^n |x|^{-n} |\text{supp } b|^{1/p'} |\|f\|_{L^p} \Big(\int (1/2+|z|)^{-nq'} \, dz \Big)^{1/q'} \|g\|_{L^q} \\ & \lesssim |x|^{-n} |\text{supp } b|^{1/p'} \|f\|_{L^p} \|g\|_{L^q}. \end{split}$$

The proof of estimate (a)

• Let |x| > A (sufficiently large).

$$\begin{split} & \big| [T,b]_1(f,g)(x) \big| \leq \int \int_{y \in \text{supp } b} |K(x,y,z)| |b(y)| |f(y)| |g(z)| \, dy dz \\ & \lesssim \|b\|_{L^{\infty}} \int \int_{y \in \text{supp } b} \frac{|f(y)| |g(z)|}{(|x-y|+|x-z|)^{2n}} \, dy dz \\ & \lesssim \int_{y \in \text{supp } b} \frac{|f(y)|}{|x-y|^n} \int \frac{|g(z)|}{(|x-y|+|x-z|)^n} \, dz \, dy \\ & \lesssim 2^n |x|^{-n} \int_{y \in \text{supp } b} |f(y)| \, \Big(\int (|x-y|+|x-z|)^{-nq'} \, dz \Big)^{1/q'} \, dy \, \|g\|_{L^q} \\ & \lesssim 2^n |x|^{-n} |\text{supp } b|^{1/p'} |\|f\|_{L^p} \Big(\int (1/2+|z|)^{-nq'} \, dz \Big)^{1/q'} \|g\|_{L^q} \\ & \lesssim |x|^{-n} |\text{supp } b|^{1/p'} \|f\|_{L^p} \|g\|_{L^q}. \end{split}$$

Now integrate over |x| > A!

- More involved: a further decomposition is required.
- Controlling each term in this decomposition uses:
 - ① a variant of the maximal truncated bilinear singular integral
 - 2 the smoothness estimate of the kernel
 - 3 the L^p boundedness of the Hardy-Littlewood maximal function
- The second commutator is handled similarly.
- The second order commutator $[T, \mathbf{b}]$ is harder to study in general for symbols in BMO. It is in fact easier when the symbols are in CMO because of extra cancelations!

- More involved: a further decomposition is required.
- Controlling each term in this decomposition uses:
 - 1 a variant of the maximal truncated bilinear singular integral
 - 2 the smoothness estimate of the kernel
 - 3 the L^p boundedness of the Hardy-Littlewood maximal function
- The second commutator is handled similarly.
- The second order commutator $[T, \mathbf{b}]$ is harder to study in general for symbols in BMO. It is in fact easier when the symbols are in CMO because of extra cancelations!

- More involved: a further decomposition is required.
- Controlling each term in this decomposition uses:
 - 1 a variant of the maximal truncated bilinear singular integral
 - 2 the smoothness estimate of the kernel
 - 3 the L^p boundedness of the Hardy-Littlewood maximal function
- The second commutator is handled similarly.
- The second order commutator $[T, \mathbf{b}]$ is harder to study in general for symbols in BMO. It is in fact easier when the symbols are in CMO because of extra cancelations!

- More involved: a further decomposition is required.
- Controlling each term in this decomposition uses:
 - 1 a variant of the maximal truncated bilinear singular integral
 - 2 the smoothness estimate of the kernel
 - 3 the L^p boundedness of the Hardy-Littlewood maximal function
- The second commutator is handled similarly.
- The second order commutator $[T, \mathbf{b}]$ is harder to study in general for symbols in BMO. It is in fact easier when the symbols are in CMO because of extra cancelations!

Muckenhoupt weights: linear and bilinear

• The A_p class: for $w \ge 0$

$$w \in A_{
ho} \Leftrightarrow \sup_{Q} \left(\oint_{Q} w \right) \left(\oint_{Q} w^{1-
ho'}
ight)^{rac{
ho}{
ho'}} < \infty.$$

• For $\mathbf{p} = (p_1, p_2) \in (1, \infty)^2$ and $\mathbf{w} = (w_1, w_2)$ let

$$p = rac{p_1 p_2}{p_1 + p_2}$$
 and $u_{
m w} =
u_{
m w,p} = w_1^{rac{
ho}{p_1}} w_2^{rac{
ho}{p_2}}.$

• The $A_{\mathbf{p}}$ class:

$$\mathbf{w} \in \mathcal{A}_{\mathbf{p}} \Leftrightarrow \sup_{\mathcal{O}} \left(\oint_{\mathcal{O}} \nu_{\mathbf{w}} \right) \left(\oint_{\mathcal{O}} w_1^{1-\rho_1'} \right)^{\frac{\rho}{\rho_1'}} \left(\oint_{\mathcal{O}} w_2^{1-\rho_2'} \right)^{\frac{\rho}{\rho_2'}} < \infty$$

Muckenhoupt weights: linear and bilinear

• The A_p class: for $w \ge 0$

$$w \in A_{\rho} \Leftrightarrow \sup_{Q} \left(\oint_{Q} w \right) \left(\oint_{Q} w^{1-\rho'} \right)^{\frac{\rho}{\rho'}} < \infty.$$

• For $\mathbf{p} = (p_1, p_2) \in (1, \infty)^2$ and $\mathbf{w} = (w_1, w_2)$ let

$$p = rac{p_1 p_2}{p_1 + p_2} ext{ and }
u_{\mathbf{w}} =
u_{\mathbf{w}, \mathbf{p}} = w_1^{rac{p}{p_1}} w_2^{rac{p}{p_2}}.$$

• The $A_{\mathbf{p}}$ class:

$$\mathbf{w} \in A_{\mathbf{p}} \Leftrightarrow \sup_{Q} \left(\oint_{Q} \nu_{\mathbf{w}} \right) \left(\oint_{Q} w_{1}^{1-\rho_{1}'} \right)^{\frac{\rho}{\rho_{1}'}} \left(\oint_{Q} w_{2}^{1-\rho_{2}'} \right)^{\frac{\rho}{\rho_{2}'}} < \infty$$

Muckenhoupt weights: linear and bilinear

• The A_p class: for $w \ge 0$

$$w \in A_{\rho} \Leftrightarrow \sup_{Q} \left(\oint_{Q} w \right) \left(\oint_{Q} w^{1-\rho'} \right)^{\frac{\rho}{\rho'}} < \infty.$$

• For $\mathbf{p} = (p_1, p_2) \in (1, \infty)^2$ and $\mathbf{w} = (w_1, w_2)$ let

$$p = rac{p_1 p_2}{p_1 + p_2} ext{ and }
u_{\mathbf{w}} =
u_{\mathbf{w}, \mathbf{p}} = w_1^{rac{p}{p_1}} w_2^{rac{p}{p_2}}.$$

• The $A_{\mathbf{p}}$ class:

$$\mathbf{w} \in A_{\mathbf{p}} \Leftrightarrow \sup_{Q} \left(\oint_{Q} \nu_{\mathbf{w}} \right) \left(\oint_{Q} w_{1}^{1-\rho_{1}'} \right)^{\frac{p}{\rho_{1}'}} \left(\oint_{Q} w_{2}^{1-\rho_{2}'} \right)^{\frac{p}{\rho_{2}'}} < \infty.$$

A_p versus A_p

The Hardy-Littlewood maximal functions:

$$M(f)(x) = \sup_{Q \ni x} \oint_{Q} |f(y)| \, dy$$

$$\mathcal{M}(f,g)(x) = \sup_{Q \ni x} \left(\oint_{Q} |f(y)| \, dy \right) \left(\oint_{Q} |g(z)| \, dz \right)$$

Theorem (Muckenhoupt, '72; Coifman-Fefferman, '74)

If $p \in (1, \infty)$, $w \in A_p$ if and only if $M : L^p(w) \to L^p(w)$ is bounded.

Theorem (Lerner et all, 2009)

If $\mathbf{p} \in (1, \infty)^2$, $\mathbf{w} \in A_{\mathbf{p}}$ if and only if $\mathcal{M}: L^{p_1}(w_1) \times L^{p_2}(w_2) \to L^p(\nu_{\mathbf{w}})$ is bounded

A_p versus A_p

The Hardy-Littlewood maximal functions:

$$M(f)(x) = \sup_{Q \ni x} \int_{Q} |f(y)| \, dy$$

$$\mathcal{M}(f,g)(x) = \sup_{Q \ni x} \left(\oint_{Q} |f(y)| \, dy \right) \left(\oint_{Q} |g(z)| \, dz \right)$$

Theorem (Muckenhoupt, '72; Coifman-Fefferman, '74)

If $p \in (1, \infty)$, $w \in A_p$ if and only if $M : L^p(w) \to L^p(w)$ is bounded.

Theorem (Lerner et all, 2009)

If $\mathbf{p} \in (1, \infty)^2$, $\mathbf{w} \in A_{\mathbf{p}}$ if and only if $\mathcal{M}: L^{p_1}(w_1) \times L^{p_2}(w_2) \to L^p(\nu_{\mathbf{w}})$ is bounded

A_p versus A_p

The Hardy-Littlewood maximal functions:

$$M(f)(x) = \sup_{Q \ni x} \oint_{Q} |f(y)| \, dy$$
$$\mathcal{M}(f,g)(x) = \sup_{Q \ni x} \left(\oint_{Q} |f(y)| \, dy \right) \left(\oint_{Q} |g(z)| \, dz \right)$$

Theorem (Muckenhoupt, '72; Coifman-Fefferman, '74)

If $p \in (1, \infty)$, $w \in A_p$ if and only if $M : L^p(w) \to L^p(w)$ is bounded.

Theorem (Lerner et all, 2009)

If $\mathbf{p} \in (1, \infty)^2$, $\mathbf{w} \in A_{\mathbf{p}}$ if and only if $\mathcal{M}: L^{p_1}(w_1) \times L^{p_2}(w_2) \to L^p(\nu_{\mathbf{w}})$ is bounded.

• Lerner et all (2009):

$$\mathbf{w} \in \mathbf{A_p} \Leftrightarrow \left\{ \begin{array}{l} \nu_{\mathbf{w}} \in A_{2p} \\ \sigma_1 = w_1^{1-p_1'} \in A_{2p_1'} \\ \sigma_2 = w_2^{1-p_2'} \in A_{2p_2'}. \end{array} \right.$$

$$A_p \times A_p \subsetneq A_{\min(p_1,p_2)} \times A_{\min(p_1,p_2)} \subsetneq A_{p_1} \times A_{p_2} \subsetneq \mathbf{A}_{\mathbf{p}}$$

Moreover

$$\mathbf{w} \in A_p \times A_p \implies \nu_{\mathbf{w}} \in A_p.$$

$$\left(\oint_{\mathcal{Q}} \nu_{\mathbf{w},\rho} \right) \left(\oint_{\mathcal{Q}} \nu_{\mathbf{w},\rho}^{1-\rho'} \right)^{\rho-1} \le [w_1]_{A_{\rho}}^{\frac{\rho}{\rho_1}} [w_2]_{A_{\rho}}^{\frac{\rho}{\rho_2}}$$

• Lerner et all (2009):

$$\mathbf{w} \in \mathbf{A_p} \Leftrightarrow \left\{ \begin{array}{l} \nu_{\mathbf{w}} \in A_{2p} \\ \sigma_1 = w_1^{1-p_1'} \in A_{2p_1'} \\ \sigma_2 = w_2^{1-p_2'} \in A_{2p_2'}. \end{array} \right.$$

$$A_p \times A_p \subsetneq A_{\min(p_1,p_2)} \times A_{\min(p_1,p_2)} \subsetneq A_{p_1} \times A_{p_2} \subsetneq \mathbf{A_p}.$$

Moreover

$$\mathbf{w} \in A_p \times A_p \implies \nu_{\mathbf{w}} \in A_p.$$

$$\left(\oint_{Q} \nu_{\mathbf{w},p} \right) \left(\oint_{Q} \nu_{\mathbf{w},p}^{1-p'} \right)^{p-1} \le [w_1]_{A_p}^{\frac{p}{p_1}} [w_2]_{A}^{\frac{p}{p_2}}$$

• Lerner et all (2009):

$$\mathbf{w} \in \mathbf{A}_{\mathbf{p}} \Leftrightarrow \left\{ \begin{array}{l} \nu_{\mathbf{w}} \in A_{2p} \\ \sigma_1 = w_1^{1-p_1'} \in A_{2p_1'} \\ \sigma_2 = w_2^{1-p_2'} \in A_{2p_2'}. \end{array} \right.$$

$$A_p \times A_p \subsetneq A_{\min(p_1,p_2)} \times A_{\min(p_1,p_2)} \subsetneq A_{p_1} \times A_{p_2} \subsetneq \mathbf{A_p}.$$

Moreover

$$\mathbf{w} \in A_p \times A_p \implies \nu_{\mathbf{w}} \in A_p.$$

$$\left(\int_{Q} \nu_{\mathbf{w},p} \right) \left(\int_{Q} \nu_{\mathbf{w},p}^{1-p'} \right)^{p-1} \leq [w_{1}]_{A_{p}}^{\frac{p}{p_{1}}} [w_{2}]_{A_{p}}^{\frac{p}{p_{2}}}$$

• Lerner et all (2009):

$$\mathbf{w} \in \mathbf{A}_{\mathbf{p}} \Leftrightarrow \left\{ \begin{array}{l} \nu_{\mathbf{w}} \in A_{2p} \\ \sigma_1 = w_1^{1-p_1'} \in A_{2p_1'} \\ \sigma_2 = w_2^{1-p_2'} \in A_{2p_2'}. \end{array} \right.$$

$$A_p \times A_p \subsetneq A_{\min(p_1,p_2)} \times A_{\min(p_1,p_2)} \subsetneq A_{p_1} \times A_{p_2} \subsetneq \mathbf{A_p}$$
.

Moreover

$$\mathbf{w} \in A_p \times A_p \implies \nu_{\mathbf{w}} \in A_p.$$

$$\left(\int_{O} \nu_{\mathbf{w},p}\right) \left(\int_{O} \nu_{\mathbf{w},p}^{1-p'}\right)^{p-1} \leq [w_1]_{A_p}^{\frac{p}{p_1}} [w_2]_{A_p}^{\frac{p}{p_2}}.$$

Compactness of commutators: the weighted case

Theorem (BDMT, 2015)

Suppose $\mathbf{p} \in (1, \infty) \times (1, \infty)$, $p = \frac{p_1 p_2}{p_1 + p_2} > 1$, $b \in CMO$, and $\mathbf{w} \in \mathbf{A_p}$ with $\nu_{\mathbf{w}} \in A_p$. Then $[T, b]_1$, $[T, b]_2$ and $[T, \mathbf{b}]$ are compact operators from $L^{p_1}(w_1) \times L^{p_2}(w_2)$ to $L^p(\nu_{\mathbf{w}})$.

Corollary (BDMT, 2015)

Suppose $\mathbf{p} \in (1, \infty) \times (1, \infty)$, $p = \frac{p_1 p_2}{p_1 + p_2} > 1$, $b \in CMO$, and $\mathbf{w} \in A_p \times A_p$. Then $[T, b]_1$, $[T, b]_2$ and $[T, \mathbf{b}]$ are compact operators from $L^{p_1}(w_1) \times L^{p_2}(w_2)$ to $L^p(\nu_{\mathbf{w}})$.

Compactness of commutators: the weighted case

Theorem (BDMT, 2015)

Suppose $\mathbf{p} \in (1, \infty) \times (1, \infty)$, $p = \frac{p_1 p_2}{p_1 + p_2} > 1$, $b \in CMO$, and $\mathbf{w} \in \mathbf{A_p}$ with $\nu_{\mathbf{w}} \in A_p$. Then $[T, b]_1$, $[T, b]_2$ and $[T, \mathbf{b}]$ are compact operators from $L^{p_1}(w_1) \times L^{p_2}(w_2)$ to $L^p(\nu_{\mathbf{w}})$.

Corollary (BDMT, 2015)

Suppose $\mathbf{p} \in (1,\infty) \times (1,\infty)$, $p = \frac{p_1p_2}{p_1+p_2} > 1$, $b \in CMO$, and $\mathbf{w} \in A_p \times A_p$. Then $[T,b]_1$, $[T,b]_2$ and $[T,\mathbf{b}]$ are compact operators from $L^{p_1}(w_1) \times L^{p_2}(w_2)$ to $L^p(\nu_{\mathbf{w}})$.

- Clop-Cruz (2013): Sufficient conditions, similar to those in the Frechét-Kolmogorov-Riesz theorem, for precompactness in $L^p(w)$, where $w \in A_p$.
- The difficulty in the work of Clop-Cruz 2013 is circumventing the non-translation of weighted measure wdx. The A_p condition is crucial.
- The optimal condition for compactness should be $\mathbf{b} \in \mathbf{A}_p$; unfortunately, with this condition, at best $\nu_{\mathbf{w}} \in A_{2p}$, so Clop-Cruz 2013 does not apply.
- There are weights $\mathbf{w} \in \mathbf{A}_p$ with $\nu_{\mathbf{w}} \in A_p$ and $\mathbf{w} \notin A_p \times A_p$.

- Clop-Cruz (2013): Sufficient conditions, similar to those in the Frechét-Kolmogorov-Riesz theorem, for precompactness in $L^p(w)$, where $w \in A_p$.
- The difficulty in the work of Clop-Cruz 2013 is circumventing the non-translation of weighted measure wdx. The A_p condition is crucial.
- The optimal condition for compactness should be $\mathbf{b} \in \mathbf{A}_p$; unfortunately, with this condition, at best $\nu_{\mathbf{w}} \in A_{2p}$, so Clop-Cruz 2013 does not apply.
- There are weights $\mathbf{w} \in \mathbf{A}_p$ with $\nu_{\mathbf{w}} \in A_p$ and $\mathbf{w} \notin A_p \times A_p$.

- Clop-Cruz (2013): Sufficient conditions, similar to those in the Frechét-Kolmogorov-Riesz theorem, for precompactness in $L^p(w)$, where $w \in A_p$.
- The difficulty in the work of Clop-Cruz 2013 is circumventing the non-translation of weighted measure wdx. The A_p condition is crucial.
- The optimal condition for compactness should be $\mathbf{b} \in \mathbf{A}_p$; unfortunately, with this condition, at best $\nu_{\mathbf{w}} \in A_{2p}$, so Clop-Cruz 2013 does not apply.
- There are weights $\mathbf{w} \in \mathbf{A}_p$ with $\nu_{\mathbf{w}} \in A_p$ and $\mathbf{w} \notin A_p \times A_p$.

- Clop-Cruz (2013): Sufficient conditions, similar to those in the Frechét-Kolmogorov-Riesz theorem, for precompactness in $L^p(w)$, where $w \in A_p$.
- The difficulty in the work of Clop-Cruz 2013 is circumventing the non-translation of weighted measure wdx. The A_p condition is crucial.
- The optimal condition for compactness should be $\mathbf{b} \in \mathbf{A}_p$; unfortunately, with this condition, at best $\nu_{\mathbf{w}} \in A_{2p}$, so Clop-Cruz 2013 does not apply.
- There are weights $\mathbf{w} \in \mathbf{A}_p$ with $\nu_{\mathbf{w}} \in A_p$ and $\mathbf{w} \notin A_p \times A_p$.

Beyond BCZ theory: commuting $BS_{1,0}^1$ and Lip^1

• $\sigma \in BS_{1,\delta}^1, 0 \le \delta < 1$:

$$|\partial_x^\alpha \partial_\xi^\beta \partial_\eta^\gamma \sigma(x,\xi,\eta)| \lesssim (1+|\xi|+|\eta|)^{1+\delta|\alpha|-(|\beta|+|\gamma|)}.$$

Example

$$\sigma_1(\xi,\eta)=(1+|\xi|^2+|\eta|^2)^{1/2}$$
-bilinear counterpart of the symbol of $J^1:=(I-\Delta)^{1/2}$.

• $a \in Lip^1$: $a, \nabla a \in L^{\infty}$

Beyond BCZ theory: commuting $BS_{1,0}^1$ and Lip^1

• $\sigma \in BS_{1,\delta}^1$, $0 \le \delta < 1$:

$$|\partial_x^\alpha \partial_\xi^\beta \partial_\eta^\gamma \sigma(x,\xi,\eta)| \lesssim (1+|\xi|+|\eta|)^{1+\delta|\alpha|-(|\beta|+|\gamma|)}.$$

Example

$$\sigma_1(\xi,\eta)=(1+|\xi|^2+|\eta|^2)^{1/2}$$
-bilinear counterpart of the symbol of $J^1:=(I-\Delta)^{1/2}$.

• $a \in Lip^1$: $a, \nabla a \in L^{\infty}$

Beyond BCZ theory: commuting $BS_{1,0}^1$ and Lip^1

• $\sigma \in BS_{1,\delta}^1, 0 \le \delta < 1$:

$$|\partial_x^\alpha \partial_\xi^\beta \partial_\eta^\gamma \sigma(x,\xi,\eta)| \lesssim (1+|\xi|+|\eta|)^{1+\delta|\alpha|-(|\beta|+|\gamma|)}.$$

Example

$$\sigma_1(\xi,\eta)=(1+|\xi|^2+|\eta|^2)^{1/2}$$
-bilinear counterpart of the symbol of $J^1:=(I-\Delta)^{1/2}$.

• $a \in Lip^1$: $a, \nabla a \in L^{\infty}$

Smoothing of $[BS_{1.0}^1, Lip^1]$

Given $\sigma \in BS_{1,0}^1$, the associated BPSDO:

$$T_{\sigma}(f,g)(x) = \int \int \sigma(x,\xi,\eta) \widehat{f}(\xi) \widehat{g}(\eta) e^{ix\cdot(\xi+\eta)} d\xi d\eta$$

Theorem (B.-Oh, 2014)

Let $\sigma \in BS^1_{1,0}$ and $a \in Lip^1$. Then, $[T_{\sigma}, a]_j, j = 1, 2$, are BCZOs. In particular, $[T_{\sigma}, a]_j : L^p \times L^q \to L^r$ for Hölder triples (p, q, r) and appropriate end-point results.

Corollary

Let $\sigma \in BS^1_{1,0}$, $a \in Lip^1$ and $b \in CMO$. Then $[[T_{\sigma}, a]_j, b]_k, j, k = 1, 2$, are compact bilinear operators $L^p \times L^q \to L^r$.

Smoothing of $[BS_{1,0}^1, Lip^1]$

Given $\sigma \in BS_{1,0}^1$, the associated BPSDO:

$$T_{\sigma}(f,g)(x) = \int \int \sigma(x,\xi,\eta) \widehat{f}(\xi) \widehat{g}(\eta) e^{ix\cdot(\xi+\eta)} d\xi d\eta$$

Theorem (B.-Oh, 2014)

Let $\sigma \in BS^1_{1,0}$ and $a \in Lip^1$. Then, $[T_{\sigma},a]_j, j=1,2$, are BCZOs. In particular, $[T_{\sigma},a]_j: L^p \times L^q \to L^r$ for Hölder triples (p,q,r) and appropriate end-point results.

Corollary

Let $\sigma \in BS_{1,0}^1$, $a \in Lip^1$ and $b \in CMO$. Then $[[T_{\sigma}, a]_j, b]_k, j, k = 1, 2$, are compact bilinear operators $L^p \times L^q \to L^r$.

Smoothing of $[BS_{1,0}^1, Lip^1]$

Given $\sigma \in BS_{1,0}^1$, the associated BPSDO:

$$T_{\sigma}(f,g)(x) = \int \int \sigma(x,\xi,\eta) \widehat{f}(\xi) \widehat{g}(\eta) e^{ix\cdot(\xi+\eta)} d\xi d\eta$$

Theorem (B.-Oh, 2014)

Let $\sigma \in BS^1_{1,0}$ and $a \in Lip^1$. Then, $[T_{\sigma},a]_j, j=1,2$, are BCZOs. In particular, $[T_{\sigma},a]_j: L^p \times L^q \to L^r$ for Hölder triples (p,q,r) and appropriate end-point results.

Corollary

Let $\sigma \in BS^1_{1,0}$, $a \in Lip^1$ and $b \in CMO$. Then $[[T_{\sigma}, a]_j, b]_k, j, k = 1, 2$, are compact bilinear operators $L^p \times L^q \to L^r$.

Corollary

With σ_1 and a as above:

$$\|T_{\sigma_1}(af,g)-aT_{\sigma_1}(f,g)\|_{L^r}\lesssim \|a\|_{Lip^1}\|f\|_{L^p}\|g\|_{L^q}.$$

Corollary

With σ_1 and a as above:

$$\|T_{\sigma_1}(af,g)-aT_{\sigma_1}(f,g)\|_{L^r}\lesssim \|a\|_{Lip^1}\|f\|_{L^p}\|g\|_{L^q}.$$

• A bilinear counterpart of the Kato-Ponce commutator estimate

$$||[J^s,f](g)||_{L^r} \lesssim ||\nabla f||_{L^\infty} ||J^{s-1}g||_{L^r} + ||J^s f||_{L^r} ||g||_{L^\infty}.$$

Uses the bilinear T1 theorem.

Theorem (Grafakos-Torres, 2001; Hart, 2014)

- (1) $T(1,1), T^{*1}(1,1), T^{*2}(1,1) \in BMO$
- (2) T satisfies the bilinear weak-boundedness property.
- If K is the kernel of T_{σ} , the kernel of $[T_{\sigma}, a]_1$ is

$$K_1(x, y, z) = (a(y) - a(x))K(x, y, z).$$

- The estimates on σ allow us to prove K_1 is BCZ kernel.
- Same for $[T_{\sigma}, a]_2$

Uses the bilinear T1 theorem.

Theorem (Grafakos-Torres, 2001; Hart, 2014)

- (1) $T(1,1), T^{*1}(1,1), T^{*2}(1,1) \in BMO$
- (2) T satisfies the bilinear weak-boundedness property.
- If K is the kernel of T_{σ} , the kernel of $[T_{\sigma}, a]_1$ is

$$K_1(x, y, z) = (a(y) - a(x))K(x, y, z).$$

- The estimates on σ allow us to prove K_1 is BCZ kernel.
- Same for $[T_{\sigma}, a]_2$.

Uses the bilinear T1 theorem.

Theorem (Grafakos-Torres, 2001; Hart, 2014)

- (1) $T(1,1), T^{*1}(1,1), T^{*2}(1,1) \in BMO$
- (2) T satisfies the bilinear weak-boundedness property.
- If K is the kernel of T_{σ} , the kernel of $[T_{\sigma}, a]_1$ is

$$K_1(x, y, z) = (a(y) - a(x))K(x, y, z).$$

- The estimates on σ allow us to prove K_1 is BCZ kernel.
- Same for $[T_{\sigma}, a]_2$.

Uses the bilinear T1 theorem.

Theorem (Grafakos-Torres, 2001; Hart, 2014)

- (1) $T(1,1), T^{*1}(1,1), T^{*2}(1,1) \in BMO$
- (2) T satisfies the bilinear weak-boundedness property.
- If K is the kernel of T_{σ} , the kernel of $[T_{\sigma}, a]_1$ is

$$K_1(x, y, z) = (a(y) - a(x))K(x, y, z).$$

- The estimates on σ allow us to prove K_1 is BCZ kernel.
- Same for $[T_{\sigma}, a]_2$.

• Reduction to $BS_{1,0}^0$: For $f, g \in \mathcal{S}$,

$$T_{\sigma}(f,g) = \sum_{j=1}^{n} (T_{j}^{1}(D_{j}f,g) + T_{j}^{2}(f,D_{j}g)).$$

The symbols of T_j^1 , T_j^2 are in $BS_{1,0}^0$.

• The class $BS_{1,0}^m$ yields BCZOs for m=0 and closed under transposition:

$$T \in Op - BS_{1,0}^m \Rightarrow T^{*1}, T^{*2} \in Op - BS_{1,0}^m.$$

- $[T_{\sigma}, a]_1(1, 1) = \sum_j T_j^1(D_j a, 1)$
- $T_j^1: L^{\infty} \times L^{\infty} \to BMO \Rightarrow [T_{\sigma}, a]_1(1, 1) \in BMO$; same for $[T_{\sigma}, a]_2(1, 1)$

• Reduction to $BS_{1,0}^0$: For $f, g \in \mathcal{S}$,

$$T_{\sigma}(f,g) = \sum_{j=1}^{n} (T_{j}^{1}(D_{j}f,g) + T_{j}^{2}(f,D_{j}g)).$$

The symbols of T_j^1 , T_j^2 are in $BS_{1,0}^0$.

• The class $BS_{1,0}^m$ yields BCZOs for m=0 and closed under transposition:

$$T \in Op - BS_{1,0}^m \Rightarrow T^{*1}, T^{*2} \in Op - BS_{1,0}^m.$$

- $[T_{\sigma}, a]_1(1, 1) = \sum_j T_j^1(D_j a, 1)$
- $T_j^1: L^\infty \times L^\infty \to BMO \Rightarrow [T_\sigma, a]_1(1, 1) \in BMO$; same for $[T_\sigma, a]_2(1, 1)$

• Reduction to $BS_{1.0}^0$: For $f, g \in \mathcal{S}$,

$$T_{\sigma}(f,g) = \sum_{j=1}^{n} (T_{j}^{1}(D_{j}f,g) + T_{j}^{2}(f,D_{j}g)).$$

The symbols of T_j^1 , T_j^2 are in $BS_{1,0}^0$.

• The class $BS_{1,0}^m$ yields BCZOs for m=0 and closed under transposition:

$$T \in Op - BS_{1,0}^m \Rightarrow T^{*1}, T^{*2} \in Op - BS_{1,0}^m.$$

• $[T_{\sigma}, a]_1(1, 1) = \sum_j T_j^1(D_j a, 1)$ • $T_j^1 : L^{\infty} \times L^{\infty} \to BMO \Rightarrow [T_{\sigma}, a]_1(1, 1) \in BMO$; same for $[T_{\sigma}, a]_2(1, 1)$

• Reduction to $BS_{1,0}^0$: For $f,g \in \mathcal{S}$,

$$T_{\sigma}(f,g) = \sum_{j=1}^{n} (T_{j}^{1}(D_{j}f,g) + T_{j}^{2}(f,D_{j}g)).$$

The symbols of T_j^1 , T_j^2 are in $BS_{1,0}^0$.

• The class $BS_{1,0}^m$ yields BCZOs for m=0 and closed under transposition:

$$T \in Op - BS_{1,0}^m \Rightarrow T^{*1}, T^{*2} \in Op - BS_{1,0}^m.$$

- $[T_{\sigma}, a]_1(1, 1) = \sum_i T_i^1(D_i a, 1)$
- $T_j^1: L^\infty \times L^\infty \to BMO \Rightarrow [T_\sigma, a]_1(1, 1) \in BMO$; same for $[T_\sigma, a]_2(1, 1)$

Checking the *BMO* conditions for transposes

Easy calculations show

$$([T,a]_1)^{*1} = -[T^{*1},a]_1,$$

$$([T,a]_1)^{*2} = [T^{*2},a]_1 - [T^{*2},a]_2.$$

• Since T^{*1} , $T^{*2} \in Op - BS_{1,0}^0$, where $T = T_j^1$, T_j^2 , the previous calculations apply.

Checking the *BMO* conditions for transposes

Easy calculations show

$$([T,a]_1)^{*1} = -[T^{*1},a]_1,$$

$$([T,a]_1)^{*2} = [T^{*2},a]_1 - [T^{*2},a]_2.$$

• Since T^{*1} , $T^{*2} \in Op - BS_{1,0}^0$, where $T = T_j^1$, T_j^2 , the previous calculations apply.

$$|\langle S(\phi_1^{x_0,t},\phi_2^{x_0,t}),\phi_3^{x_0,t}\rangle| \lesssim t^n.$$

- A normalized bump: $\phi \in C_c^{\infty}$, supp $(\phi) \in \{|x| < 1\}$, $|\partial^{\alpha} \phi(x)| \lesssim 1$, $\forall \alpha$
- $\phi^{x_0,t}(x) = \phi(t^{-1}(x-x_0)).$
- The same calculations, with minor modifications, work for all $BS_{1,\delta}^1, 0 \leq \delta < 1$.

$$|\langle S(\phi_1^{x_0,t},\phi_2^{x_0,t}),\phi_3^{x_0,t}\rangle| \lesssim t^n.$$

- A normalized bump: $\phi \in C_c^{\infty}$, supp $(\phi) \in \{|x| < 1\}$, $|\partial^{\alpha} \phi(x)| \lesssim 1$, $\forall \alpha$
- $\phi^{x_0,t}(x) = \phi(t^{-1}(x-x_0)).$
- The same calculations, with minor modifications, work for all $BS_{1,\delta}^1, 0 \leq \delta < 1$.

$$|\langle S(\phi_1^{x_0,t},\phi_2^{x_0,t}),\phi_3^{x_0,t}\rangle| \lesssim t^n.$$

- A normalized bump: $\phi \in C_c^{\infty}$, supp $(\phi) \in \{|x| < 1\}$, $|\partial^{\alpha} \phi(x)| \lesssim 1, \, \forall \alpha$
- $\phi^{x_0,t}(x) = \phi(t^{-1}(x-x_0)).$
- The same calculations, with minor modifications, work for all $BS_{1,\delta}^1, 0 \leq \delta < 1$.

$$|\langle S(\phi_1^{x_0,t},\phi_2^{x_0,t}),\phi_3^{x_0,t}\rangle| \lesssim t^n.$$

- A normalized bump: $\phi \in C_c^{\infty}$, supp $(\phi) \in \{|x| < 1\}$, $|\partial^{\alpha} \phi(x)| \lesssim 1$, $\forall \alpha$
- $\phi^{x_0,t}(x) = \phi(t^{-1}(x-x_0)).$
- The same calculations, with minor modifications, work for all $BS_{1,\delta}^1, 0 \le \delta < 1$.

Let
$$\psi \neq 0$$
, $\psi \in \mathcal{S}(\mathbb{R}^{2n})$ with

$$\operatorname{supp} \psi \subset \{(\xi,\eta): 1<|\xi|+|\eta|<2\}$$

$$(g_k)_{k\geq 0}\subset C^\infty(\mathbb{R}^n)$$
 are so that

$$\partial^{\alpha} g_k(x) | \lesssim 2^{k(m+|\alpha|)} \ \forall x, k$$

$$\phi \in \mathcal{S}(\mathbb{R}^n)$$
: supp $\widehat{\phi} \subset \{ \tau \in \mathbb{R}^n : |\tau| < r \}; \ \phi_{2^{-k}}(x) := 2^{nk} \phi(2^k x)$

$$\sigma_{\phi,\psi,g}(x,\xi,\eta) := \sum_{k=0}^{\infty} (g_k * \phi_{2^{-k}})(x)\psi(2^{-k}\xi,2^{-k}\eta)$$

$$\sigma_{\phi,\psi,g} \not\in \cup_{\delta \in [0,1)} BS_{1,\delta}^m$$

Let
$$\psi \neq 0$$
, $\psi \in \mathcal{S}(\mathbb{R}^{2n})$ with

$$\operatorname{supp} \psi \subset \{(\xi,\eta): 1<|\xi|+|\eta|<2\}$$

$$(g_k)_{k\geq 0}\subset C^\infty(\mathbb{R}^n)$$
 are so that

$$|\partial^{\alpha} g_k(x)| \lesssim 2^{k(m+|\alpha|)} \ \forall x, k$$

$$\phi \in \mathcal{S}(\mathbb{R}^n)$$
 : supp $\phi \subset \{ au \in \mathbb{R}^n : | au| < r\}; \; \phi_{2^{-k}}(x) := 2^{nk}\phi(2^kx)$

$$\sigma_{\phi,\psi,g}(x,\xi,\eta) := \sum_{k=0}^{\infty} (g_k * \phi_{2^{-k}})(x)\psi(2^{-k}\xi,2^{-k}\eta)$$

$$\sigma_{\phi,\psi,g} \not\in \cup_{\delta \in [0,1)} BS_{1,\delta}^m$$

Let
$$\psi \neq 0$$
, $\psi \in \mathcal{S}(\mathbb{R}^{2n})$ with

$$\operatorname{supp} \psi \subset \{(\xi,\eta): 1<|\xi|+|\eta|<2\}$$

$$(g_k)_{k\geq 0}\subset C^\infty(\mathbb{R}^n)$$
 are so that

$$|\partial^{\alpha} g_k(x)| \lesssim 2^{k(m+|\alpha|)} \ \forall x, k$$

$$\phi \in \mathcal{S}(\mathbb{R}^n)$$
: supp $\widehat{\phi} \subset \{ \tau \in \mathbb{R}^n : |\tau| < r \}; \ \phi_{2^{-k}}(x) := 2^{nk} \phi(2^k x)$

$$\sigma_{\phi,\psi,g}(x,\xi,\eta) := \sum_{k=0}^{\infty} (g_k * \phi_{2^{-k}})(x)\psi(2^{-k}\xi,2^{-k}\eta)$$

$$\sigma_{\phi,\psi,g} \not\in \cup_{\delta \in [0,1)} BS_{1,\delta}^m$$

Let
$$\psi \neq 0$$
, $\psi \in \mathcal{S}(\mathbb{R}^{2n})$ with

$$\mathsf{supp}\,\psi\subset\{(\xi,\eta):1<|\xi|+|\eta|<2\}$$

$$(g_k)_{k\geq 0}\subset C^\infty(\mathbb{R}^n)$$
 are so that

$$|\partial^{\alpha} g_k(x)| \lesssim 2^{k(m+|\alpha|)} \ \forall x, k$$

$$\phi \in \mathcal{S}(\mathbb{R}^n)$$
 : supp $\widehat{\phi} \subset \{ \tau \in \mathbb{R}^n : |\tau| < r \}; \ \phi_{2^{-k}}(x) := 2^{nk} \phi(2^k x)$

$$\sigma_{\phi,\psi,g}(x,\xi,\eta) := \sum_{k=0}^{\infty} (g_k * \phi_{2^{-k}})(x)\psi(2^{-k}\xi,2^{-k}\eta)$$

Let $\psi \neq 0$, $\psi \in \mathcal{S}(\mathbb{R}^{2n})$ with

$$\text{supp } \psi \subset \{(\xi, \eta) : 1 < |\xi| + |\eta| < 2\}$$

$$(g_k)_{k\geq 0}\subset C^\infty(\mathbb{R}^n)$$
 are so that

$$|\partial^{\alpha} g_k(x)| \lesssim 2^{k(m+|\alpha|)} \ \forall x, k$$

$$\phi \in \mathcal{S}(\mathbb{R}^n)$$
: supp $\widehat{\phi} \subset \{ \tau \in \mathbb{R}^n : |\tau| < r \}; \ \phi_{2^{-k}}(x) := 2^{nk} \phi(2^k x)$

$$\sigma_{\phi,\psi,g}(x,\xi,\eta) := \sum_{k=0}^{\infty} (g_k * \phi_{2^{-k}})(x)\psi(2^{-k}\xi,2^{-k}\eta)$$

$$\sigma_{\phi,\psi,g}
ot\in \cup_{\delta \in [0,1)} BS_{1,\delta}^m$$

A new class of symbols

...However, $\sigma_{\phi,\psi,g} \in \mathcal{B}_r BS_{1,1}^m$.

Definition

 $\sigma \in \mathcal{B}_r BS^m_{1,1}$ if $\sigma \in BS^m_{1,1}$ AND

$$\mathsf{supp}\left(\widehat{\sigma}^1\right) \subset \{\left(\tau, \xi, \eta\right) : |\tau| \leq r(|\xi| + |\mathit{eta}|)\}$$

Definition

$$\mathcal{B}BS_{1,1}^m := \cup_{r \in (0,1/7)} \mathcal{B}_r BS_{1,1}^m$$

Theorem (B.-Naibo, 2016)

Let $\sigma \in \mathcal{B}BS^1_{1,1}$ and $a \in Lip^1$. Then, $[T_{\sigma}, a]_j, j = 1, 2$, are BCZOs. In particular, $[T_{\sigma}, a]_j : L^p \times L^q \to L^r$ for Hölder triples (p, q, r) and appropriate end-point results.

A new class of symbols

...However, $\sigma_{\phi,\psi,g} \in \mathcal{B}_r \mathcal{B} \mathcal{S}_{1,1}^m$.

Definition

 $\sigma \in \mathcal{B}_r \mathcal{B} \mathcal{S}^m_{1,1}$ if $\sigma \in \mathcal{B} \mathcal{S}^m_{1,1}$ AND

$$\operatorname{supp}(\widehat{\sigma}^1) \subset \{(\tau, \xi, \eta) : |\tau| \leq r(|\xi| + |\mathit{eta}|)\}$$

Definition

$$\mathcal{B}BS_{1,1}^m := \cup_{r \in (0,1/7)} \mathcal{B}_r BS_{1,1}^m$$

Theorem (B.-Naibo, 2016)

Let $\sigma \in \mathcal{B}BS^1_{1,1}$ and $a \in Lip^1$. Then, $[T_{\sigma}, a]_j, j = 1, 2$, are BCZOs. In particular, $[T_{\sigma}, a]_j : L^p \times L^q \to L^r$ for Hölder triples (p, q, r) and appropriate end-point results.

- 1. $BS_{1,1}^0$ yields BCZ kernels but NOT BCZOs (failure of bilinear T1 theorem)
- 2. The class $\tilde{BS}_{1,1}^0=\{\sigma\in BS_{1,1}^0:\sigma^{*1},\sigma^{*2}\in BS_{1,1}^0\}$ is known to be the *largest* one to produce BCZOs.
- 3. Non-trivial: $\mathcal{B}BS_{1,1}^1\subset ilde{BS}_{1,1}^1$
- 4. The proof of B.-Oh 2014 DOES NOT apply: reducing to $BS_{1,1}^0$ does not help since $BS_{1,1}^0$ is not closed under transposition!
- 5. Some more delicate quantitative estimates on the transposes of the spatially dilated symbols $\sigma^t(x,\xi,\eta) = \sigma(tx,\xi,\eta)$ and an equally delicate approximation argument are needed.

- 1. $BS_{1,1}^0$ yields BCZ kernels but NOT BCZOs (failure of bilinear $\mathcal{T}1$ theorem)
- 2. The class $\tilde{BS}^0_{1,1}=\{\sigma\in BS^0_{1,1}:\sigma^{*1},\sigma^{*2}\in BS^0_{1,1}\}$ is known to be the *largest* one to produce BCZOs.
- 3. Non-trivial: $\mathcal{B}BS^1_{1,1}\subset ilde{BS}^1_{1,1}$
- 4. The proof of B.-Oh 2014 DOES NOT apply: reducing to $BS_{1,1}^0$ does not help since $BS_{1,1}^0$ is not closed under transposition!
- 5. Some more delicate quantitative estimates on the transposes of the spatially dilated symbols $\sigma^t(x, \xi, \eta) = \sigma(tx, \xi, \eta)$ and an equally delicate approximation argument are needed.

- 1. $BS_{1,1}^0$ yields BCZ kernels but NOT BCZOs (failure of bilinear $\mathcal{T}1$ theorem)
- 2. The class $\tilde{BS}^0_{1,1}=\{\sigma\in BS^0_{1,1}:\sigma^{*1},\sigma^{*2}\in BS^0_{1,1}\}$ is known to be the *largest* one to produce BCZOs.
- 3. Non-trivial: $\mathcal{B}BS_{1,1}^1 \subset \tilde{\mathcal{B}S}_{1,1}^1$
- 4. The proof of B.-Oh 2014 DOES NOT apply: reducing to $BS_{1,1}^0$ does not help since $BS_{1,1}^0$ is not closed under transposition!
- 5. Some more delicate quantitative estimates on the transposes of the spatially dilated symbols $\sigma^t(x,\xi,\eta) = \sigma(tx,\xi,\eta)$ and an equally delicate approximation argument are needed.

- 1. $BS_{1,1}^0$ yields BCZ kernels but NOT BCZOs (failure of bilinear $\mathcal{T}1$ theorem)
- 2. The class $\tilde{BS}^0_{1,1}=\{\sigma\in BS^0_{1,1}:\sigma^{*1},\sigma^{*2}\in BS^0_{1,1}\}$ is known to be the *largest* one to produce BCZOs.
- 3. Non-trivial: $\mathcal{B}BS_{1,1}^1 \subset \tilde{BS}_{1,1}^1$
- 4. The proof of B.-Oh 2014 DOES NOT apply: reducing to $BS_{1,1}^0$ does not help since $BS_{1,1}^0$ is not closed under transposition!
- 5. Some more delicate quantitative estimates on the transposes of the spatially dilated symbols $\sigma^t(x,\xi,\eta) = \sigma(tx,\xi,\eta)$ and an equally delicate approximation argument are needed.

- 1. $BS_{1,1}^0$ yields BCZ kernels but NOT BCZOs (failure of bilinear $\mathcal{T}1$ theorem)
- 2. The class $\tilde{BS}^0_{1,1}=\{\sigma\in BS^0_{1,1}:\sigma^{*1},\sigma^{*2}\in BS^0_{1,1}\}$ is known to be the *largest* one to produce BCZOs.
- 3. Non-trivial: $\mathcal{B}BS_{1,1}^1 \subset \tilde{BS}_{1,1}^1$
- 4. The proof of B.-Oh 2014 DOES NOT apply: reducing to $BS_{1,1}^0$ does not help since $BS_{1,1}^0$ is not closed under transposition!
- 5. Some more delicate quantitative estimates on the transposes of the spatially dilated symbols $\sigma^t(x,\xi,\eta) = \sigma(tx,\xi,\eta)$ and an equally delicate approximation argument are needed.

$$BHT(f,g)(x) = \int_{\mathbb{R}} \frac{f(x-y)g(x+y)}{y} dy.$$

- Culiuc-Di Plinio-Ou (2016): weighted estimates for BHT...
- •...produces (some) boundedness of $[BHT,b]_1$ with $b \in BMO$ via the "Cauchy integral trick" of Coifman-Rochberg-Weiss.
- Moreover, the method of proof for $[Bl_a, b]_1$ allows then to prove the (separate) compactness of $[BHT, b]_1$ for $b \in CMO$ (work in progress with Martell, Moen, Stachura, Torres).

$$BHT(f,g)(x) = \int_{\mathbb{R}} \frac{f(x-y)g(x+y)}{y} dy.$$

- Culiuc-Di Plinio-Ou (2016): weighted estimates for BHT...
- •...produces (some) boundedness of $[BHT,b]_1$ with $b \in BMO$ via the "Cauchy integral trick" of Coifman-Rochberg-Weiss.
- Moreover, the method of proof for $[Bl_a, b]_1$ allows then to prove the (separate) compactness of $[BHT, b]_1$ for $b \in CMO$ (work in progress with Martell, Moen, Stachura, Torres).

$$BHT(f,g)(x) = \int_{\mathbb{R}} \frac{f(x-y)g(x+y)}{y} \, dy.$$

- Culiuc-Di Plinio-Ou (2016): weighted estimates for BHT...
- •...produces (some) boundedness of $[BHT, b]_1$ with $b \in BMO$ via the "Cauchy integral trick" of Coifman-Rochberg-Weiss.
- Moreover, the method of proof for $[BI_a, b]_1$ allows then to prove the (separate) compactness of $[BHT, b]_1$ for $b \in CMO$ (work in progress with Martell, Moen, Stachura, Torres).

$$BHT(f,g)(x) = \int_{\mathbb{R}} \frac{f(x-y)g(x+y)}{y} dy.$$

- Culiuc-Di Plinio-Ou (2016): weighted estimates for BHT...
- •...produces (some) boundedness of $[BHT, b]_1$ with $b \in BMO$ via the "Cauchy integral trick" of Coifman-Rochberg-Weiss.
- Moreover, the method of proof for $[BI_a,b]_1$ allows then to prove the (separate) compactness of $[BHT,b]_1$ for $b \in CMO$ (work in progress with Martell, Moen, Stachura, Torres).

Thank you!

