FlabbyResolutionFromBase.gap
- Definition of MG
- Let G be a finite subgroup of GL(n,Z). The G-lattice MG of rank n is defined to be the G-lattice with a Z-basis {u1,…,un} on which G acts by σ(ui)=∑nj=1ai,juj for any σ=[ai,j]∈G.
Hminus1
Hminus1(G)
returns the Tate cohomology group ˆH−1(G,MG) for a finite subgroup G≤GL(n,Z).
H0
H0(G)
returns the Tate cohomology group ˆH0(G,MG) for a finite subgroup G≤GL(n,Z).
H1
H1(G)
returns the cohomology group H1(G,MG) for a finite subgroup G≤GL(n,Z).
Z0lattice
Z0lattice(G)
returns a Z-basis of the group of Tate 0-cocycles ˆZ0(G,MG) for a finite subgroup G≤GL(n,Z).
ConjugacyClassesSubgroups2, ConjugacyClassesSubgroupsFromPerm
ConjugacyClassesSubgroups2(G)
ConjugacyClassesSubgroupsFromPerm(G)
returns the list of conjugacy classes of subgroups of a group G.
We use this function because the ordering of the conjugacy classes of subgroups of G by the built-in function ConjugacyClassesSubgroups(G) is not fixed for some groups.
If a group G is too big, ConjugacyClassesSubgroups2(G) may not work well.
IsFlabby
IsFlabby(G)
returns whether G-lattice MG is flabby or not.
IsCoflabby
IsCoflabby(G)
returns whether G-lattice MG is coflabby or not.
IsInvertible
IsInvertible(G)
returns whether G-lattice MG is invertible or not.
FlabbyResoluton
FlabbyResolution(G)
returns a flabby resolution 0→MGι→Pϕ→F→0 of MG as follows:
FlabbyResolution(G).actionP
returns the matrix representation of the action of G on P;
FlabbyResolution(G).actionF
returns the matrix representation of the action of G on F;
FlabbyResolution(G).injection
returns the matrix which corresponds to the injection ι:MG→P;
FlabbyResolution(G).surjection
returns the matrix which corresponds to the surjection ϕ:P→F.
IsInvertibleF
IsInvertibleF(G)
returns whether [MG]fl is invertible.
flfl
flfl(G)
returns the G-lattice E with [[MG]fl]fl=[E].
PossibilityOfStablyPermutationF
PossibilityOfStablyPermutationF(G)
returns a basis L={l1,…,ls} of the solution space of the system of linear equations which is obtained by computing some Z-class invariants.
Each isomorphism class of irreducible permutation G-lattices
corresponds to a conjugacy class of subgroup H of G by
H↔Z[G/H].
Let H1,…,Hr be conjugacy classes of subgroups of G
whose ordering corresponds to the GAP function ConjugacyClassesSubgroups2(G).
Let F be the flabby class of MG.
We assume that F is stably permutation, i.e. for xr+1=±1,
(r⨁i=1Z[G/Hi]⊕xi)⊕F⊕xr+1 ≃ r⨁i=1Z[G/Hi]⊕yi.
Define ai=xi−yi and b1=xr+1. Then we have for b1=±1,
r⨁i=1Z[G/Hi]⊕ai ≃ F⊕(−b1).
[MG]fl=0⟹ there exist a1,…,ar∈Z and b1=±1
which satisfy the system of linear equations.
PossibilityOfStablyPermutationM
PossibilityOfStablyPermutationM(G)
returns the same as PossibilityOfStablyPermutationF(G) but with respect to MG instead of F.
Nlist
Nlist(l)
returns the negative part of the list l.
Plist
Plist(l)
returns the positive part of the list l.
StablyPermutationFCheck
StablyPermutationFCheck(G,L1,L2)returns the matrix P which satisfies G1P=PG2 where G1 (resp. G2) is the matrix representation group of the action of G on (⊕ri=1Z[G/Hi]⊕ai)⊕F⊕b1 (resp. (⊕ri=1Z[G/Hi]⊕a′i)⊕F⊕b′1) with the isomorphism (r⨁i=1Z[G/Hi]⊕ai)⊕F⊕b1≃(r⨁i=1Z[G/Hi]⊕a′i)⊕F⊕b′1 for lists L1=[a1,…,ar,b1] and L2=[a′1,…,a′r,b′1], if P exists. If such P does not exist, this returns false.
StablyPermutationMCheck
StablyPermutationMCheck(G,L1,L2)returns the same as StablyPermutationFCheck(G,L1,L2) but with respect to MG instead of F.
StablyPermutationFCheckP
StablyPermutationFCheckP(G,L1,L2)returns a basis P={P1,…,Pm} of the solution space of G1P=PG2 where G1 (resp. G2) is the matrix representation group of the action of G on (⊕ri=1Z[G/Hi]⊕ai)⊕F⊕b1 (resp. (⊕ri=1Z[G/Hi]⊕a′i)⊕F⊕b′1) for lists L1=[a1,…,ar,b1] and L2=[a′1,…,a′r,b′1], if P exists. If such P does not exist, this returns [ ].
StablyPermutationMCheckP
StablyPermutationMCheckP(G,L1,L2)returns the same as StablyPermutationFCheckP(G,L1,L2) but with respect to MG instead of F.
StablyPermutationFCheckMat
StablyPermutationFCheckMat(G,L1,L2,P)returns true if G1P=PG2 and det P=±1 where G1 (resp. G2) is the matrix representation group of the action of G on (⊕ri=1Z[G/Hi]⊕ai)⊕F⊕b1 (resp. (⊕ri=1Z[G/Hi]⊕a′i)⊕F⊕b′1) for lists L1=[a1,…,ar,b1] and L2=[a′1,…,a′r,b′1]. If not, this returns false.
StablyPermutationMCheckMat
StablyPermutationMCheckMat(G,L1,L2,P)returns the same as StablyPermutationFCheckMat(G,L1,L2,P) but with respect to MG instead of F.
StablyPermutationFCheckGen
StablyPermutationFCheckP(G,L1,L2)returns the list [M1,M2] where M1=[g1,…,gt] (resp. M2=[g′1,…,g′t]) is a list of the generators of G1 (resp. G2) which is the matrix representation group of the action of G on (⊕ri=1Z[G/Hi]⊕ai)⊕F⊕b1 (resp. (⊕ri=1Z[G/Hi]⊕a′i)⊕F⊕b′1) for lists L1=[a1,…,ar,b1] and L2=[a′1,…,a′r,b′1].
StablyPermutationMCheckGen
StablyPermutationMCheckGen(G,L1,L2)returns the same as StablyPermutationFCheckGen(G,L1,L2) but with respect to MG instead of F.
DirectSumMatrixGroup
DirectSumMatrixGroup(l)
returns the direct sum of the groups G1,…,Gn
for the list l=[G1,…,Gn].
DirectProductMatrixGroup
DirectProductMatrixGroup(l)
returns the direct product of the groups G1,…,Gn
for the list l=[G1,…,Gn].
Norm1TorusJ
Norm1TorusJ(d,m)returns the Chevalley module JG/H for the m-th transitive subgroup G=dTm≤Sd of degree d where H is the stabilizer of one of the letters in G.
FlabbyResolutionLowRankFromGroup
FlabbyResolutionLowRankFromGroup(M,G)returns a suitable flabby resolution with low rank for G-lattice M by using backtracking techniques. Repeating the algorithm, by defining [M]fln:=[[M]fln−1]fl inductively, [M]fl=0 is provided if we may find some n with [M]fln=0 (this method is slightly improved to the flfl algorithm, see above).
Hcandidates
Hcandidates(G)
retruns subgroups H of G which satisfy
⋂σ∈GHσ={1} where Hσ=σ−1Hσ
(hence H contains no normal subgroup of G except for {1}).
Norm1TorusJTransitiveGroup
Norm1TorusJTransitiveGroup(d,m)returns the Chevalley module JG/H for the m-th transitive subgroup G=dTm≤Sd of degree d where H is the stabilizer of one of the letters in G. (The input and output of this function is the same as the function Norm1TorusJ(d,m) but this function is more efficient.)
Norm1TorusJCoset
Norm1TorusJCoset(G,H)retruns the Chevalley module JG/H for a group G and a subgroup H≤G.
StablyPermutationMCheckPPari
StablyPermutationMCheckPPari(G,L1,L2)returns the same as StablyPermutationMCheckP(G,L1,L2) but using efficient PARI/GP functions (e.g. matker, matsnf) [PARI2]. (This function applies union-find algorithm and it also requires PARI/GP [PARI2].)
StablyPermutationFCheckPPari
StablyPermutationFCheckPPari(G,L1,L2)returns the same as StablyPermutationFCheckP(G,L1,L2) but using efficient PARI/GP functions (e.g. matker, matsnf) [PARI2]. (This function applies union-find algorithm and it also requires PARI/GP [PARI2].)
StablyPermutationFCheckPFromBasePari
StablyPermutationFCheckPFromBasePari(G,mi,L1,L2)returns the same as StablyPermutationFCheckPPari(G,L1,L2) but with respect to mi=P∘ instead of the original P∘ as in Hoshi and Yamasaki [HY17, Equation (4) in Section 5.1]. (See [HY17, Section 5.7, Method III]. This function applies union-find algorithm and it also requires PARI/GP [PARI2].)
FlabbyResolutionNorm1TorusJ
FlabbyResolutionNorm1TorusJ(d,m).actionFreturns the matrix representation of the action of G on a flabby class F=[JG/H]fl for the m-th transitive subgroup G=dTm≤Sn of degree n where H is the stabilizer of one of the letters in G. (This function is similar to FlabbyResolution(Norm1TorusJ(d,m)).actionF but it may speed up and save memory resources.)
References
[HY17] Akinari Hoshi and Aiichi Yamasaki,
Rationality problem for algebraic tori,
Mem. Amer. Math. Soc. 248 (2017) no. 1176, v+215 pp.
AMS
Preprint version:
arXiv:1210.4525.
[HHY20] Sumito Hasegawa, Akinari Hoshi and Aiichi Yamasaki,
Rationality problem for norm one tori in small dimensions,
Math. Comp. 89 (2020) 923-940.
AMS
Extended version:
arXiv:1811.02145.
[HY] Akinari Hoshi and Aiichi Yamasaki,
Rationality problem for norm one tori for A5 and PSL2(F8) extensions, arXiv:2309.16187.
[PARI2] The PARI Group, PARI/GP version 2.13.3, Univ. Bordeaux, 2021,
http://pari.math.u-bordeaux.fr/.