HNP.gap
- Definition of Obs(K/k) and Obs1(L/K/k) (Drakokhrust and Platonov [PD85a, page 350], [DP87, page 300]).
- Let k be a number field, L⊃K⊃k be a tower of finite extensions where L is normal over k. We call the group Obs(K/k)=(NK/k(A×K)∩k×)/NK/k(K×) the total obstruction to the Hasse norm principle for K/k and Obs1(L/K/k)=(NK/k(A×K)∩k×)/((NL/k(A×L)∩k×)NK/k(K×)) the first obstruction to the Hasse norm principle for K/k corresponding to the tower L⊃K⊃k.
- Theorem 1 (Drakokhrust and Platonov [PD85a, page 350], [PD85b, pages 789-790], [DP87, Theorem 1]).
- Let k be a number field, L⊃K⊃k be a tower of finite extensions where L is normal over k. Let G=Gal(L/k) and H=Gal(L/K). Then Obs1(L/K/k)≃Kerψ1/φ1(Kerψ2) where H/[H,H]ψ1→G/[G,G]↑φ1↑φ2⨁v∈Vk(⨁w∣vHw/[Hw,Hw])ψ2→⨁v∈VkGv/[Gv,Gv] where ψ1, φ1 and φ2 are defined by the inclusions H⊂G, Hw⊂H and Gv⊂G respectively, and ψ2(h[Hw,Hw])=x−1hx[Gv,Gv] for h∈Hw=H∩xGvx−1 (x∈G).
- Proposition 2 (Drakokhrust and Platonov [DP87]).
-
Let k,
L⊃K⊃k,
G and H be as in Theorem 1.
(i) ([DP87, Lemma 1]) Places wi∣v of K are in one-to-one correspondence with the set of double cosets in the decomposition G=∪rvi=1HxiGv where Hwi=H∩xiGvx−1i;
(ii) ([DP87, Lemma 2]) If Gv1≤Gv2, then φ1(Kerψv12)⊂φ1(Kerψv22);
(iii) ([DP87, Theorem 2]) φ1(Kerψnr2)=ΦG(H)/[H,H] where ΦG(H)=⟨[h,x]∣h∈H∩xHx−1,x∈G⟩;
(iv) ([DP87, Lemma 8]) If [K:k]=pr (r≥1) and Obs(Kp/kp)=1 where kp=LGp, Kp=LHp, Gp and Hp are p-Sylow subgroups of G and H respectively, then Obs(K/k)=1. - Theorem 3 (Drakokhrust and Platonov [DP87, Theorem 3, Corollary 1]).
- Let k, L⊃K⊃k, G and H be as in Theorem 1. Let Hi≤Gi≤G (1≤i≤m), Hi≤H∩Gi, ki=LGi and Ki=LHi. If Obs(Ki/ki)=1 for any 1≤i≤m and m⨁i=1ˆH−3(Gi,Z)cores→ˆH−3(G,Z) is surjective, then Obs(K/k)=Obs1(L/K/k). In particular, if [K:k]=n is square-free, then Obs(K/k)=Obs1(L/K/k).
- Theorem 4 (Drakokhrust [Dra89, Theorem 1], see also Opolka [Opo80, Satz 3]).
- Let k, L⊃K⊃k, G and H be as in Theorem 1. Let ˜L⊃L⊃k be a tower of Galois extensions with ˜G=Gal(˜L/k) and ˜H=Gal(˜L/K) which correspond to a central extension 1→A→˜G→G→1 with A∩[˜G,˜G]≃M(G); the Schur multiplier of G (this is equivalent to the inflation M(˜G)→M(G) is zero map, see Beyl and Tappe [BT82, Proposition 2.13, page 85]). Then Obs(K/k)=Obs1(˜L/K/k). In particular, ˜G is a Schur cover of G, i.e. A≃M(G), then Obs(K/k)=Obs1(˜L/K/k).
Let ψv2 be the restriction of ψ2 to the subgroup ⨁w∣vHw/[Hw,Hw] with respect to v∈Vk and ψnr2 (resp. ψr2) be the restriction of ψ2 to the unramified (resp. the ramified) places v of k.
FirstObstructionN
FirstObstructionN(G,H).kerreturns the list [l1,[l2,l3]] where l1 is the abelian invariant of the numerator of the first obstruction Kerψ1=⟨y1,…,yt⟩ with respect to G, H as in Theorem 1, l2=[e1,…,em] is the abelian invariant of Hab=H/[H,H]=⟨x1,…,xm⟩ with ei=order(xi) and l3=[l3,1,…,l3,t], l3,i=[ri,1,…,ri,m] is the list with yi=xri,11⋯xri,mm for H≤G≤Sn.
FirstObstructionN(G).ker
returns the same
as FirstObstructionN(G,H).ker where H=Stab1(G)
is the stabilizer of 1 in G≤Sn.
FirstObstructionDnr
FirstObstructionDnr(G,H).Dnrreturns the list [l1,[l2,l3]] where l1 is the abelian invariant of the unramified part of the denominator of the first obstruction φ1(Kerψnr2)=ΦG(H)/[H,H]=⟨y1,…,yt⟩ with respect to G, H as in Proposition 2 (iii), l2=[e1,…,em] is the abelian invariant of Hab=H/[H,H]=⟨x1,…,xm⟩ with ei=order(xi) and l3=[l3,1,…,l3,t], l3,i=[ri,1,…,ri,m] is the list with yi=xri,11⋯xri,mm for H≤G≤Sn.
FirstObstructionDnr(G).Dnr
returns the same
as FirstObstructionDnr(G,H).Dnr where H=Stab1(G)
is the stabilizer of 1 in G≤Sn.
FirstObstructionDr
FirstObstructionDr(G,Gv,H).Drreturns the list [l1,[l2,l3]] where l1 is the abelian invariant of the ramified part of the denominator of the first obstruction φ1(Kerψv2)=⟨y1,…,yt⟩ with respect to G, Gv, H as in Theorem 1, l2=[e1,…,em] is the abelian invariant of Hab=H/[H,H]=⟨x1,…,xm⟩ with ei=order(xi) and l3=[l3,1,…,l3,t], l3,i=[ri,1,…,ri,m] is the list with yi=xri,11⋯xri,mm for H≤G≤Sn.
FirstObstructionDr(G,Gv).Drreturns the same as FirstObstructionDr(G,Gv,H).Dr where H=Stab1(G) is the stabilizer of 1 in G≤Sn.
SchurCoverG
SchurCoverG(G).SchurCover
returns
one of the Schur covers ˜G of G
in a central extension
1→A→˜Gπ→G→1
with A≃M(G); Schur multiplier of G
(see Karpilovsky [Kap87, page 16]).
The Schur covers ˜G are
stem extensions, i.e. A≤Z(˜G)∩[˜G,˜G], of the maximal size.
SchurCoverG(G).epi
returns
the surjective map π
in a central extension
1→A→˜Gπ→G→1
with A≃M(G); Schur multiplier of G
(see Karpilovsky [Kap87, page 16]).
The Schur covers ˜G are
stem extensions, i.e. A≤Z(˜G)∩[˜G,˜G], of the maximal size.
These functions are based on the built-in function EpimorphismSchurCover in GAP.
MinimalStemExtensions
MinimalStemExtensions(G)[j].MinimalStemExtension(resp. MinimalStemExtensions(G)[j].epi) returns the j-th minimal stem extension ¯G=˜G/A′, i.e. ¯A≤Z(¯G)∩[¯G,¯G], of G provided by the Schur cover ˜G of G via SchurCoverG(G).SchurCover where A′ is the j-th maximal subgroups of A=M(G) (resp. the surjective map ¯π) in the commutative diagram 1→A=M(G)→˜Gπ→G→1↓↓∥1→¯A=A/A′→¯G=˜G/A′¯π→G→1 (see Robinson [Rob96, Exercises 11.4]).
This function is based on the built-in function EpimorphismSchurCover in GAP.
StemExtensions
StemExtensions(G)[j].StemExtension(resp. StemExtensions(G)[j].epi) returns the j-th stem extension ¯G=˜G/A′, i.e. ¯A≤Z(¯G)∩[¯G,¯G], of G provided by the Schur cover ˜G of G via SchurCoverG(G).SchurCover where A′ is the j-th maximal subgroups of A=M(G) (resp. the surjective map ¯π) in the commutative diagram 1→A=M(G)→˜Gπ→G→1↓↓∥1→¯A=A/A′→¯G=˜G/A′¯π→G→1 (see Robinson [Rob96, Exercises 11.4]).
This function is based on the built-in function EpimorphismSchurCover in GAP.
Resolution of G
ResolutionNormalSeries(LowerCentralSeries(G),n+1)returns a free resolution RG of G when G is nilpotent.
ResolutionNormalSeries(DerivedSeries(G),n+1)returns a free resolution RG of G when G is solvable.
ResolutionFiniteGroup(G,n+1)returns a free resolution RG of G when G is finite.
These functions are the built-in functions of HAP in GAP.
ResHnZ
ResHnZ(RG,RH,n).HnGZreturns the abelian invariants of Hn(G,Z) with respect to Smith normal form, for free resolution RG of G.
ResHnZ(RG,RH,n).HnHZreturns the abelian invariants of Hn(H,Z) with respect to Smith normal form, for free resolution RH of H.
ResHnZ(RG,RH,n).Resreturns the list L=[l1,…,ls] where Hn(G,Z)=⟨x1,…,xs⟩res→Hn(H,Z)=⟨y1,…,yt⟩, res(xi)=∏tj=1yli,jj and li=[li,1,…,li,t] for free resolutions RG and RH of G and H respectively.
ResHnZ(RG,RH,n).Kerreturns the list L=[l1,[l2,l3]] where l1 is the abelian invariant of Ker{Hn(G,Z) res→ Hn(H,Z)}=⟨y1,…,yt⟩, l2=[d1,…,ds] is the abelian invariant of Hn(G,Z)=⟨x1,…,xs⟩ with di=ord(xi) and l3=[l3,1,…,l3,t], l3,j=[rj,1,…,rj,s] is the list with yj=xrj,11⋯xrj,ss for free resolutions RG and RH of G and H respectively.
ResHnZ(RG,RH,n).Cokerreturns the list L=[l1,[l2,l3]] where l1=[e1,…,et] is the abelian invariant of Coker{Hn(G,Z) res→ Hn(H,Z)}=⟨¯y1,…,¯yt⟩ with ej=ord(¯yj), l2=[d1,…,ds] is the abelian invariant of Hn(H,Z)=⟨x1,…,xs⟩ with di=ord(xi) and l3=[l3,1,…,l3,t], l3,j=[rj,1,…,rj,s] is the list with ¯yj=¯x1rj,1⋯¯xsrj,s for free resolutions RG and RH of G and H respectively.
KerResH3Z
KerResH3Z was improved to ver.2019.10.04 from ver.2020.03.19KerResH3Z(G,H)returns the list L=[l1,[l2,l3]] where l1 is the abelian invariant of Ker{H3(G,Z)res→⊕m′i=1H3(Gi,Z)}=⟨y1,…,yt⟩ where Hi≤Gi≤G, Hi≤H∩Gi, [Gi:Hi]=n and the action of Gi on Z[Gi/Hi] may be regarded as nTm (n≤15) which is not in [HKY22, Table 1] or [HKY23, Table 1], l2=[d1,…,ds] is the abelian invariant of H3(G,Z)=⟨x1,…,xs⟩ with di′=ord(xi′) and l3=[l3,1,…,l3,t], l3,j=[rj,1,…,rj,s] is the list with yj=xrj,11⋯xrj,ss for groups G and H (cf. Theorem 3).
KerResH3Z(G,H:iterator) was added to ver.2019.10.04 from ver.2020.03.19
KerResH3Z(G,H:iterator)returns the same as KerResH3Z(G,H) but using the built-in function IteratorByFunctions of GAP in order to run fast (by applying the new function ChooseGiIterator(G,H) to choose suitable Gi≤G instead of the old one ChooseGi(G,H)).
ConjugacyClassesSubgroupsNGHOrbitRep
ConjugacyClassesSubgroupsNGHOrbitRep was added to ver.2019.10.04 from ver.2020.03.19ConjugacyClassesSubgroupsNGHOrbitRep(ConjugacyClassesSubgroups(G),H)returns the list L=[l1,…,lt] where t is the number of subgroups of G up to conjugacy, lr=[lr,1,…,lr,ur] (1≤r≤t), lr,s (1≤s≤ur) is a representative of the orbit OrbNG(H)∖G/NG(Gvr,s)(Gvr,s) of Gvr,s≤G under the conjugate action of G which corresponds to the double coset NG(H)∖G/NG(Gvr,s) with OrbG/NG(Gvr)(Gvr)=⋃urs=1OrbNG(H)∖G/NG(Gvr,s)(Gvr,s) corresponding to r-th subgroup Gvr≤G up to conjugacy.
MinConjugacyClassesSubgroups
MinConjugacyClassesSubgroups was added to ver.2019.10.04 from ver.2020.03.19MinConjugacyClassesSubgroups(l)
returns the minimal elements of the list l={HGi}
where HGi={x−1Hix∣x∈G}
for some subgroups Hi≤G which
satisfy the condition that if HGi,HGr∈l and Hi≤Hr,
then HGj∈l for any Hi≤Hj≤Hr.
IsInvariantUnderAutG
IsInvariantUnderAutG was added to ver.2019.10.04 from ver.2020.03.19IsInvariantUnderAutG(l)
returns true if
the list l={HGi} is closed under the action of all
the automorphisms Aut(G) of G
where HGi={x−1Hix∣x∈G} (Hi≤G).
If not, this returns false.
References
[BT82] F. R. Beyl, J. Tappe,
Group extensions, representations, and the Schur multiplicator,
Lecture Notes in Mathematics, 958. Springer-Verlag,
Berlin-New York, 1982.
[Dra89] Yu. A. Drakokhrust,
On the complete obstruction to the Hasse principle, (Russian)
Dokl. Akad. Nauk BSSR 30 (1986) 5-8;
translation in Amer. Math. Soc. Transl. (2) 143 (1989) 29-34.
[DP87] Yu. A. Drakokhrust, V. P. Platonov,
The Hasse norm principle for algebraic number fields, (Russian)
Izv. Akad. Nauk SSSR Ser. Mat. 50 (1986) 946-968;
translation in Math. USSR-Izv. 29 (1987) 299-322.
[HKY22] A. Hoshi, K. Kanai, A. Yamsaki,
Norm one tori and Hasse norm principle,
Math. Comp. 91 (2022) 2431-2458.
AMS
Extended version:
arXiv:1910.01469.
[HKY23] A. Hoshi, K. Kanai, A. Yamsaki,
Norm one tori and Hasse norm principle, II: Degree 12 case,
J. Number Theory 244 (2023) 84-110.
ScienceDirect
Extended version:
arXiv:2003.08253.
[HKY25] A. Hoshi, K. Kanai, A. Yamsaki,
Norm one tori and Hasse norm principle, III: Degree 16 case,
J. Algebra 666 (2025) 794-820.
ScienceDirect
Extended version:
arXiv:2404.01362.
[HKY] A. Hoshi, K. Kanai, A. Yamsaki,
Hasse norm principle for M11 and J1 extensions,
arXiv:2210.09119.
[Kap87] G. Karpilovsky,
The Schur multiplier,
London Mathematical Society Monographs.
New Series, 2. The Clarendon Press, Oxford University Press, New York, 1987.
[Opo80] H. Opolka,
Zur Auflösung zahlentheoretischer Knoten,
Math. Z. 173 (1980) 95-103.
[PD85a] V. P. Platonov, Yu. A. Drakokhrust,
On the Hasse principle for algebraic number fields, (Russian)
Dokl. Akad. Nauk SSSR 281 (1985) 793-797;
translation in Soviet Math. Dokl. 31 (1985) 349-353.
[PD85b] V. P. Platonov, Yu. A. Drakokhrust,
The Hasse norm principle for primary extensions of algebraic number fields, (Russian)
Dokl. Akad. Nauk SSSR 285 (1985) 812-815;
translation in Soviet Math. Dokl. 32 (1985) 789-792.
[Rob96] D. J. S. Robinson,
A course in the theory of groups, Second edition.
Graduate Texts in Mathematics, 80. Springer-Verlag, New York, 1996.