FlabbyResolutionBC.gap

Definition of M_G

Let G be a finite subgroup of $\mathrm{GL}(n,\mathbb{Z})$. The G-lattice M_G of rank n is defined to be the G-lattice with a \mathbb{Z} -basis $\{u_1,\ldots,u_n\}$ on which G acts by

$$\sigma(u_i) = \sum_{j=1}^n a_{i,j} u_j \tag{1}$$

for any $\sigma = [a_{i,j}] \in G$.

Hminus1

Hminus1(G)

returns the Tate cohomology group $\widehat{H}^{-1}(G,M_G)$ for a finite subgroup $G \leq \mathrm{GL}(n,\mathbb{Z}).$

H0

→ H0(G)

returns the Tate cohomology group $\widehat{H}^0(G,M_G)$ for a finite subgroup $G \leq \mathrm{GL}(n,\mathbb{Z}).$

H1

→ H1(G)

returns the cohomology group $H^1(G,M_G)$ for a finite subgroup $G \leq \mathrm{GL}(n,\mathbb{Z}).$

Sha10mega

► Sha1Omega(*G*)

returns $Sha_w^1(G, M_G)$.

Sha10megaTr

Sha10megaTr(G)

returns $Sha_w^1(G,(M_G)^\circ)$.

ShaOmega

ShaOmega(G,n)

returns $Sha_w^n(G, M_G)$ for G-lattice M_G . This function needs HAP package in GAP.

ShaOmegaFromGroup

ShaOmegaFromGroup(M,n,G)

returns $Sha_w^n(G,M)$ for G-lattice M. This function needs HAP package in GAP.

TorusInvariants

▶ TorusInvariants(G)

returns $TI_G = \left[l_1, l_2, l_3, l_4
ight]$ where

$$l_1 = \left\{egin{array}{ll} 0 & ext{if} & [M_G]^{fl} = 0, \ 1 & ext{if} & [M_G]^{fl}
eq 0 & ext{but is invertible,} \ 2 & ext{if} & [M_G]^{fl} & ext{is not invertible,} \end{array}
ight.$$

$$egin{aligned} l_2 &= H^1(G, [M_G]^{fl}) \simeq Sha_w^1(G, [M_G]^{fl}), \ l_3 &= Sha_w^1(G, (M_G)^\circ) \simeq Sha_w^2(G, ([M_G]^{fl})^\circ), \ l_4 &= H^1(G, ([M_G]^{fl})^{fl}) \simeq Sha_w^2(G, [M_G]^{fl}) ext{ via the command H1}(G). \end{aligned}$$

TorusInvariantsHAP

▶ TorusInvariantsHap(G)

returns $TI_G = \left[l_1, l_2, l_3, l_4
ight]$ where

$$l_1 = \left\{egin{array}{ll} 0 & ext{if} & [M_G]^{fl} = 0, \ 1 & ext{if} & [M_G]^{fl}
eq 0 & ext{but is invertible}, \ 2 & ext{if} & [M_G]^{fl} & ext{is not invertible}, \end{array}
ight.$$

$$egin{aligned} l_2 &= H^1(G,[M_G]^{fl}) \simeq Sha_w^1(G,[M_G]^{fl}), \ l_3 &= Sha_w^1(G,(M_G)^\circ) \simeq Sha_w^2(G,([M_G]^{fl})^\circ), \ l_4 &= Sha_w^2(G,[M_G]^{fl}) ext{ via the command ShaOmegaFromGroup}([M_G]^{fl},2,G). \end{aligned}$$

This function needs HAP package in GAP.

ConjugacyClassesSubgroups2TorusInvariants

ConjugacyClassesSubgroups2TorusInvariants(G)

returns the records ConjugacyClassesSubgroups2 and TorusInvariants where ConjugacyClassesSubgroups2 is the list $[g_1,\ldots,g_m]$ of conjugacy classes of subgroups of $G \leq \operatorname{GL}(n,\mathbb{Z})$ with the fixed ordering via the function ConjugacyClassesSubgroups2(G) ([HY17, Section 4.1]) and TorusInvariants is the list [TorusInvariants(g_1), . . . , TorusInvariants(g_m)] via the function TorusInvariants(G).

PossibilityOfStablyEquivalentSubdirectProducts

```
PossibilityOfStablyEquivalentSubdirectProducts(G,G',
ConjugacyClassesSubgroups2TorusInvariants(G),
ConjugacyClassesSubgroups2TorusInvariants(G'))
```

returns the list l of the subdirect products $\widetilde{H} \leq G \times G'$ of G and G' up to $(\operatorname{GL}(n_1,\mathbb{Z}) \times \operatorname{GL}(n_2,\mathbb{Z}))$ -conjugacy which satisfy $TI_{\varphi_1(H)} = TI_{\varphi_2(H)}$ for any $H \leq \widetilde{H}$ where $\widetilde{H} \leq G \times G'$ is a subdirect product of G and G' which acts on M_G and $M_{G'}$ through the surjections $\varphi_1:\widetilde{H} \to G$ and $\varphi_2:\widetilde{H} \to G'$ respectively (indeed, this function computes it for H up to conjugacy for the sake of saving time). In particular, if the length of the list l is zero, then we find that $[M_G]^{fl}$ and $[M_{G'}]^{fl}$ are not weak stably k-equivalent.

FlabbyResolutionLowRank

```
FlabbyResolutionLowRank(G).actionF
```

returns the matrix representation of the action of G on F where F is a suitable flabby class of M_G (F] = $[M_G]^{fl}$) with low rank by using backtracking techniques (see [HY17, Chapter 5], see also [HHY Algorithm 4.1 (3)]).

Each isomorphism class of irreducible permutation \widetilde{H} -lattices corresponds to a conjugacy class of subgroup H of \widetilde{H} by $H \leftrightarrow \mathbb{Z}[\widetilde{H}/H]$. Let $H_1 = \{1\}, \ldots, H_r = \widetilde{H}$ be all conjugacy classes of subgroups of \widetilde{H} whose ordering corresponds to the GAP function ConjugacyClassesSubgroups2(\widetilde{H}) (see [HY17, Section 4.1, page 42]).

We suppose that [F]=[F'] as \widetilde{H} -lattices. Then we have

$$\left(igoplus_{i=1}^r \mathbb{Z}[\widetilde{H}/H_i]^{\oplus x_i}
ight) \oplus F^{\oplus b_1} \; \simeq \; \left(igoplus_{i=1}^r \mathbb{Z}[\widetilde{H}/H_i]^{\oplus y_i}
ight) \oplus F'^{\oplus b_1} \quad (2)$$

where $b_1 = 1$. We write the equation (2) as

$$\bigoplus_{i=1}^r \mathbb{Z}[\widetilde{H}/H_i]^{\oplus a_i} \simeq (F - F')^{\oplus (-b_1)} \tag{3}$$

formally where $a_i=x_i-y_i\in\mathbb{Z}$. Then we may consider "F-F'" formally in the sene of (2). By computing some $\mathrm{GL}(n,\mathbb{Z})$ -conjugacy class invariants, we will give a necessary condition for [F]=[F'].

Let $\{c_1,\ldots,c_r\}$ be a set of complete representatives of the conjugacy classes of \widetilde{H} . Let $A_i(c_j)$ be the matrix representation of the factor coset action of $c_j \in \widetilde{H}$ on $\mathbb{Z}[\widetilde{H}/H_i]$ and $B(c_j)$ be the matrix representation of the action of $c_j \in \widetilde{H}$ on F - F'.

By (3), for each $c_{i}\in\widetilde{H}$, we have

$$\sum_{i=1}^r a_i \operatorname{tr} A_i(c_j) + b_1 \operatorname{tr} B(c_j) = 0$$
 (4)

where ${
m tr}\,A$ is the trace of the matrix A. Similarly, we consider the rank of $H^0=\widehat Z^0$. For each H_i , we get

$$\sum_{i=1}^r a_i \operatorname{rank} \widehat{Z}^0(H_j, \mathbb{Z}[\widetilde{H}/H_i]) + b_1 \operatorname{rank} \widehat{Z}^0(H_j, F - F') = 0. \quad (5)$$

Finally, we compute \widehat{H}^0 . Let $Sy_p(A)$ be a p-Sylow subgroup of an abelian group A. $Sy_p(A)$ can be written as a direct product of cyclic groups uniquely. Let $n_{p,e}(Sy_p(A))$ be the number of direct summands of cyclic groups of order p^e . For each H_i, p, e , we get

$$\sum_{i=1}^r a_i\, n_{p,e}(Sy_p(\widehat{H}^0(H_j,\mathbb{Z}[\widetilde{H}^{'}/H_i]))) + b_1\, n_{p,e}(Sy_p(\widehat{H}^0(H_j,F-F'))) = 0$$

By the equalities (4), (5) and (6), we may get a system of linear equations in a_1,\ldots,a_r,b_1 over \mathbb{Z} . Namely, we have that [F]=[F'] as \widetilde{H} -lattices \Longrightarrow there exist $a_1,\ldots,a_r\in\mathbb{Z}$ and $b_1=\pm 1$ which satisfy $(3)\Longrightarrow$ this system of linear equations has an integer solution in a_1,\ldots,a_r with $b_1=\pm 1$.

In particular, if this system of linear equations has no integer solutions, then we conclude that $[F] \neq [F']$ as \widetilde{H} -lattices.

PossibilityOfStablyEquivalentFSubdirectProduct

PossibilityOfStablyEquivalentFSubdirectProduct(H~)

returns a basis $\mathcal{L} = \{l_1, \ldots, l_s\}$ of the solution space $\{[a_1, \ldots, a_r, b_1] \mid a_i, b_1 \in \mathbb{Z}\}$ of the system of linear equations which is obtained by the equalities (4), (5) and (6) and gives all possibilities that establish the equation (3) for a subdirect product $\widetilde{H} \leq G \times G'$ of G and G'.

PossibilityOfStablyEquivalentMSubdirectProduct

PossibilityOfStablyEquivalentMSubdirectProduct(H~)

returns the same as PossibilityOfStablyEquivalentFSubdirectProduct(H~) but with respect to M_G and $M_{G'}$ instead of F and F'.

PossibilityOfStablyEquivalentFSubdirectProduct with "H2" option

PossibilityOfStablyEquivalentFSubdirectProduct(H~:H2)

returns the same as PossibilityOfStablyEquivalentFSubdirectProduct($H\sim$) but using also the additional equality

$$\sum_{i=1}^r a_i\, n_{p,e}(Sy_p(H^2(\widetilde{H}\,,\mathbb{Z}[\widetilde{H}\,/H_i]))) + b_1\, n_{p,e}(Sy_p(H^2(\widetilde{H}\,,F-F'))) = 0$$

and the equalities (4), (5) and (6).

PossibilityOfStablyEquivalentMSubdirectProduct with "H2" option

▶ PossibilityOfStablyEquivalentMSubdirectProduct(H~:H2)

returns the same as PossibilityOfStablyEquivalentFSubdirectProduct($H\sim:H2$) but with respect to M_G and $M_{G'}$ instead of F and F'.

In general, we will provide a method in order to confirm the isomorphism

$$\left(\bigoplus_{i=1}^r \mathbb{Z}[\widetilde{H}/H_i]^{\oplus a_i}\right) \oplus F^{\oplus b_1} \simeq \left(\bigoplus_{i=1}^r \mathbb{Z}[\widetilde{H}/H_i]^{\oplus a_i'}\right) \oplus F'^{\oplus b_1'} \quad (8)$$

with $a_i, a_i' \geq 0$, $b_1, b_1' \geq 1$, although it is needed by trial and error.

Let G_1 (resp. G_2) be the matrix representation group of the action of \widetilde{H} on the left-hand side $(\oplus_{i=1}^r \mathbb{Z}[\widetilde{H}/H_i]^{\oplus a_i}) \oplus F^{\oplus b_1}$ (resp. the right-hand side $(\oplus_{i=1}^r \mathbb{Z}[\widetilde{H}/H_i]^{\oplus a_i'}) \oplus F^{\oplus b_1'}$) of the isomorphism (8). Let $\mathcal{P} = \{P_1, \dots, P_m\}$ be a basis of the solution space of $G_1P = PG_2$ where $m = \operatorname{rank}_{\mathbb{Z}}$ $\operatorname{Hom}(G_1, G_2) = \operatorname{rank}_{\mathbb{Z}} \operatorname{Hom}_{\widetilde{H}}(M_{G_1}, M_{G_2})$. Our aim is to find the matrix P which satisfies $G_1P = PG_2$ by using computer effectively. If we can get a matrix P with det $P = \pm 1$, then G_1 and G_2 are $\operatorname{GL}(n, \mathbb{Z})$ -conjugate where n is the rank of both sides of (8) and hence the isomorphism (8) established. This implies that the flabby class $[F^{\oplus b_1}] = [F'^{\oplus b_1'}]$ as \widetilde{H} -lattices.

StablyEquivalentFCheckPSubdirectProduct

StablyEquivalentFCheckPSubdirectProduct(H~, l1, l2)

returns a basis $\mathcal{P}=\{P_1,\ldots,P_m\}$ of the solution space of $G_1P=PG_2$ where $m=\mathrm{rank}_{\mathbb{Z}}\ \mathrm{Hom}(G_1,G_2)$ and G_1 (resp. G_2) is the matrix representation group of the action of \widetilde{H} on $(\bigoplus_{i=1}^r\mathbb{Z}[\widetilde{H}/H_i]^{\oplus a_i})\oplus F^{\oplus b_1}$ (resp. $(\bigoplus_{i=1}^r\mathbb{Z}[\widetilde{H}/H_i]^{\oplus a_i'})\oplus F'^{\oplus b_1'}$) with the isomorphism (8) for a subdirect product $\widetilde{H}\leq G\times G'$ of G and G', and lists $l_1=[a_1,\ldots,a_r,b_1]$, $l_2=[a_1',\ldots,a_r',b_1']$, if P exists. If such P does not exist, this returns [].

StablyEquivalentMCheckPSubdirectProduct

```
StablyEquivalentMCheckPSubdirectProduct(H~, L1, L2)
```

returns the same as StablyEquivalentFCheckPSubdirectProduct($H\sim ,I1,I2$) but with respect to M_G and $M_{G'}$ instead of F and F'.

StablyEquivalentFCheckMatSubdirectProduct

```
StablyEquivalentFCheckMatSubdirectProduct(H~, L1, L2, P)
```

returns true if $G_1P=PG_2$ and $\det P=\pm 1$ where G_1 (resp. G_2) is the matrix representation group of the action of \widetilde{H} on $(\oplus_{i=1}^r \mathbb{Z}[\widetilde{H}/H_i]^{\oplus a_i}) \oplus F^{\oplus b_1}$ (resp. $(\oplus_{i=1}^r \mathbb{Z}[\widetilde{H}/H_i]^{\oplus a_i'}) \oplus F'^{\oplus b_1'}$) with the isomorphism (8) for a subdirect product $\widetilde{H} \leq G \times G'$ of G and G', and lists $l_1=[a_1,\ldots,a_r,b_1], l_2=[a_1',\ldots,a_r',b_1']$. If not, this returns false.

StablyEquivalentMCheckMatSubdirectProduct

```
    StablyEquivalentMCheckMatSubdirectProduct(H~, l1, l2, P)
```

returns the same as StablyEquivalentFCheckMatSubdirectProduct($H\sim,I1,I2,P$) but with respect to M_G and $M_{G'}$ instead of F and F'.

StablyEquivalentFCheckGenSubdirectProduct

returns the list $[\mathcal{M}_1,\mathcal{M}_2]$ where $\mathcal{M}_1=[g_1,\ldots,g_t]$ (resp. $\mathcal{M}_2=[g'_1,\ldots,g'_t]$) is a list of the generators of G_1 (resp. G_2) which is the matrix representation group of the action of \widetilde{H} on $(\oplus_{i=1}^r \mathbb{Z}[\widetilde{H}/H_i]^{\oplus a_i}) \oplus F^{\oplus b_1}$ (resp. $(\oplus_{i=1}^r \mathbb{Z}[\widetilde{H}/H_i]^{\oplus a'_i}) \oplus F'^{\oplus b'_1}$) with the isomorphism (8) for a subdirect product $\widetilde{H} \leq G \times G'$ of G and G', and lists $l_1=[a_1,\ldots,a_r,b_1], l_2=[a'_1,\ldots,a'_r,b'_1].$

StablyEquivalentMCheckGenSubdirectProduct

StablyEquivalentMCheckGenSubdirectProduct(H~, l1, l2)

returns the same as StablyEquivalentMCheckGenSubdirectProduct($H\sim,11,12$) but with respect to M_G and $M_{G'}$ instead of F and F'.

By applying the function StablyEquivalentFCheckPSubdirectProduct, we get a basis $\mathcal{P}=\{P_1,\ldots,P_m\}$ of the solution space of $G_1P=PG_2$ with det $P_i=\pm 1$ for some $1\leq i\leq m$ where G_1 (resp. G_2) is the matrix representation group of the action of \widetilde{H} on the left-hand side $(\oplus_{i=1}^r\mathbb{Z}[\widetilde{H}/H_i]^{\oplus a_i})\oplus F^{\oplus b_1}$ (resp. the right-hand side $(\oplus_{i=1}^r\mathbb{Z}[\widetilde{H}/H_i]^{\oplus a_i})\oplus F'^{\oplus b_1}$) of the isomorphism (8) and $m=\mathrm{rank}_\mathbb{Z}$ $\mathrm{Hom}(G_1,G_2)$.

However, in general, we have that $\det P_i \neq \pm 1$ for any $1 \leq i \leq m$. In the general case, we should seek a matrix P with $\det P = \pm 1$ which is given as a linear combination $P = \sum_{i=1}^m c_i P_i$. This task is important for us and not easy in general even if we use a computer.

We made the following GAP algorithms which may find a matrix $P=\sum_{i=1}^m c_i P_i$ with $G_1P=PG_2$ and $\det P=\pm 1$.

We will explain the algorithms below when the input $\mathcal P$ is obtained by StablyEquivalentFCheckPSubdirectProduct $(\widetilde H\,,l_1,l_2)$ although it works in more general situations.

SearchPRowBlocks

► SearchPRowBlocks(P)

returns the records bpBlocks and rowBlocks where bpBlocks (resp. rowBlocks) is the decomposition of the list $l=[1,\ldots,m]$ (resp. $l=[1,\ldots,n]$) with $m=\mathrm{rank}_{\mathbb{Z}}\ \mathrm{Hom}(G_1,G_2)$ (resp. $n=\mathrm{size}\ G_1$) according to the direct sum decomposition of M_{G_1} for a basis $\mathcal{P}=\{P_1,\ldots,P_m\}$ of the solution space of $G_1P=PG_2$ where G_1 (resp. G_2) is the matrix representation group of the action of \widetilde{H} on the left-hand side $(\bigoplus_{i=1}^r\mathbb{Z}[\widetilde{H}/H_i]^{\oplus a_i})\oplus F^{\oplus b_1}$ (resp. the right-

hand side $(\oplus_{i=1}^r \mathbb{Z}[\widetilde{H}/H_i]^{\oplus a_i'}) \oplus F'^{\oplus b_1'}$) of the isomorphism (8).

We write $B[t] = \text{SearchPRowBlocks}(\mathcal{P}).\text{bpBlocks}[t]$ and $R[t] = \text{SearchPRowBlocks}(\mathcal{P}).\text{rowBlocks}[t]$.

SearchPFilterRowBlocks

```
SearchPFilterRowBlocks(P,B[t],R[t],j)
```

returns the lists $\{M_s\}$ where M_s is the $n_t \times n$ matrix with all invariant factors 1 which is of the form $M_s = \sum_{i \in B[t]} c_i P_i' \ (c_i \in \{0,1\})$ at most j non-zero c_i 's and P_i' is the submatrix of P_i consists of R[t] rows with $n_t = \operatorname{length}(R[t])$ for a basis $\mathcal{P} = \{P_1, \dots, P_m\}$ of the solution space of $G_1P = PG_2$ where G_1 (resp. G_2) is the matrix representation group of the action of \widetilde{H} on the left-hand side $(\bigoplus_{i=1}^r \mathbb{Z}[\widetilde{H}/H_i]^{\oplus a_i}) \oplus F^{\oplus b_1}$ (resp. the right-hand side $(\bigoplus_{i=1}^r \mathbb{Z}[\widetilde{H}/H_i]^{\oplus a_i'}) \oplus F'^{\oplus b_1'}$) of the isomorphism (8), $B[t] = \operatorname{SearchPRowBlocks}(\mathcal{P})$.pbBlocks[t], $R[t] = \operatorname{SearchPRowBlocks}(\mathcal{P})$.rowBlocks[t], and $f \geq 1$.

```
► SearchPFilterRowBlocks(P,B[t],R[t],j,C)
```

returns the same as SearchPFilterRowBlocks(P,B[t],R[t],j) but with respect to $c_i \in C$ instead of $c_i \in \{0,1\}$ for the list C of integers.

SearchPFilterRowBlocksRandomMT

```
SearchPFilterRowBlocksRandomMT(P,B[t],R[t],u)
```

returns the same as SearchPFilterRowBlocks(P,B[t],R[t],j) but with respect to random u c_i 's via Mersenne Twister instead of at most j non-zero c_i 's for integer $u \geq 1$.

```
SearchPFilterRowBlocksRandomMT(P,B[t],R[t],u,C)
```

returns the same as SearchPFilterRowBlocksRandomMT(P,B[t],R[t],u) but with respect to $c_i \in C$ instead of $c_i \in \{0,1\}$ for the list C of integers.

SearchPMergeRowBlock

```
► SearchPMergeRowBlock(m1,m2)
```

returns all concatenations of the matrices M_s and M_t vertically with all invariant factors 1 (resp. a concatenation of the matrices M_s and M_t vertically with determinant ± 1) for $m_1 = \{M_s\}$ and $m_2 = \{M_t\}$ where M_s are $n_1 \times n$ matrices and M_t are $n_2 \times n$ matrices with $n_1 + n_2 < n$ (resp. $n_1 + n_2 = n$).

When there exists $t \in \mathbb{Z}$ such that $R[t] = \{j\}$, we can use:

SearchPLinear

SearchPLinear(M,P1)

returns the list $\{\det(M+P_i)\}_{i\in B[t]}$ of integers for an $n\times n$ matrix M which is obtained by inserting the zero row into the j-th row of $(n-1)\times n$ matrix $M_s=\sum_{i\notin B[t]}c_iP_i'$ with all invariant factors 1 and $\mathcal{P}_1=\{P_i\}_{i\in B[t]}$ where $B[t]=\operatorname{SearchPRowBlocks}(\mathcal{P}).\operatorname{bpBlocks}[t], P_i'$ is the submatrix of P_i deleting the j-th row, and $\mathcal{P}=\{P_1,\ldots,P_m\}$ is obtained by StablyEquivalentFCheckPSubdirectProduct (\widetilde{H},l_1,l_2) under the assumption that there exists $t\in\mathbb{Z}$ such that $R[t]=\{j\}.$

When there exist $t_1,t_2\in\mathbb{Z}$ such that $R[t_1]=\{j_1\},\,R[t_2]=\{j_2\},$ we can use:

SearchPBilinear

```
SearchPBilinear(M,P1,P2)
```

returns the matrix $[\det(M+P_{i_1}+P_{i_2})]_{i_1\in B[t_1],i_2\in B[t_2]}$ for an $n\times n$ matrix M which is obtained by inserting the two zero rows into the j_1 -th row and the j_2 -th row of $(n-2)\times n$ matrix $M_s=\sum_{i\not\in B[t_1]\cup B[t_2]}c_iP_i'$ with all invariant factors 1 and $\mathcal{P}_1=\{P_{i_1}\}_{i_1\in B[t_1]}, \mathcal{P}_2=\{P_{i_2}\}_{i_2\in B[t_2]},$ where $B[t_1]=$ SearchPRowBlocks(\mathcal{P}).bpBlocks[t_1], $B[t_2]=$ SearchPRowBlocks(\mathcal{P}).bpBlocks[t_2], P_i' is the submatrix of P_i deleting the j_1 -th and the j_2 -th rows, and $\mathcal{P}=\{P_1,\ldots,P_m\}$ is obtained by StablyEquivalentFCheckPSubdirectProduct(\widetilde{H} , l_1,l_2) under the assumption that there exist $t_1,t_2\in \mathbb{Z}$ such that $R[t_1]=\{j_1\}$ and $R[t_2]=\{j_2\}$.

When there exists $t \in \mathbb{Z}$ such that $R[t] = \{j_1, j_2\}$, we can use:

SearchPQuadratic

SearchPQuadratic(M,P1)

returns the matrix

 $[rac{1}{2}(\det(M+P_{i_1}+P_{i_2})-\det(M+P_{i_1})-\det(M+P_{i_2}))]_{i_1,i_2\in B[t]}$ for an n imes n matrix M which is obtained by inserting the two zero rows into the j_1 -th row and the j_2 -th row of (n-2) imes n matrix $M_s=\sum_{i
otin B[t]}c_iP_i'$ with all invariant factors 1 and $\mathcal{P}_1=\{P_i\}_{i\in B[t]}$, where $B[t]=\operatorname{SearchPRowBlocks}(\mathcal{P})$ obpBlocks[t], P_i' is the submatrix of P_i deleting the j_1 -th and j_2 -th rows and $\mathcal{P}=\{P_1,\ldots,P_m\}$ is obtained by

StablyEquivalentFCheckPSubdirectProduct(\widetilde{H} , l_1 , l_2) under the assumption that there exists $t\in\mathbb{Z}$ such that $R[t]=\{j_1,j_2\}$.

When $R[1] = \{1, \dots, m\}$, we can use:

SearchP1

▶ SearchP1(P)

returns a matrix $P=\sum_{i=1}^m c_i P_i$ with $c_i\in\{0,1\}$, $G_1P=PG_2$ and det $P=\pm 1$ where G_1 (resp. G_2) is the matrix representation group of the action of \widetilde{H} on the left-hand side $(\bigoplus_{i=1}^r \mathbb{Z}[\widetilde{H}/H_i]^{\oplus a_i}) \oplus F^{\oplus b_1}$ (resp. the right-hand side $(\bigoplus_{i=1}^r \mathbb{Z}[\widetilde{H}/H_i]^{\oplus a_i'}) \oplus F'^{\oplus b_1'}$) of the isomorphism (8) for $\mathcal{P}=\{P_1,\ldots,P_m\}$ which is obtained by StablyEquivalentFCheckPSubdirectProduct (\widetilde{H},l_1,l_2) under the assumption

SearchP1(P,C)

that $R[1] = \{1, \dots, m\}$.

returns the same as SearchP1(P) but with respect to $c_i \in C$ instead of $c_i \in \{0,1\}$ for the list C of integers.

Endomorphismring

► Endomorphismring(G)

returns a \mathbb{Z} -basis of $\operatorname{End}_{\mathbb{Z}[G]}(M_G)$ for a finite subgroup G of $\operatorname{GL}(n,\mathbb{Z})$.

IsCodimJacobsonEnd1

IsCodimJacobsonEnd1(G,p)

returns true (resp. false) if $\dim_{\mathbb{Z}/p\mathbb{Z}}(E/pE)/J(E/pE)=1$ (resp. $\neq 1$) where $E=\operatorname{End}_{\mathbb{Z}[G]}(M_G)$ for a finite subgroup G of $\operatorname{GL}(n,\mathbb{Z})$ and prime number p. If this returns true, then $M_G\otimes_{\mathbb{Z}}\mathbb{Z}_p$ is an indecomposable $\mathbb{Z}_p[G]$ -lattice. In particular, M_G is an indecomposable G-lattice (see [HY, Lemma 6.11]).

IdempotentsModp

► IdempotentsModp(B,p)

returns all idempotents of R/pR for a \mathbb{Z} -basis B of a subring R of $n \times n$ matrices $M(n,\mathbb{Z})$ over \mathbb{Z} and prime number p. If this returns only the zero and the identity matrices when $R=\operatorname{End}_{\mathbb{Z}[G]}(M_G)$, then $M_G\otimes_{\mathbb{Z}}\mathbb{Z}_p$ is an indecomposable $\mathbb{Z}_p[G]$ -lattice. In particular, M_G is an indecomposable G-lattice (see [HY, Lemma 6.10]).

ConjugacyClassesSubgroups2WSEC

returns the records ConjugacyClassesSubgroups2 and WSEC where ConjugacyClassesSubgroups2 is the list $[g_1,\ldots,g_m]$ of conjugacy classes of subgroups of $G \leq \operatorname{GL}(n,\mathbb{Z})$ (n=3,4) with the fixed ordering via the function ConjugacyClassesSubgroups2(G) (see [HY17, Section 4.1]) and WSEC is the list $[w_1,\ldots,w_m]$ where g_i is in the w_i -th weak stably k-equivalent class $\operatorname{WSEC}_{w_i}$ in dimension n.

MaximalInvariantNormalSubgroup

```
    MaximalInvariantNormalSubgroup(G,ConjugacyClassesSubgroups2WSEC(G))
```

returns the maximal normal subgroup N of G which satisfies that $\pi(H_1)=\pi(H_2)$ implies $\psi(H_1)=\psi(H_2)$ for any $H_1,H_2\leq G$ where $\pi:G\to G/N$ is the natural homomorphism, $\psi:H_i\mapsto w_i$, and H_i is in the w_i -th weak stably k-equivalent class WSEC_{w_i} in dimension n.

PossibilityOfStablyEquivalentSubdirectProducts with "WSEC" option

```
PossibilityOfStablyEquivalentSubdirectProducts(G,G',
ConjugacyClassesSubgroups2WSEC(G),
ConjugacyClassesSubgroups2WSEC(G'),["WSEC"])
```

returns the list l of the subdirect products $\widetilde{H} \leq G \times G'$ of G and G' up to $(\operatorname{GL}(n_1,\mathbb{Z}) \times \operatorname{GL}(n_2,\mathbb{Z}))$ -conjugacy which satisfy $w_1 = w_2$ for any $H \leq \widetilde{H}$ where $\varphi_i(H)$ is in the w_i -th weak stably k-equivalent class $\operatorname{WSEC}_{w_i}$ in dimension n (n=3,4) and $\widetilde{H} \leq G \times G'$ is a subdirect product of G and G' which acts on M_G and $M_{G'}$ through the surjections $\varphi_1:\widetilde{H} \to G$ and $\varphi_2:\widetilde{H} \to G'$ respectively (indeed, this function computes it for H up to conjugacy for the sake of saving time).

IsomorphismFromSubdirectProduct

```
► IsomorphismFromSubdirectProduct(H~)
```

returns the isomorphism $\sigma: G/N \to G'/N'$ which satisfies $\sigma(\varphi_1(h)N) = \varphi_2(h)N'$ for any $h \in \widetilde{H}$ where $N = \varphi_1(\operatorname{Ker}(\varphi_2))$ and $N' = \varphi_2(\operatorname{Ker}(\varphi_1))$ for a subdirect product $\widetilde{H} \leq G \times G'$ of G and G' with surjections $\varphi_1: \widetilde{H} \to G$ and $\varphi_2: \widetilde{H} \to G'$.

AutGSubdirectProductsWSECInvariant

AutGSubdirectProductsWSECInvariant(G)

returns subdirect products $\widetilde{H}_m = \{(g,g^{\sigma_m}) \mid g \in G, g^{\sigma_m} \in G^{\sigma_m}\}$

 $(1 \leq m \leq s)$ of G and G^{σ_m} where $\{\sigma_1, \ldots, \sigma_s\}$ is a complete set of representatives of the double coset $X \setminus Z/X$,

$$\operatorname{Inn}(G) \leq X \leq Y \leq Z \leq \operatorname{Aut}(G),$$

 $egin{aligned} X &= \operatorname{Aut}_{\mathrm{GL}(n,\mathbb{Z})}(G) = \{\sigma \in \operatorname{Aut}(G) \mid G ext{ and } G^{\sigma} ext{ are conjugate inGL}(n,\mathbb{Z})\} \subseteq \ Y &= \{\sigma \in \operatorname{Aut}(G) \mid [M_G]^{fl} = [M_{G^{\sigma}}]^{fl} ext{ as } \widetilde{H} ext{-lattices where } \widetilde{H} = \{(g,g^{\sigma}) \mid g \in Z = \{\sigma \in \operatorname{Aut}(G) \mid [M_H]^{fl} \sim [M_{H^{\sigma}}]^{fl} ext{ for any } H \leq G\}, \end{aligned}$

 $\mathrm{Inn}(G)$ is the group of inner automorphisms on G, $\mathrm{Aut}(G)$ is the group of automorphisms on G, $N_{\mathrm{GL}(n,\mathbb{Z})}(G)$ is the normalizer of G in $\mathrm{GL}(n,\mathbb{Z})$ and $Z_{\mathrm{GL}(n,\mathbb{Z})}(G)$ is the centralizer of G in $\mathrm{GL}(n,\mathbb{Z})$.

AutGSubdirectProductsWSECInvariantGen

AutGSubdirectProductsWSECInvariantGen(G)

returns the same as AutGSubdirectProductsWSECInvariant(G) but with respect to $\{\sigma_1,\ldots,\sigma_t\}$ where $\sigma_1,\ldots,\sigma_t\in Z$ are some minimal number of generators of the double cosets of $X\backslash Z/X$, i.e. minimal number of elements $\sigma_1,\ldots,\sigma_t\in Z$ which satisfy $\langle\sigma_1,\ldots,\sigma_t,x\mid x\in X\rangle=Z$, instead of a complete set of representatives of the double coset $X\backslash Z/X$. If this returns [], then we get X=Y=Z.

AutGLnZ

AutGLnZ(G)

returns

 $X=\operatorname{Aut}_{\operatorname{GL}(n,\mathbb{Z})}(G)=\{\sigma\in\operatorname{Aut}(G)\mid G ext{ and }G^{\sigma} ext{ are conjugate in }\operatorname{GL}(n,\mathbb{Z})\}$:

N3WSECMembersTable

► N3WSECMembersTable[r][i]

returns an integer j which satisfies that $N_{3,j}$ is the i-th group in the weak stably k-equivalent class WSEC_r .

N4WSECMembersTable

► N4WSECMembersTable[r][i]

is the same as N3WSECMembersTable[r][l] but using $N_{4,j}$ instead of $N_{3,j}$.

I4WSECMembersTable

► I4WSECMembersTable[r][i]

is the same as N3WSECMembersTable[r][i] but using $I_{4,i}$ instead of $N_{3,i}$.

AutGWSECINvariantSmallDegreeTest

AutGWSECINvariantSmallDegreeTest(G)

returns the list $l=[l_1,\ldots,l_s]$ $(l_1\leq\cdots\leq l_s)$ of integers with the minimal l_s,\ldots,l_1 which satisfies Z=Z' where

$$Z=\{\sigma\in \operatorname{Aut}(G)\mid [M_H]^{fl}\sim [M_{H^\sigma}]^{fl} ext{ for any } H\leq G\}, \ Z'=\{\sigma\in \operatorname{Aut}(G)\mid [M_H]^{fl}\sim [M_{H^\sigma}]^{fl} ext{ for any } H\leq G ext{ with } [G:H]\in l\}$$
 for $G\leq \operatorname{GL}(n,\mathbb{Z})\ (n=3,4).$

References

[HHY20] Sumito Hasegawa, Akinari Hoshi and Aiichi Yamasaki, Rationality problem for norm one tori in small dimensions, Math. Comp. **89** (2020) 923-940. AMS Extended version: arXiv:1811.02145.

[HY17] Akinari Hoshi and Aiichi Yamasaki, Rationality problem for algebraic tori, Mem. Amer. Math. Soc. **248** (2017) no. 1176, v+215 pp. <u>AMS</u> Preprint version: arXiv:1210.4525.

[HY] Akinari Hoshi and Aiichi Yamasaki, Birational classification for algebraic tori, <u>arXiv:2112.02280</u>.

Copyright © 2021 Akinari Hoshi, Aiichi Yamasaki