Processing math: 100%

HNP.gap

Definition of Obs(K/k) and Obs1(L/K/k) (Drakokhrust and Platonov [PD85a, page 350], [DP87, page 300]).
Let k be a number field, LKk be a tower of finite extensions where L is normal over k. We call the group Obs(K/k)=(NK/k(A×K)k×)/NK/k(K×) the total obstruction to the Hasse norm principle for K/k and Obs1(L/K/k)=(NK/k(A×K)k×)/((NL/k(A×L)k×)NK/k(K×))  the first obstruction to the Hasse norm principle for K/k corresponding to the tower LKk.
Theorem 1 (Drakokhrust and Platonov [PD85a, page 350], [PD85b, pages 789-790], [DP87, Theorem 1]).
Let k be a number field, LKk be a tower of finite extensions where L is normal over k. Let G=Gal(L/k) and H=Gal(L/K). Then Obs1(L/K/k)Kerψ1/φ1(Kerψ2) where H/[H,H]ψ1G/[G,G]φ1φ2vVk(wvHw/[Hw,Hw])ψ2vVkGv/[Gv,Gv] where ψ1, φ1 and φ2 are defined by the inclusions HG, HwH and GvG respectively, and ψ2(h[Hw,Hw])=x1hx[Gv,Gv] for hHw=HxGvx1 (xG).

Let ψv2 be the restriction of ψ2 to the subgroup wvHw/[Hw,Hw] with respect to vVk and ψnr2 (resp. ψr2) be the restriction of ψ2 to the unramified (resp. the ramified) places v of k.

Proposition 2 (Drakokhrust and Platonov [DP87]).
Let k, LKk, G and H be as in Theorem 1.
(i) ([DP87, Lemma 1]) Places wiv of K are in one-to-one correspondence with the set of double cosets in the decomposition G=rvi=1HxiGv where Hwi=HxiGvx1i;
(ii) ([DP87, Lemma 2]) If Gv1Gv2, then φ1(Kerψv12)φ1(Kerψv22);
(iii) ([DP87, Theorem 2]) φ1(Kerψnr2)=ΦG(H)/[H,H] where ΦG(H)=[h,x]hHxHx1,xG;
(iv) ([DP87, Lemma 8]) If [K:k]=pr (r1) and Obs(Kp/kp)=1 where kp=LGp, Kp=LHp, Gp and Hp are p-Sylow subgroups of G and H respectively, then Obs(K/k)=1.
Theorem 3 (Drakokhrust and Platonov [DP87, Theorem 3, Corollary 1]).
Let k, LKk, G and H be as in Theorem 1. Let HiGiG (1im), HiHGi, ki=LGi and Ki=LHi. If Obs(Ki/ki)=1 for any 1im and mi=1ˆH3(Gi,Z)coresˆH3(G,Z) is surjective, then Obs(K/k)=Obs1(L/K/k). In particular, if [K:k]=n is square-free, then Obs(K/k)=Obs1(L/K/k).
Theorem 4 (Drakokhrust [Dra89, Theorem 1], see also Opolka [Opo80, Satz 3]).
Let k, LKk, G and H be as in Theorem 1. Let ˜LLk be a tower of Galois extensions with ˜G=Gal(˜L/k) and ˜H=Gal(˜L/K) which correspond to a central extension 1A˜GG1 with A[˜G,˜G]M(G); the Schur multiplier of G (this is equivalent to the inflation M(˜G)M(G) is zero map, see Beyl and Tappe [BT82, Proposition 2.13, page 85]). Then Obs(K/k)=Obs1(˜L/K/k). In particular, ˜G is a Schur cover of G, i.e. AM(G), then Obs(K/k)=Obs1(˜L/K/k).

FirstObstructionN

FirstObstructionN(G,H).ker
returns the list [l1,[l2,l3]] where l1 is the abelian invariant of the numerator of the first obstruction Kerψ1=y1,,yt with respect to G, H as in Theorem 1, l2=[e1,,em] is the abelian invariant of Hab=H/[H,H]=x1,,xm with ei=order(xi) and l3=[l3,1,,l3,t], l3,i=[ri,1,,ri,m] is the list with yi=xri,11xri,mm for HGSn.
FirstObstructionN(G).ker
returns the same as FirstObstructionN(G,H).ker where H=Stab1(G) is the stabilizer of 1 in GSn.

FirstObstructionDnr

FirstObstructionDnr(G,H).Dnr
returns the list [l1,[l2,l3]] where l1 is the abelian invariant of the unramified part of the denominator of the first obstruction φ1(Kerψnr2)=ΦG(H)/[H,H]=y1,,yt with respect to G, H as in Proposition 2 (iii), l2=[e1,,em] is the abelian invariant of Hab=H/[H,H]=x1,,xm with ei=order(xi) and l3=[l3,1,,l3,t], l3,i=[ri,1,,ri,m] is the list with yi=xri,11xri,mm for HGSn.
FirstObstructionDnr(G).Dnr
returns the same as FirstObstructionDnr(G,H).Dnr where H=Stab1(G) is the stabilizer of 1 in GSn.

FirstObstructionDr

FirstObstructionDr(G,Gv,H).Dr
returns the list [l1,[l2,l3]] where l1 is the abelian invariant of the ramified part of the denominator of the first obstruction φ1(Kerψv2)=y1,,yt with respect to G, Gv, H as in Theorem 1, l2=[e1,,em] is the abelian invariant of Hab=H/[H,H]=x1,,xm with ei=order(xi) and l3=[l3,1,,l3,t], l3,i=[ri,1,,ri,m] is the list with yi=xri,11xri,mm for HGSn.
FirstObstructionDr(G,Gv).Dr
returns the same as FirstObstructionDr(G,Gv,H).Dr where H=Stab1(G) is the stabilizer of 1 in GSn.

SchurCoverG

SchurCoverG(G).SchurCover
returns one of the Schur covers ˜G of G in a central extension 1A˜GπG1 with AM(G); Schur multiplier of G (see Karpilovsky [Kap87, page 16]). The Schur covers ˜G are stem extensions, i.e. AZ(˜G)[˜G,˜G], of the maximal size.
SchurCoverG(G).epi
returns the surjective map π in a central extension 1A˜GπG1 with AM(G); Schur multiplier of G (see Karpilovsky [Kap87, page 16]). The Schur covers ˜G are stem extensions, i.e. AZ(˜G)[˜G,˜G], of the maximal size.
These functions are based on the built-in function EpimorphismSchurCover in GAP.

MinimalStemExtensions

MinimalStemExtensions(G)[j].MinimalStemExtension
(resp. MinimalStemExtensions(G)[j].epi) returns the j-th minimal stem extension ¯G=˜G/A, i.e. ¯AZ(¯G)[¯G,¯G], of G provided by the Schur cover ˜G of G via SchurCoverG(G).SchurCover where A is the j-th maximal subgroups of A=M(G) (resp. the surjective map ¯π) in the commutative diagram 1A=M(G)˜GπG11¯A=A/A¯G=˜G/A¯πG1 (see Robinson [Rob96, Exercises 11.4]).
This function is based on the built-in function EpimorphismSchurCover in GAP.

StemExtensions

StemExtensions(G)[j].StemExtension
(resp. StemExtensions(G)[j].epi) returns the j-th stem extension ¯G=˜G/A, i.e. ¯AZ(¯G)[¯G,¯G], of G provided by the Schur cover ˜G of G via SchurCoverG(G).SchurCover where A is the j-th maximal subgroups of A=M(G) (resp. the surjective map ¯π) in the commutative diagram 1A=M(G)˜GπG11¯A=A/A¯G=˜G/A¯πG1 (see Robinson [Rob96, Exercises 11.4]).
This function is based on the built-in function EpimorphismSchurCover in GAP.

Resolution of G

ResolutionNormalSeries(LowerCentralSeries(G),n+1)
returns a free resolution RG of G when G is nilpotent.
ResolutionNormalSeries(DerivedSeries(G),n+1)
returns a free resolution RG of G when G is solvable.
ResolutionFiniteGroup(G,n+1)
returns a free resolution RG of G when G is finite.
These functions are the built-in functions of HAP in GAP.

ResHnZ

ResHnZ(RG,RH,n).HnGZ
returns the abelian invariants of Hn(G,Z) with respect to Smith normal form, for free resolution RG of G.
ResHnZ(RG,RH,n).HnHZ
returns the abelian invariants of Hn(H,Z) with respect to Smith normal form, for free resolution RH of H.
ResHnZ(RG,RH,n).Res
returns the list L=[l1,,ls] where Hn(G,Z)=x1,,xsresHn(H,Z)=y1,,yt, res(xi)=tj=1yli,jj and li=[li,1,,li,t] for free resolutions RG and RH of G and H respectively.
ResHnZ(RG,RH,n).Ker
returns the list L=[l1,[l2,l3]] where l1 is the abelian invariant of Ker{Hn(G,Z) res Hn(H,Z)}=y1,,yt, l2=[d1,,ds] is the abelian invariant of Hn(G,Z)=x1,,xs with di=ord(xi) and l3=[l3,1,,l3,t], l3,j=[rj,1,,rj,s] is the list with yj=xrj,11xrj,ss for free resolutions RG and RH of G and H respectively.
ResHnZ(RG,RH,n).Coker
returns the list L=[l1,[l2,l3]] where l1=[e1,,et] is the abelian invariant of Coker{Hn(G,Z) res Hn(H,Z)}=¯y1,,¯yt with ej=ord(¯yj), l2=[d1,,ds] is the abelian invariant of Hn(H,Z)=x1,,xs with di=ord(xi) and l3=[l3,1,,l3,t], l3,j=[rj,1,,rj,s] is the list with ¯yj=¯x1rj,1¯xsrj,s for free resolutions RG and RH of G and H respectively.

KerResH3Z

KerResH3Z was improved to ver.2019.10.04 from ver.2020.03.19
KerResH3Z(G,H)
returns the list L=[l1,[l2,l3]] where l1 is the abelian invariant of Ker{H3(G,Z)resmi=1H3(Gi,Z)}=y1,,yt where HiGiG, HiHGi, [Gi:Hi]=n and the action of Gi on Z[Gi/Hi] may be regarded as nTm (n15) which is not in [HKY22, Table 1] or [HKY23, Table 1], l2=[d1,,ds] is the abelian invariant of H3(G,Z)=x1,,xs with di=ord(xi) and l3=[l3,1,,l3,t], l3,j=[rj,1,,rj,s] is the list with yj=xrj,11xrj,ss for groups G and H (cf. Theorem 3).

KerResH3Z(G,H:iterator) was added to ver.2019.10.04 from ver.2020.03.19
KerResH3Z(G,H:iterator)
returns the same as KerResH3Z(G,H) but using the built-in function IteratorByFunctions of GAP in order to run fast (by applying the new function ChooseGiIterator(G,H) to choose suitable GiG instead of the old one ChooseGi(G,H)).

ConjugacyClassesSubgroupsNGHOrbitRep

ConjugacyClassesSubgroupsNGHOrbitRep was added to ver.2019.10.04 from ver.2020.03.19
ConjugacyClassesSubgroupsNGHOrbitRep(ConjugacyClassesSubgroups(G),H)
returns the list L=[l1,,lt] where t is the number of subgroups of G up to conjugacy, lr=[lr,1,,lr,ur] (1rt), lr,s (1sur) is a representative of the orbit OrbNG(H)G/NG(Gvr,s)(Gvr,s) of Gvr,sG under the conjugate action of G which corresponds to the double coset NG(H)G/NG(Gvr,s) with OrbG/NG(Gvr)(Gvr)=urs=1OrbNG(H)G/NG(Gvr,s)(Gvr,s) corresponding to r-th subgroup GvrG up to conjugacy.

MinConjugacyClassesSubgroups

MinConjugacyClassesSubgroups was added to ver.2019.10.04 from ver.2020.03.19
MinConjugacyClassesSubgroups(l)
returns the minimal elements of the list l={HGi} where HGi={x1HixxG} for some subgroups HiG which satisfy the condition that if HGi,HGrl and HiHr, then HGjl for any HiHjHr.

IsInvariantUnderAutG

IsInvariantUnderAutG was added to ver.2019.10.04 from ver.2020.03.19
IsInvariantUnderAutG(l)
returns true if the list l={HGi} is closed under the action of all the automorphisms Aut(G) of G where HGi={x1HixxG} (HiG). If not, this returns false.

References

[BT82] F. R. Beyl, J. Tappe, Group extensions, representations, and the Schur multiplicator, Lecture Notes in Mathematics, 958. Springer-Verlag, Berlin-New York, 1982.
[Dra89] Yu. A. Drakokhrust, On the complete obstruction to the Hasse principle, (Russian) Dokl. Akad. Nauk BSSR 30 (1986) 5-8; translation in Amer. Math. Soc. Transl. (2) 143 (1989) 29-34.
[DP87] Yu. A. Drakokhrust, V. P. Platonov, The Hasse norm principle for algebraic number fields, (Russian) Izv. Akad. Nauk SSSR Ser. Mat. 50 (1986) 946-968; translation in Math. USSR-Izv. 29 (1987) 299-322.
[HKY22] A. Hoshi, K. Kanai, A. Yamsaki, Norm one tori and Hasse norm principle, Math. Comp. 91 (2022) 2431-2458. AMS Extended version: arXiv:1910.01469.
[HKY23] A. Hoshi, K. Kanai, A. Yamsaki, Norm one tori and Hasse norm principle, II: Degree 12 case, J. Number Theory 244 (2023) 84-110. ScienceDirect Extended version: arXiv:2003.08253.
[HKY25] A. Hoshi, K. Kanai, A. Yamsaki, Norm one tori and Hasse norm principle, III: Degree 16 case, J. Algebra 666 (2025) 794-820. ScienceDirect Extended version: arXiv:2404.01362.
[HKY] A. Hoshi, K. Kanai, A. Yamsaki, Hasse norm principle for M11 and J1 extensions, arXiv:2210.09119.
[Kap87] G. Karpilovsky, The Schur multiplier, London Mathematical Society Monographs. New Series, 2. The Clarendon Press, Oxford University Press, New York, 1987.
[Opo80] H. Opolka, Zur Auflösung zahlentheoretischer Knoten, Math. Z. 173 (1980) 95-103.
[PD85a] V. P. Platonov, Yu. A. Drakokhrust, On the Hasse principle for algebraic number fields, (Russian) Dokl. Akad. Nauk SSSR 281 (1985) 793-797; translation in Soviet Math. Dokl. 31 (1985) 349-353.
[PD85b] V. P. Platonov, Yu. A. Drakokhrust, The Hasse norm principle for primary extensions of algebraic number fields, (Russian) Dokl. Akad. Nauk SSSR 285 (1985) 812-815; translation in Soviet Math. Dokl. 32 (1985) 789-792.
[Rob96] D. J. S. Robinson, A course in the theory of groups, Second edition. Graduate Texts in Mathematics, 80. Springer-Verlag, New York, 1996.