Processing math: 100%

crystcat.gap

Definition of MG
Let G be a finite subgroup of GL(n,Z). The G-lattice MG of rank n is defined to be the G-lattice with a Z-basis {u1,,un} on which G acts by σ(ui)=nj=1ai,juj for any σ=[ai,j]G.

Hminus1

Hminus1(G)
returns the Tate cohomology group ˆH1(G,MG) for a finite subgroup GGL(n,Z).

H0

H0(G)
returns the Tate cohomology group ˆH0(G,MG) for a finite subgroup GGL(n,Z).

H1

H1(G)
returns the cohomology group H1(G,MG) for a finite subgroup GGL(n,Z).

CrystCatQClass, CrystCatQClassCatalog, CrystCatQClassNumber

CrystCatQClass(G)
CrystCatQClassCatalog(G)
CrystCatQClassNumber(G)
returns the CrystCat ID (Q-class) of G for a finite subgroup GGL(n,Z). For CrystCat ID, see [HY17, Chapter 3].

CrystCatZClass, CrystCatZClassCatalog, CrystCatZClassNumber

CrystCatZClass(G)
CrystCatZClassCatalog(G)
CrystCatZClassNumber(G)
returns the CrystCat ID (Z-class) of G for a finite subgroup GGL(n,Z). For CrystCat ID, see [HY17, Chapter 3].

References

[HY17] Akinari Hoshi and Aiichi Yamasaki, Rationality problem for algebraic tori, Mem. Amer. Math. Soc. 248 (2017) no. 1176, v+215 pp. AMS Preprint version: arXiv:1210.4525.
[HKY23] Akinari Hoshi, Ming-chang Kang and Aiichi Yamasaki, Multiplicative Invariant Fields of Dimension ≤ 6, Mem. Amer. Math. Soc. 283 (2023) no. 1403, vi+137 pp. AMS Preprint version: arXiv:1609.04142.
[HY] Akinari Hoshi and Aiichi Yamasaki, Birational classification for algebraic tori, arXiv:2112.02280.