crystcat.gap
- Definition of MG
- Let G be a finite subgroup of GL(n,Z). The G-lattice MG of rank n is defined to be the G-lattice with a Z-basis {u1,…,un} on which G acts by σ(ui)=∑nj=1ai,juj for any σ=[ai,j]∈G.
Hminus1
Hminus1(G)
returns the Tate cohomology group ˆH−1(G,MG) for a finite subgroup G≤GL(n,Z).
H0
H0(G)
returns the Tate cohomology group ˆH0(G,MG) for a finite subgroup G≤GL(n,Z).
H1
H1(G)
returns the cohomology group H1(G,MG) for a finite subgroup G≤GL(n,Z).
CrystCatQClass, CrystCatQClassCatalog, CrystCatQClassNumber
CrystCatQClass(G)
CrystCatQClassCatalog(G)
CrystCatQClassNumber(G)
returns the CrystCat ID (Q-class) of G for a finite subgroup G≤GL(n,Z).
For CrystCat ID, see [HY17, Chapter 3].
CrystCatZClass, CrystCatZClassCatalog, CrystCatZClassNumber
CrystCatZClass(G)
CrystCatZClassCatalog(G)
CrystCatZClassNumber(G)
returns the CrystCat ID (Z-class) of G for a finite subgroup G≤GL(n,Z).
For CrystCat ID, see [HY17, Chapter 3].
References
[HY17] Akinari Hoshi and Aiichi Yamasaki,
Rationality problem for algebraic tori,
Mem. Amer. Math. Soc. 248 (2017) no. 1176, v+215 pp.
AMS
Preprint version:
arXiv:1210.4525.
[HKY23] Akinari Hoshi, Ming-chang Kang and Aiichi Yamasaki,
Multiplicative Invariant Fields of Dimension ≤ 6,
Mem. Amer. Math. Soc. 283 (2023) no. 1403, vi+137 pp.
AMS
Preprint version:
arXiv:1609.04142.
[HY] Akinari Hoshi and Aiichi Yamasaki,
Birational classification for algebraic tori,
arXiv:2112.02280.