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The space of bounded mean oscillations

John-Nirenberg ('61): Given f € L (R"), f € BMO if

1
IFllewo i=sup o [ 1F0x) ~ fol de = [ IF ol < o
Q 1Rl /g Q

where the supremum is taken over all cubes @ in R”. Equivalently,
one could consider the supremum over all balls in R".



The space of bounded mean oscillations

John-Nirenberg ('61): Given f € L (R"), f € BMO if

1
IFllamo ::sup/ rf(x)—fQ\dx=][ IF — fol < o
Q 1QlJg Q

where the supremum is taken over all cubes @ in R”. Equivalently,
one could consider the supremum over all balls in R".

1) BMO is a Banach space (identify f, g with f — g =const.),
2) It is invariant under translations and dilations,

3) It is a lattice, and

4) L ¢ BMO.
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The LP and Orlicz characterizations

For all 0 < p < o0,
1/p
cup (f@ () - fov’dx) < ool llwo.
In fact,
1/p
Ifllemo ~ sup <]{\) 1f(x) — folP dx> 1< p< oo

Moreover,

£ llBmo ~ sup |f — follexp L,q-

(with p(t) = e' — 1, ||g]|,,@ := inf {)\ >0, go(‘g(;)') < 1})
Proof: John-Nirenberg's inequality.



Muckenhoupt weights

e The A, class: for w >0, 1 < p < oo,

=
w € A, & [w]a, = sup <][ W> (][ Wl_p,) " <.
Q Q Q

e The Hardy-Littlewood maximal function:

M(f)(x) = sup][ f(y

Q>x

Theorem (Muckenhoupt, '72; Coifman-Fefferman, '74)

If pe (1,00), w € Ap if and only if M : LP(w) — LP(w) is
bounded.

Proof: All A, weights satisfy a reverse Holder inequality.



Ap and BMO

e The Aq class: for w > 0,

w e A & M(w)(x) S w(x).

e The A class: Ax = Up>1A,.

(a) w € Ax = log(w) € BMO.
(b) f € BMO = €°f € A, for sufficiently small § > 0.




Calderén-Zygmund operators

The canonical example is the Hilbert transform:

H(F)(x) = pv. —# f = !L"E)/| f(Xy‘ ) fesm).
y|>¢€

Formally,

HIE)(0 = [ =) ) dyan() =
k(x.y)
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The canonical example is the Hilbert transform:

H(f)(x) = p.v. % «f = 6|i_r)r})/| f(xy_” f e S(R).
y|>¢€

Formally,

HIE)(0 = [ =) ) dyan() =
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k(x,y) is singular along the diagonal A := {(x,y) € R? : x = y},
yet H: [P - [P 1< p<ooand H:L*® — BMO.



Calderén-Zygmund operators

The canonical example is the Hilbert transform:

H(f)(x) = p.v. % «f = 6|i_r)r})/| f(xy_” f e S(R).
y|>€

Formally,

HIE)(0 = [ =) ) dyan() =
k(x.y)

— ~

H(F)(&) = —isign (£)f (&)

k(x,y) is singular along the diagonal A := {(x,y) € R? : x = y},
yet H: [P - [P 1< p<ooand H:L*® — BMO.
The n-dimensional versions of H are the Riesz transforms.



Definition of Calderén-Zygmund kernel and operator

It captures the essential properties (of the kernel) of the Hilbert
transform:

K :R" xR"\ A — C is a Calderén-Zygmund (CZ) kernel if
KGOS Ix=yI™7,

Vaey K, 9)| S |x =y 7"




Definition of Calderén-Zygmund kernel and operator

It captures the essential properties (of the kernel) of the Hilbert
transform:

K :R" x R"\ A — C is a Calderén-Zygmund (CZ) kernel if
KGOS Ix=yI™7,

Vaey K, 9)| S |x =y 7"

Definition

| A

T is a (linear) Calderén-Zygmund operator if
(a) T is bounded on L2(R");
(b) There exists a CZ kernel K such that for all f € D,

T\ = [ KCy)F () dy.x # supp (7).




Boundedness of Calderén-Zygmund operators

Theorem (Calderén-Zygmund, '50s)

Let T be a CZ operator. Then:
(1) T:LP = [P1<p<oo;
(2) T : LY — L1eo;

(3) T : L>* — BMO.




Boundedness of Calderén-Zygmund operators

Theorem (Calderén-Zygmund, '50s)

Let T be a CZ operator. Then:
(1) T:LP = [P1<p<oo;
(2) T : LY — L1eo;

(3) T : L>* — BMO.

Theorem (Coifman-Fefferman, '74)
Let T be a CZ operator. Then:
(a) T : LP(w) — LP(w) forall w € Ap,1 < p < o0,

(6) w(ix : |T(F)(x)| > A}) < i/R \Flw, for all w € Ay, X > 0.

v




Pseudo-differential operators as CZ operators

TN = [ alx Of€)e < de

o(x,€) = m(x) : T,(f) = m- f
o €) = m(€) : To(F) = ms

oEST \aaa o(x, )] < (1 + ¢yl v ¢ Va, B

Proposition (Mihlin, '50s; also Hérmander)

Ifo e S{)’O, then T, is a Calderén-Zygmund operator.

Proposition (Bourdaud, '80s)

Ifoe Sﬂl, then T, has CZ kernel, but is not necessarily a CZ
operator.




The Coifman-Rochberg-Weiss commutator

Let H be the Hilbert transform.
Define
[H, b](f)(x) = b(x)H(f)(x) — H(bf)(x)

—pv. [ 2= r) 0y

If felPand bel9 1< p<oo, 1< qg<oo, and
1/p+1/q =1/r, we trivially have

IH, bY(F)[|r < 16l call £l -

11



The Coifman-Rochberg-Weiss commutator

Let H be the Hilbert transform.
Define
[H, b](f)(x) = b(x)H(f)(x) — H(bf)(x)

—pv. [ 2= r) 0y

If felPand bel9 1< p<oo, 1< qg<oo, and
1/p+1/q =1/r, we trivially have

IH, bY(F)[|r < 16l call £l -

Coifman-Rochberg-Weiss ('76): If b€ BMO, f € LP, 1 < p < o0,

I1H, BI(F)ller < (16l Bmol[F ] -

The result is also true if H~» T (CZ operator).

11



The Cauchy integral trick

The idea of C-R-W was to represent [T, b] as a Cauchy integral
and use known weighted estimates for T.
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The Cauchy integral trick

The idea of C-R-W was to represent [T, b] as a Cauchy integral
and use known weighted estimates for T.
Let

T,(f) = e T(e7?).

Then

2mi z2

1 T.(f)(x)
T,bl(f)(x) = — —— = dz,
[ 1(F)(x) /|z|:5
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The Cauchy integral trick

The idea of C-R-W was to represent [T, b] as a Cauchy integral
and use known weighted estimates for T.
Let
T.(f) = e T(e_Zb).
Then

1

[T, B()(x) = 2/”:5 =0

Z2

dz,

i

and to estimate the LP-norm of [T, b] with p > 1 it is enough to
estimate

e IT=(F)l] e
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The Cauchy integral trick

The idea of C-R-W was to represent [T, b] as a Cauchy integral
and use known weighted estimates for T.
Let
T.(f) = e T(e_Zb).
Then

1

[T, B()(x) = 2/”:5 =0

Z2

dz,

i

and to estimate the LP-norm of [T, b] with p > 1 it is enough to
estimate

sup || T=(F)lce

|z|=6
This can be done using weighted estimates since, for |z| < ¢
(small), e(Re2)b is an A, weight.

12



e Alvarez-Bagby- Kurtz-Pérez ('93): LP — LP boundedness of
iterated commutators
[T,b)* :=[[[T,b],b],...0] k=>1,
N———
k times
provided a linear operator T satisfies weighted estimates.
e Despite the great generality of the Cauchy integral trick

approach, the method can produce in some situations sharp
estimates.

13



e Chung-Pereyra-Pérez (2011): If

[Tl 2wy S [Wla,s

then
1T 61l 2wy S IWI5EX.

e When T = H, the Hilbert transform on R, or T = R;, a Riesz
transform on R”,

1T, 1)l 2wy S Twlar”;

this is sharp in terms of powers of the Ax-norm of the weight.

14



Compactness of commutators

Let CMO = @”ll‘BMO (the closure of C2°(R") in the BMO norm)
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Compactness of commutators

Let CMO = @”lHBMO (the closure of C2°(R") in the BMO norm)

e Uchiyama ('78): If be CMO, T is CZ operator and 1 < p < o0,
then [T, b] : LP — LP is compact.

Relevant applications:

e Coifman, Lions, Meyer, Semmes ('93): Compensated
compactness.

e Iwaniec-Sbordone ('98): Fredholm alternative for equations with
CMO coefficients.

e lwaniec-Sbordone ('92): Integrability of Jacobians.

15



The argument relies on the Fréchet-Kolmogorov
characterization of precompactness in LP, namely

X is precompact in LP if and only if
(1) sup||f|lee < o0;
feX
(2) AIi_}moo 1l Lr({]x|>A}) = O uniformly in f € X;

(3) (f(t+-)— f()|lee = 0 uniformly in f € X.

lim ||
t—0

16



Bilinear operators with Calderén-Zygmund kernels

T(f,g)(x / / (x,y,z (z) dydz
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Bilinear operators with Calderén-Zygmund kernels

T(f,g)(x // (x,y,2)f(y)g(z) dydz

e Bilinear Calderén-Zygmund (BCZ) kernel: on R3"\ {x =y = z},

—2n—|B|
DKy 2 S (Ix=yl+ly—zl+lz=x) . BI<L
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Bilinear operators with Calderén-Zygmund kernels

T(f,g)(x // (x,y,2)f(y)g(z) dydz

e Bilinear Calderén-Zygmund (BCZ) kernel: on R3"\ {x =y = z},

—2n—|B|
DKy 2 S (Ix=yl+ly—zl+lz=x) . BI<L

e Bilinear Calderén-Zygmund operator (BCZO): T has a BCZ
kernel and T : LPo x L9 — [0 for some 1 < pg, go < 00,
1,1 _ 1

=t === <1

P @ o

e Grafakos-Torres (2002): If T is BCZO, then

1 1 1
T:LPxL9— L foralll<p,g<oo:—+—=-.
p q r

17



Examples of BCZO

Example (Bilinear Riesz transform)

Ri(f,g)(x —pV//RKX_y,X_Z|3 f(y)g(z) dydz.

18



Examples of BCZO

Example (Bilinear Riesz transform)

RuF ) = . | | (1)) dye

Example (Translation invariant)

Let Q € LY(R2") and Lipschitz of order ¢ € (0, 1), with
Jszn—1 Q(u, v)do = 0. Define

Ko(uv) = () 29,

T(F.E)() = [ Kolx = yox = 2)f(y)alz) dyd.

18



Example (Bilinear Hérmander PSDO)
To(f,8)(x) = /R o(x. & mF()g(n)e™ ) dedn,

with o € BSP 5,0 <6 < 1.

o€ BS)s & |838§8770(x,5,n)| < (1 + |€] + |n])m—PUBIHID+dl




Example (Bilinear Hérmander PSDO)
To(f,8)(x) = /R o(x. & mF()g(n)e™ ) dedn,

with o € 85975,0 <é§<1.

o€ BS)s & |838§8770(x,5,n)| < (1 + |€] + |n])m—PUBIHID+dl

e B.-Bernicot-Maldonado-Naibo-Torres (2013): The “threshold”
for T, : LP x L9 — L",1/r = 1/p + 1/q with
o€ Bsg'(s,ogégpg 1,0 <lism< m(p,q),

m(p, q) :== n(p—1)| max(1/2,1/p,1/q,1—1/r)+max(0,—1+1/r)]|.



Beyond BCZ theory: a first glimpse

e Based on BBMNT 2013, for o € BSI’%,O < 4§ < 1, we need
m < 0 to guarantee T, : LP x L9 — L". For example,
55115 SLPx L9 AL
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e Based on BBMNT 2013, for o € BSI’%,O < 4§ < 1, we need
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e In previous example, if Q is odd on S?™!, we have
2T(F,g) = / Q(0, ) BHy (F, £)(x) dfduw,
§2n—1

BHy .,(f,g)(x) = / f(x —th)g(x — tw)%.
R
Lacey-Thiele ('99), Grafakos-Li (2004): Proving that the bilinear
Hilbert transform is uniformly bounded in (#,w) € S~ is highly
non-trivial!
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Beyond BCZ theory: a first glimpse

e Based on BBMNT 2013, for o € BSI’%,O < 4§ < 1, we need
m < 0 to guarantee T, : LP x L9 — L". For example,
851175 SLPx L9 AL

e In previous example, if Q is odd on S?™!, we have
2T(F,g) = / Q(0, ) BHy (F, £)(x) dfduw,
§2n—1

By (F.6)0) = | Flx = t0)g(x— 1)

Lacey-Thiele ('99), Grafakos-Li (2004): Proving that the bilinear
Hilbert transform is uniformly bounded in (#,w) € S~ is highly
non-trivial!
e The trilinear Hilbert transform is not well-understood.
e Tao (2016): Cancelation in the multi-linear Hilbert transform;
tools from arithmetic combinatorics.

20



Bilinear commutators

@ [T,bl(f,g) = T(bf,g) = bT(f.g)
@ [T, blo(f,g) = T(f, bg) — bT(f.g)
9 [T, b](f,g) = [[T7 bl]la bg]z(f,g), where b = (bl, bg)

21



Bilinear commutators

@ [T,b)1(f,g) = T(bf,g) — bT(f,g)

@ [T, bl2(f,g) = T(f, bg) — bT(f,g)

© [T,b](f,g) =|[T, bi]1, b2]2(f, g), where b = (b1, b2)
Formally, if T has kernel K, then

= / / (%, 2)(b(y) — b(x))F(y)&(2) dydz,
G = [ [ Kixy.2)(bl2) - ) (»)e(z) dvd,
G = / / K(%, v, 2)(ba(y) — b1 (x))(ba(2) — ba(x))F(y)&(2)dydlz

21



Boundedness of commutators

Let T BCZO and b € BMO, b = (by, by) € BMO x BMO. Then,
forall1/p+1/g=1/r, 1< p,q < o0:

1T bla(F, 8)llers T bla(F, &)llir < [lbllBmollfller gl o

I[T,b](f, &)l < llballBmoll b2l mollf Lol g | o-

e Perez-Torres (2003); Tang (2008); Lerner, Ombrosi, Pérez,
Torres, Trujillo-Gonzélez (2009); Perez, Pradolini, Torres,
Trujillo-Gonzalez (2011)



Boundedness of commutators

Let T BCZO and b € BMO, b = (by, by) € BMO x BMO. Then,
forall1/p+1/g=1/r, 1< p,q < o0:

1T bla(F, 8)llers T bla(F, &)llir < [lbllBmollfller gl o

I[T,b](f, &)l < llballBmoll b2l mollf Lol g | o-

e Perez-Torres (2003); Tang (2008); Lerner, Ombrosi, Pérez,
Torres, Trujillo-Gonzélez (2009); Perez, Pradolini, Torres,
Trujillo-Gonzalez (2011)

Are C; — C3 “better” if b,b are assumed smoother?




Compact bilinear operators

Definition (Calderdn, '64)

Let X, Y,Z be normed spaces and T : X x Y — Z bilinear
operator.

T is compact if {T(x,y) : ||x|,|ly|| < 1} is precompact in Z.
T is separately compact if T, : Y — Zand T, : X — Z are
compact for all x € X, y € Y.

23



Compact bilinear operators

Definition (Calderdn, '64)

Let X, Y,Z be normed spaces and T : X x Y — Z bilinear
operator.

T is compact if {T(x,y) : ||x|,|ly|| < 1} is precompact in Z.
T is separately compact if T, : Y — Zand T, : X — Z are
compact for all x € X, y € Y.

o If T is bilinear compact, then T is separately compact. The
converse is false.

e If Z is Banach, the space of compact bilinear operators is a
closed linear subspace of the space of X x Y — Z bounded
operators.

23



Simple examples

Example (Bounded, not separately compact)
T : C[0,1] x C[0,1] — C[0, 1] (with || - ||1e):

T(f’g):fg,

T is not separately compact (hence not compact): Tr—; = Id is
not compact (Riesz's theorem).




Simple examples

Example (Bounded, not separately compact)
T : C[0,1] x C[0,1] — C[0, 1] (with || - ||1e):

T(f’g):fg,

T is not separately compact (hence not compact): Tr—; = Id is
not compact (Riesz's theorem).

\

Example (Compact)
S: C[0,1] x C[0,1] — C[0,1] (with || - ||z ):

S(f. ) = [ " F(0)g(t)

(Arzela-Ascoli's theorem).




Digression: continuous vs separately continuous operators

Definition
Let X, Y,Z be normed spaces and T : X X Y — Z a bilinear op.
T is continuous if || T|| < oo, where

IT] == inf{M >0 [ T(x, )z < Mlix|lllyll, ¥ (x,¥) € X x Y}.

Equivalently, T : X X Y — Z is continuous, with the product

space endowed by ||(x, ¥)|| = [Ixllx + Iy ]Iy, ¥(x,y) € X x Y.
T is separately continuousif T, : Y — Z and T, : X — Z are
continuous for all x € X, y € Y.

25
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Digression: continuous vs separately continuous operators

Definition
Let X, Y,Z be normed spaces and T : X X Y — Z a bilinear op.
T is continuous if || T|| < oo, where

IT] == inf{M >0 [ T(x, )z < Mlix|lllyll, ¥ (x,¥) € X x Y}.

Equivalently, T : X X Y — Z is continuous, with the product

space endowed by [[(x,y)I| := [Ixl|x + Iyl ¥(x,y) € X x Y.
T is separately continuousif T, : Y — Z and T, : X — Z are
continuous for all x € X, y € Y.

e If T is a continuous bilinear operator, then T is separately
continuous.

e In general, the converse is false.

25



Example (Separately continuous, not continuous)
T : C[0,1] x C[0,1] — C[0,1] (with || - ||11):

T(f.g)="f-g

26



Example (Separately continuous, not continuous)
T : C[0,1] x C[0,1] — C[0,1] (with || - ||11):

T(f.g)="f-g

e BUT, interestingly, if X or Y is Banach, T continuous if and
only of T is separately continuous! (Uniform boundedness
principle)
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Example (Separately continuous, not continuous)
T : C[0,1] x C[0,1] — C[0,1] (with || - ||11):

T(f.g)="f-g

e BUT, interestingly, if X or Y is Banach, T continuous if and
only of T is separately continuous! (Uniform boundedness
principle)

Question: Is it possible to understand bilinear compactness via
separate compactness? NO! Even if we assume ALL spaces

X, Y,Z Banach, there are simple examples that show separate
compactness DOES NOT IMPLY compactness.

26



Commutators as compact bilinear operators

e Fernandez-da Silva (2010): The notion of compactness in
multilinear setting was previously considered only in the context of
interpolation.

27



Commutators as compact bilinear operators

e Fernandez-da Silva (2010): The notion of compactness in
multilinear setting was previously considered only in the context of
interpolation.

Theorem (B.-Torres, 2013)

Let T be a BCZO, b€ CMO, 1/p+1/q=1/r,1< p,q < co and
1<r<oo. Then

[T,b]1,[T,b]a: LP x L9 — L" are compact.
Similarly, ifb € CMO x CMO, then

[T,b] is compact.




Fractional versions of BCZO

For 0 < a < 2n,

() = [ [ Klxy.2)f()e(z) dye

07Kalx, v, 2)| S (Ix =yl + |y — 2| + [z = x[) 2= |g] < 1.
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Fractional versions of BCZO

For 0 < a < 2n,

() = [ [ Klxy.2)f()e(z) dye

07Kalx, v, 2)| S (Ix =yl + |y — 2| + [z = x[) 2= |g] < 1.

e a = 0: BCZ kernel

Ka(x,y,2) = (Ix = y| + |x = 2[)7*""*,0 < a < 2n;

T, is the bilinear Riesz potential operator.

28



Compactness of commutators of fractional BCZO

Theorem (B.-Damian-Moen-Torres, 2015)
Let0<a<2n 1<p,g<oo, 1<r<ooand

Let T, be the bilinear fractional operator with kernel K, and
b e CMO. Then

[T, b]1,[Ta, bl2 : LP x L9 — L" are compact.
Similarly, ifb € CMO x CMO, then

[T,,b] is compact.




Fractional versions of Bilinear Hilbert Transform

e Grafakos ('92), Kenig-Stein ('99), Grafakos-Kalton (2001):
f(x— X+
R e

n |2
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e Grafakos ('92), Kenig-Stein ('99), Grafakos-Kalton (2001):
f(x— X+
BL(F.g)) = [ T DECEY) g
“close” to BHT = BH_1 1 (in dimension n = 1).
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Fractional versions of Bilinear Hilbert Transform

e Grafakos ('92), Kenig-Stein ('99), Grafakos-Kalton (2001):
f(x— X+
R R
“close” to BHT = BH_1 1 (in dimension n = 1).

Theorem (BDMT, 2015)

Let0<a<n 1<pqr<oo s+:<1 1=
b€ CMO. Then,

1 a
—i—a—ﬁ,and

[Bl,, bl1, [Bls, bl2 : LP x L9 — L".
Moreover,

[Bl,, bl1,[Bls, bl2 : LP x L9 — L" are separately compact.

e Chaffee-Torres (2015): CMO characterizes the compactness of
commutators of Bl.. 30



Bilinear pseudodifferential operators of Hormander type

m .
'UEBp,(S-

10202070 (x, &, m)| S (L4 €] + ||y olel=eU8HhD,
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Commutators of BPSDOs and compactness

Corollary (to BT 2013)

Leto e BS);,0<5<1,be CMO,1/p+1/q=1/r,
l1<p,g<oocandl<r<oo. Then

[To, bl1, [To, bl2 : LP x L9 — L™ are compact.
Similarly, if b € CMO x CMOQO, then

[T, b] is compact.
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Corollary (to BT 2013)

Leto e BS);,0<5<1,be CMO,1/p+1/q=1/r,
l1<p,g<oocandl<r<oo. Then

[To, bl1, [To, bl2 : LP x L9 — L™ are compact.
Similarly, if b € CMO x CMOQO, then

[T, b] is compact.




T € BCZO,b e CMO = [T, b]; : LP x L9 — L" compact

e The proof relies on the Fréchet-Kolmogorov-Riesz theorem
characterizing the pre-compactness of a set in L".
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T € BCZO,b e CMO = [T, b]; : LP x L9 — L" compact

e The proof relies on the Fréchet-Kolmogorov-Riesz theorem
characterizing the pre-compactness of a set in L".

e By density arguments: enough to check that for b, f, g € C2°:
(a) For all € > 0, there exists an A > 0 (A = A(e), but
independent of f and g):

1/r
<!/>A|[T, b]1(f,g)(x)‘fdx> < el flleollg !l o
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T € BCZO,b e CMO = [T, b]; : LP x L9 — L" compact

e The proof relies on the Fréchet-Kolmogorov-Riesz theorem
characterizing the pre-compactness of a set in L".
e By density arguments: enough to check that for b, f, g € C2°:

(a) For all € > 0, there exists an A > 0 (A = A(e), but
independent of f and g):

1/r
(/ HT,bh(f,g)(x)\’dx) S elflslele
J|x|>A
(b) For € € (0,1) there exists a sufficiently small ty (to = to(€), but
independent of f and g) such that for all 0 < |t| < ty:

1T, b1 (f,8)(-) = [T, b1 (f, &) (- + t)l[ir S ellfliellgllLo-
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independent of f and g):

1/r
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The proof of estimate (a)

e Let [x| > A (sufficiently large).
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The proof of estimate (a)

e Let [x| > A (sufficiently large).

[T, bla(F. ) (x // Ky, 2)BO)IF()le(2)] dydz
yESUPp

< ||b||Loo// W)llg(2)] dydz
y€suppb |X y’+|X |)

< Iy R C——
yesuppb|X_Y| (‘X—y’—|—|X—Z|)

n —n —nq/ 1/q’
S2pd [ g ([x= v be-2) 0 dz) " dy el
yEsupp b

—n / _nd 1/q
< 2°c| Jsupp b 1o ([ (1/2:4 12 dz) " s

< x| Isupp b1 ll.e gl o
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The proof of estimate (a)

e Let [x| > A (sufficiently large).

[T, bla(F. ) (x // Ky, 2)BO)IF()le(2)] dydz
yESUPp

< ||b||Loo// W)llg(2)] dydz
y€suppb |X y’+|X |)

< Iy R C——
yesuppb|X_Y| (‘X—y’—|—|X—Z|)

n —n —nq/ 1/q’
S2pd [ g ([x= v be-2) 0 dz) " dy el
yEsupp b

—n / _nd 1/q
< 2°c| Jsupp b 1o ([ (1/2:4 12 dz) " s

< x| Isupp b1 ll.e gl o

Now integrate over |x| > Al
34



The proof of estimate (b). Other commutators

e More involved: a further decomposition is required.
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e Controlling each term in this decomposition uses:

@ a variant of the maximal truncated bilinear singular integral
@ the smoothness estimate of the kernel

© the LP boundedness of the Hardy-Littlewood maximal function
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The proof of estimate (b). Other commutators

e More involved: a further decomposition is required.
e Controlling each term in this decomposition uses:

@ a variant of the maximal truncated bilinear singular integral
@ the smoothness estimate of the kernel
© the LP boundedness of the Hardy-Littlewood maximal function

e The second commutator is handled similarly.

e The second order commutator [T, b] is harder to study in general
for symbols in BMO. It is in fact easier when the symbols are in
CMO because of extra cancelations!

35



Muckenhoupt weights: linear and bilinear

e The A, class: for w > 0

w € Ap < sup <][ W) <][ Wl_p/> < 00.
Q Q Q

7:\“
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Muckenhoupt weights: linear and bilinear

e The A, class: for w > 0

£
w e Ap & sup <][ W) <][ Wl_p/> ’ < 00.
Q Q Q

e For p = (p1, p2) € (1,00)? and w = (wy, wo) let

b P
P= Plf,:"pzpz and vy = twp = Wy Wy° .
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Muckenhoupt weights: linear and bilinear

e The A, class: for w > 0

£
w e Ap & sup <][ W) <][ Wl_p/> ’ < 00.
Q Q Q

e For p = (p1, p2) € (1,00)? and w = (wy, wo) let

p1p2 5

P P
= and vy = twp = Wyt wy?.
p1+ p2

e The A, class:

P
w e A, & sup (][ yw> <][ Wll_pi>P1 (][ W21_p2
Q Q Q Q

N———
o

36



Ap versus Ap

The Hardy-Littlewood maximal functions:

—mﬁfw
QR>5x

Mwmﬁﬂﬁww%wm)

37



Ap versus Ap

The Hardy-Littlewood maximal functions:

—sup][ #(y)| dy
QR>5x

M(f.£)(x) = sup ][rf(y)\dy ][rg )| dz)

Theorem (Muckenhoupt, '72; Coifman-Fefferman, '74)

If pe(1,00), we A, ifand only if M : LP(w) — LP(w) is
bounded.
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Ap versus Ap

The Hardy-Littlewood maximal functions:

—sup][ #(y)| dy
QR>5x

M(f.£)(x) = sup ][rf(y)\dy ][rg )| dz)

Theorem (Muckenhoupt, '72; Coifman-Fefferman, '74)

If pe(1,00), we A, ifand only if M : LP(w) — LP(w) is
bounded.

Theorem (Lerner et all, 2009)

Ifp € (1,00)%, w € Ay if and only if
M P (wy) X LP2(wp) — LP(vy) is bounded.

37



Characterization of A, and inclusions

e Lerner et all (2009):

Vw € Azp
_ 1-p A
wehA, &< o1=w ,6 2p!
1-p5

02 = W, € A2p§~
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_ 1-p A
wehA, &< o1=w ,6 2p!
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02 = W, € A2p§~

Ap X Ap C Amin

= (p1,p2) X Amin(pr,p) & Apr X Ap, G Ap.
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Characterization of A, and inclusions

e Lerner et all (2009):

Vw € Azp
_ 1-p A
wehA, &< o1=w ,6 2p!
1-p5

02 = W, € A2p§~

Ap X Ap C Amin

= (p1,p2) X Amin(pr,p) & Apr X Ap, G Ap.

Moreover
weA, XA, = vy € Ap.

By Holder:

1-p\ P71 o P
(4 o) (£ )" < g Iwal 2.
Q Q

38



Compactness of commutators: the weighted case

Theorem (BDMT, 2015)

Suppose p € (1,00) x (1,00), p= L2 >1, be CMO, and
w € A, with vy € Ap. Then [T, b1, [T, b2 and [T, b] are
compact operators from LPr(w1) x LP2(wn) to LP(vw).
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Compactness of commutators: the weighted case

Theorem (BDMT, 2015)

Suppose p € (1,00) x (1,00), p= L2 >1, be CMO, and
w € A, with vy € Ap. Then [T, b1, [T, b2 and [T, b] are
compact operators from LPr(wy) x LP2(wp) to LP(vw).

Corollary (BDMT, 2015)

Suppose p € (1,00) x (1,0), p = % >1, be CMO, and
w e A, x A,. Then [T, bl1, [T, b]o and [T, b] are compact
operators from LP*(wy) x LP2(wy) to LP(vw).




About the proof

e Clop-Cruz (2013): Sufficient conditions, similar to those in the
Frechét-Kolmogorov-Riesz theorem, for precompactness in LP(w),
where w € Ap.
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e The difficulty in the work of Clop-Cruz 2013 is circumventing the
non-translation of weighted measure wdx. The A, condition is
crucial.
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About the proof

e Clop-Cruz (2013): Sufficient conditions, similar to those in the
Frechét-Kolmogorov-Riesz theorem, for precompactness in LP(w),
where w € Ap.

e The difficulty in the work of Clop-Cruz 2013 is circumventing the
non-translation of weighted measure wdx. The A, condition is
crucial.

e The optimal condition for compactness should be b € Ay;
unfortunately, with this condition, at best 1, € Asp, so Clop-Cruz
2013 does not apply.

e There are weights w € A, with 14, € A, and w € A, X Ap.

40



Beyond BCZ theory: commuting BS] and Lip

e 0 €BSl50<d<1:

020700 (x, &, m)| S (1 +[¢] + [pl)Fole= SR,
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Beyond BCZ theory: commuting BS] and Lip

e 0 €BSl50<d<1:

020700 (x, &, m)| S (1 +[¢] + [pl)Fole= SR,

o1(&,1) = (1 + €)% + |n]?)*/2-bilinear counterpart of the symbol of
Ji= (1 - n)Y2

eaclipl: a,Vae L®

41



Smoothing of [BS}, Lip']

Given o € BSiO, the associated BPSDO:

To(F.g)(x) = / / o(x. & )F(©)g(n)e™ € dgdn
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Smoothing of [BS}, Lip']

Given o € BSiO, the associated BPSDO:

To(F.g)(x) = / / o(x. & )F(©)g(n)e™ € dgdn

Theorem (B.-Oh, 2014)

Let o € BS}, and a € Lip*. Then, [T,,al;,j = 1,2, are BCZOs.
In particular, [T, alj : LP x L9 — L" for Hélder triples (p, q,r) and
appropriate end-point results.
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Smoothing of [BS}, Lip']

Given o € BSiO, the associated BPSDO:

To(f.8)0) = | [ otx&nf©gte e dgdy

Theorem (B.-Oh, 2014)

Let o € BS}, and a € Lip*. Then, [T,,al;,j = 1,2, are BCZOs.
In particular, [T, alj : LP x L9 — L" for Hélder triples (p, q,r) and
appropriate end-point results.

Corollary

Let o € 851170, ac Lipt and b€ CMO. Then
[[T5,alj, blk,Jj, k = 1,2, are compact bilinear operators
LPx L9 — L"

| \

42



With o1 and a as above:

1 Tov(af , &) — aTo, (F, &)llr S llall it [ Fl]erllg o
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With o1 and a as above:

1 Tov(af , &) — aTo, (F, &)llr S llall it [ Fl]erllg o

e A bilinear counterpart of the Kato-Ponce commutator estimate

1%, F)@)lr S IV Flloe | gllie + 15 F Ll gl
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Sketch of proof B.-Oh 2014

Uses the bilinear T1 theorem.

Theorem (Grafakos-Torres, 2001; Hart, 2014)

Let T be an operator with BCZ kernel. Then, T is BCZO iff
(1) T(1,1), T*(1,1), T*2(1,1) € BMO
(2) T satisfies the bilinear weak-boundedness property.
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Sketch of proof B.-Oh 2014

Uses the bilinear T1 theorem.

Theorem (Grafakos-Torres, 2001; Hart, 2014)

Let T be an operator with BCZ kernel. Then, T is BCZO iff
(1) T(1,1), T*(1,1), T*2(1,1) € BMO
(2) T satisfies the bilinear weak-boundedness property.

o If K is the kernel of T, the kernel of [T, a]; is

Kl(Xayvz) = (a(y) - a(X))K(X?y>Z)'

e The estimates on o allow us to prove K is BCZ kernel.
e Same for [T, a]».

44



Checking the BMO conditions for [T,

e Reduction to BS{’}O: For f,g e S,

T,(f,8) =Y (T}(Djf,8) + T7(f, Djg)).
j=1

The symbols of le, Tj2 are in BS{)’O.
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Checking the BMO conditions for [T,

e Reduction to BS{’}O: For f,g e S,

T,(f,8) =Y (T}(Djf,8) + T7(f, Djg)).
j=1

The symbols of le, TJ-2 are in BS{)’O.
e The class BS[ yields BCZOs for m = 0 and closed under
transposition:

T €Op—BS{y= T, T* € Op— BS{},.

o [T, ai(1,1) =, le(DJ-a, 1)
. le 1 L%° x L — BMO = [T,, a]i(1,1) € BMO; same for
[Ts,a]2(1,1)

45



Checking the BMO conditions for transposes

e Easy calculations show
([T,al)™ = —[T*, als,

([T, al)? = [T, a1 — [T, al2.
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Checking the BMO conditions for transposes

e Easy calculations show
([T,al)™ = —[T*, als,

([T, al)? = [T, a1 — [T, al2.

e Since T*!, T*2 ¢ Op — BSﬁO, where T = le, TJ?, the previous
calculations apply.

46



The bilinear weak-boundedness property

e Denote S = [T,, a]1. Show that for all xop € R”, t > 0 and all
normalized bump functions ¢;:

(S(67", 027, 03 S t".
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The bilinear weak-boundedness property

e Denote S = [T,, a]1. Show that for all xop € R”, t > 0 and all
normalized bump functions ¢;:

(S(67", 027, 03 S t".

e A normalized bump: ¢ € C2°, supp (¢) € {|x| < 1},
0%0(x)| S 1, Va

o ¢f(x) = ¢(t7(x — x0))-

e The same calculations, with minor modifications, work for all
BSl,0<é <1

47



Beyond bilinear Hormander classes

Let ¢ # 0, 1 € S(R?") with

suppy C {(&,m) : 1 < [€] + |n| < 2}
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Beyond bilinear Hormander classes

Let ¢ # 0, ¢ € S(R2") with

suppy C {(&,m) : 1 < [€] + |n| < 2}

(gk)k>0 C C®(R") are so that

10%g1(x)| < 2KmHel) vy k

¢ € SR :suppd C {7 € R |7] < r}; dpi(x) := 2k (2K x)

Definition

U¢7¢7g(Xa 57 77) = Zzozo(gk & ¢2*k)(x)¢(2_k£7 2_k77)
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Beyond bilinear Hormander classes

Let ¢ # 0, ¢ € S(R2") with

suppy C {(&,m) : 1 < [€] + |n| < 2}

(gk)k>0 C C®(R") are so that

10%g1(x)| < 2KmHel) vy k

¢ € SR :suppd C {7 € R |7] < r}; dpi(x) := 2k (2K x)

Definition

U¢7¢7g(Xa 57 77) = Zzozo(gk & ¢2*k)(x)¢(2_k£7 2_k77)

Top.g & Useo,1)BSTs

48



A new class of symbols

...However, 04y o € B,BS{’:l.

49



A new class of symbols

...However, 04y o € BrBSf,’l.

Definition

o € B,BS[" if o € BS, AND

supp (57) C {(7,€, 1) : |7| < r(|€] + |eta])}

Definition

BBS{':]_ = Ur6(0,1/7)BrBS]Tl

Theorem (B.-Naibo, 2016)

Let o € BBSll’1 and a € Lip'. Then, [T5,a]j,j = 1,2, are BCZOs.
In particular, [Ty, a)j : LP x L9 — L" for Holder triples (p, q, r) and
appropriate end-point results.
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Some remarks

1. BSﬂ1 yields BCZ kernels but NOT BCZOs (failure of bilinear
T1 theorem)
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Some remarks

1. BSﬁ1 yields BCZ kernels but NOT BCZOs (failure of bilinear
T1 theorem)

2. The class BSl 1={0eBSY :0"!,0*2 € BSY,} is known to
be the /argest one to produce BCZOS

3. Non-trivial: BBSil C BNSil

4. The proof of B.-Oh 2014 DOES NOT apply: reducing to BSﬂl
does not help since 8531 is not closed under transposition!

5. Some more delicate quantitative estimates on the transposes of

the spatially dilated symbols o*(x, &,7n) = o(tx,&,n) and an
equally delicate approximation argument are needed.
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Commutators of the Bilinear Hilbert Transform

f(x—y)g(x+y) dy
) .

BHT(f, g)(x) = /R

e Culiuc-Di Plinio-Ou (2016): weighted estimates for BHT ...
e...produces (some) boundedness of [BHT, b]; with b € BMO via
the “Cauchy integral trick” of Coifman-Rochberg-Weiss.

e Moreover, the method of proof for [Bl,, b]; allows then to prove
the (separate) compactness of [BHT, b]; for b € CMO (work in
progress with Martell, Moen, Stachura, Torres).
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Thank youl!
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