¢ Return to BCAlgTori

FlabbyResolutionBC.gap

Definition of M

Let G be a finite subgroup of GL(n, Z). The G-lattice M of rank n is
defined to be the G-lattice with a Z-basis {uy, . . ., u, } on which G acts

by
n
o(u) = aiju (1)
=1

forany o = [a; ;] € G.

Hminus1

‘» Hminus1(G) |

/\—1
returns the Tate cohomology group H (G, MG) for a finite subgroup
G < GL(n,Z).

HO

_+ He(G)

/\0
returns the Tate cohomology group H (G, MG) for a finite subgroup
G < GL(n,Z).

H1

> HI(G)

returns the cohomology group Hl(G, MG) for a finite subgroup
G < GL(n,Z).

Sha1Omega

‘» ShalOmega(G)

returns Shal, (G, Mg).

Sha1OmegaTr

‘» ShalOmegaTr(G)
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returns Shal, (G, (Mg)°).

ShaOmega

‘» ShaOmega(G,n)

returns Shay (G, Mg) for G-lattice M.
This function needs HAP package in GAP.

ShaOmegaFromGroup

‘» ShaOmegaFromGroup(M,n,G)

returns Shay (G, M) for G-lattice M.
This function needs HAP package in GAP.

Toruslinvariants

‘» TorusInvariants(G)

returns T'Ig = [l1, 1o, I3, 14] where

0 if [Mg)" =0,
i = ¢ 1 if [Mg]/! # 0 but is invertible,
2 if [Mg]” is not invertible,

l2 = Hl( [M(;]ﬂ) ~ Shaw( [M(;]ﬂ),
ls = Shal (G, (Mq)") =~ Sha3 (G, ([Mg)")")
I, = HY(G, ([Mg] l)ﬂ) Sha?,(G, [Mg)/!) via the command H1(G).

TorusinvariantsHAP

‘» TorusInvariantsHap(G)

returns T'1g = [l1, 1o, 13, 14] where

0 if [Mg]/' =0,
lh = ¢ 1 if [Mg]/! # 0 but is invertible,
2 if [Mg]/!is not invertible,

Iy = HY(G, [Mc]") ~ Shay (G, [Mc]"),

I3 = Shay(G, (Mg)°) ~ Shai (G, ((Mc]"')°),

Iy = Sha?(G, [Mg)'!) via the command ShaOmegaFromGroup(
[MG]ﬂ7 2, G)

This function needs HAP package in GAP.

ConjugacyClassesSubgroups2Torusinvariants



‘» ConjugacyClassesSubgroups2TorusInvariants(G)

returns the records ConjugacyClassesSubgroups2 and Toruslnvariants where
ConjugacyClassesSubgroups? is the list [g1, . . . , gm| of conjugacy classes of
subgroups of G < GL(n, Z) with the fixed ordering via the function
ConjugacyClassesSubgroups2(G) ( [HY17, Section 4.1]) and

ToruslInvariants is the list [TorusInvariants(gy), . . . , Toruslnvariants(g,,)] via the
function ToruslInvariants(G).

PossibilityOfStablyEquivalentSubdirectProducts

» PossibilityOfStablyEquivalentSubdirectProducts(G,G’,
ConjugacyClassesSubgroups2TorusInvariants(G),
ConjugacyClassesSubgroups2TorusInvariants(G'))

returns the list [ of the subdirect products H <GxG ofGand G up to
(GL(n4, @x GL(?}E, Z,))-conjugacy which satisfy T'I,, gy = T'L,, () for
any H < H where H < G x G is a subdirect product of G and G’ which
acts on Mg and M through the surjections ¢ : H — G and

P : H G respectively (indeed, this function computes it for H up to
conjugacy for the sake of saving time). In particular, if the length of the list [ is
zero, then we find that [M¢]/! and [Mg]7" are not weak stably k-equivalent.

FlabbyResolutionLowRank

‘» FlabbyResolutionLowRank(G).actionF

returns the matrix representation of the action of G on F' where F'is a suitable
flabby class of Mg (F] = [Mg]’") with low rank by using backtracking
techniques (see [HY17, Chapter 5], see also [HHY Algorithm 4.1 (3)]).

Each isomorphism class of irreducible permutation H -lattices corresponds
to a conjugacy class of subgroup H of H by H <> Z|H /H]|. Let

H,={1},...,H, = H be all conjugacy classes of subgroups of H whose

—_

ordering corresponds to the GAP function ConjugacyClassesSubgroups2(H )
(see [HY17, Section 4.1, page 42]).



We suppose that [F] = [F'] as H -lattices. Then we have

(EB Z[H /Hi]@xi) ® Fo ~ (@ Z[H /H,-]%) @ F'®  (2)

where b; = 1. We write the equation (2) as
DZH /H]™ ~ (F~ F)*" (3)
i=1

formally where a; = z; — y; € Z. Then we may consider " F' — F"' " formally
in the sene of (2). By computing some GL(n, Z)-conjugacy class invariants,
we will give a necessary condition for [F] = [F].

Let {61, cee c,a} be a set of complete representatives of the conjugacy
classes of H . Let Ai(cj) be the matrix representation of the factor coset
action of ¢; € H on Z[H /H;] and B(c;) be the matrix representation of the
action of ¢; € HonF—F'

By (3), for each ¢; € H , we have
Z a; tr A;(c;) + by tr B(cj) =0 (4)
i=1

where tr A is the trace of the matrix A. Similarly, we consider the rank of
~0
H? = Z . Foreach H;, we get

! ~0 — ~0
E a;rank Z (HJ,Z[H/HZ])—FIH rank Z (Hj,F—Fl) = 0. (5)
=1

Finally, we compute I/LI\O. Let Sy,(A) be a p-Sylow subgroup of an abelian
group A. Syp(A) can be written as a direct product of cyclic groups uniquely.
Let 1y, 0 (Syp(A)) be the number of direct summands of cyclic groups of order
p°. Foreach Hj, p, e, we get

—0

iai e (Syp(H - (H, ZIH JH)))) + by npe (Syp(H (H,, F — F'))) = (

By the equalities (4), (5) and (6), we may get a system of linear equations in

ai,...,ar,by over Z. Namely, we have that [F] = [F'] as H -lattices —>
there exist a1, . .., a, € Z and by = +1 which satisfy (3) = this system of
linear equations has an integer solution in a4, ..., a, with by = £1.



In particular, if this system of linear equations has no integer solutions, then
we conclude that [F] # [F'] as H -lattices.

PossibilityOfStablyEquivalentFSubdirectProduct

‘» PossibilityOfStablyEquivalentFSubdirectProduct(H~)

returns a basis £ = {ly, ..., [} of the solution space

{la1,...,a;,b1] | a;, b1 € Z} of the system of linear equations which is
obtained by the equalities (4), (5) and (6) and gives all possibilities that
establish the equation (3) for a subdirect product H <GxGofGand G

PossibilityOfStablyEquivalentMSubdirectProduct

‘» PossibilityOfStablyEquivalentMSubdirectProduct(H~)

returns the same as PossibilityOfStablyEquivalentFSubdirectProduct(H~) but
with respect to M and M instead of F' and F".

PossibilityOfStablyEquivalentFSubdirectProduct with "H2"
option
‘» PossibilityOfStablyEquivalentFSubdirectProduct(H~:H2)

returns the same as PossibilityOfStablyEquivalentF SubdirectProduct(H~) but
using also the additional equality

ZT: a; Mo (Syp(H2(H , Z[H / H;]))) + by nype(Sy,(H*(H ,F — F'))) = 0

and the equalities (4), (5) and (6).

PossibilityOfStablyEquivalentMSubdirectProduct with "H2"
option

‘» PossibilityOfStablyEquivalentMSubdirectProduct(H~:H2)

returns the same as PossibilityOfStablyEquivalentF SubdirectProduct(H~:H2)
but with respect to Mg and M instead of F' and F".

In general, we will provide a method in order to confirm the isomorphism
T _ r N
(@ Z|H /HZ.]@ai) @ Foh ~ (@ Z[H/Hi]@“i) @ F' e, (8)
=1 i=1

with a;, a} > 0, by, b] > 1, although it is needed by trial and error.



Let G1 (resp. G2) be the matrix representation group of the action of H on
the left-hand side (@7_,Z[H /H;]®%) @ F® (resp. the right-hand side
(@7_,Z[H /H;]®%) @ F%%) of the isomorphism (8). Let P = { P}, ..., P,}
be a basis of the solution space of G1 P = PGy where m = ranky,
Hom(G1, G2) = rankz Homg (Mg,, Mg,). Our aim is to find the matrix P
which satisfies G P = PG4 by using computer effectively. If we can get a
matrix P with det P = 41, then G and G are GL(n, Z)-conjugate where n
is the rank of both sides of (8) and hence the isomorphism (8) established.

This implies that the flabby class [F'®%] = [ ®%] as H -lattices.

StablyEquivalentFCheckPSubdirectProduct

‘» StablyEquivalentFCheckPSubdirectProduct(H~,L1,L2)

returns a basis P = { Py, ..., P, } of the solution space of G P = PG,
where m = ranky Hom(G1, G3) and G (resp. Gi3) is the matrix

representation group of the action of H on (&!_,Z[H /H;]®%) @ F®"
(resp. (@gzlz[ﬁ/ﬂi]@aﬁ) @ F'®%) with the isomorphism (8) for a subdirect
product H < G x G’ of G and G’, and lists [; = [a, ..., ar, bi],

ly = [a},...,a;,b]], if Pexists. If such P does not exist, this returns [ .

StablyEquivalentMCheckPSubdirectProduct

‘» StablyEquivalentMCheckPSubdirectProduct(H~,L1,L2)

returns the same as StablyEquivalentFCheckPSubdirectProduct(H~,/7,/2) but
with respect to M and M instead of F'and F'.

StablyEquivalentFCheckMatSubdirectProduct

‘» StablyEquivalentFCheckMatSubdirectProduct(H~,(l1,L2,P)

returns true if G1 P = PG4 and det P = +1 where GG1 (resp. GG5) is the
matrix representation group of the action of H on

(EBQ’ZIZ[?I//HZ']@“") ® FOU (resp. (GBQZIZ[ﬁ/Hi]@GQ) @ F' %) with the
isomorphism (8) for a subdirect product H < G x G’ of G and G, and lists
L =la,...,a;,b1), lo = [a],...,a;,b]]. If not, this returns false.

StablyEquivalentMCheckMatSubdirectProduct

‘» StablyEquivalentMCheckMatSubdirectProduct(H~,L1,L2,P)

returns the same as StablyEquivalentFCheckMatSubdirectProduct(H~,/1,/12,P)
but with respect to Mg and M instead of F' and F".

StablyEquivalentFCheckGenSubdirectProduct



‘» StablyEquivalentFCheckGenSubdirectProduct(H~,L1,L2)

returns the list [M1, Ms] where M1 = [g1, ..., g:] (resp.
My = (g1, ..., 9;])is alist of the generators of G (resp. G2) which is the

matrix representation group of the action of H on

(@7_,Z[H /H,)®%) @ F® (resp. (®_,Z[H /H;]®%) ® F' %) with the
isomorphism (8) for a subdirect product H < G x G’ of G and G', and lists
h=lai,...,a;,b1), 1o = [a],...,a;, b}].

StablyEquivalentMCheckGenSubdirectProduct

‘» StablyEquivalentMCheckGenSubdirectProduct(H~,L1,L2)

returns the same as StablyEquivalentMCheckGenSubdirectProduct(H~,/1,/2)
but with respect to Mg and M instead of F' and F".

By applying the function StablyEquivalentFCheckPSubdirectProduct, we
geta basis P = { P, ..., Py} of the solution space of G1 P = PG, with det
P, = +1 forsome 1 < i < m where GG (resp. G9) is the matrix
representation group of the action of H on the left-hand side
(@7_,Z[H /H;|®%) @ F® (resp. the right-hand side
(©7_,Z[H /H;]®%) @ F'®%) of the isomorphism (8) and m = rank,
IIOID((;l,C;Q)

However, in general, we have that det P; # +1 forany 1 < ¢ < m. In the
general case, we should seek a matrix P with det P = 41 which is given as a
linear combination P = 2111 c; P;. This task is important for us and not easy
in general even if we use a computer.

We made the following GAP algorithms which may find a matrix
P =3"" ¢P,with GiP = PG and det P = +£1.

We will explain the algorithms below when the input ‘P is obtained by

StanyEquivalentFCheckPSubdirectProduct(ﬁ , 11, 15) although it works in
more general situations.

SearchPRowBlocks

‘» SearchPRowBlocks(P)

returns the records bpBlocks and rowBlocks where bpBlocks (resp. rowBlocks)

is the decomposition of the list I = [1,...,m] (resp. Il = [1, ..., n]) with
m = rankz Hom(G1, G2) (resp. n = size G1) according to the direct sum
decomposition of M, for a basis P = {Pl, . m} of the solution space of

GP = PG2 where G (resp. Gi9) is the matrix representatlon group of the
action of H on the left-hand side (®!_, Z[H /H;|®%) @ F®" (resp. the right-



hand side (®7_,Z[H /H;]®%) @ F'®") of the isomorphism (8).

We write B[t] = SearchPRowBIlocks(P).bpBlocks[t] and R[t] =
SearchPRowBIlocks(P).rowBlocks][t].

SearchPFilterRowBlocks

'+ SearchPFilterRowBlocks(P,B[t],R[t],7) |

returns the lists { M, } where M is the n; X m matrix with all invariant factors
1 which is of the form M, =, . gy ¢iP/ (¢; € {0,1}) at most j non-zero
¢i's and P/ is the submatrix of P; consists of R[t] rows with n; = length(R][t]
) for a basis P = {P,..., P,} of the solution space of G; P = PG5 where
G (resp. GG9) is the matrix representation group of the action of H on the left-
hand side (®7_,Z[H /H;]®%) @ F®" (resp. the right-hand side

(@7_,Z[H /H;|®%) @ F'®%) of the isomorphism (8), Bit] =
SearchPRowBlocks(P).bpBlocks][t], R[t] = SearchPRowBlocks(P).rowBlocks[
t]))and 5 > 1.

'+ SearchPFilterRowBlocks(P,B[t],R[t],7,C) |

returns the same as SearchPFilterRowBlocks(P,B][f],R[f],/) but with respect to
¢; € Cinstead of ¢; € {0, 1} for the list C of integers.

SearchPFilterRowBlocksRandomMT

‘» SearchPFilterRowBlocksRandomMT(P,B[t],R[t],u) |

returns the same as SearchPFilterRowBlocks(P,B][f],R[f],/) but with respect to
random u ¢;'s via Mersenne Twister instead of at most 7 non-zero ¢;'s for
integer u > 1.

‘» SearchPFilterRowBlocksRandomMT(P,B[t],R[t],u,C) |

returns the same as SearchPFilterRowBlocksRandomMT (P, B[{],R][{],u) but with
respect to ¢; € C instead of ¢; € {0, 1} for the list C of integers.

SearchPMergeRowBlock

‘» SearchPMergeRowBlock(m1,m2) |

returns all concatenations of the matrices M, and M, vertically with all
invariant factors 1 (resp. a concatenation of the matrices M, and M; vertically
with determinant +1) for my; = {M,} and my = {M,} where M, are

n1 X n matrices and M; are ny X n matrices with ny + ny <n (resp.

ny +ne =n).

When there exists ¢ € Z such that R[t] = {j}, we can use:



SearchPLinear

‘» SearchPLinear(M,P1)

returns the list {det(M + P;)}; ¢ ppy of integers for an n x n matrix M which
is obtained by inserting the zero row into the j-th row of (n — 1) X n matrix
M, =5, ¢ Bl c; P/ with all invariant factors 1 and P; = { P;}; ¢ pj where
Bit] = SearchPRowBIlocks(P).bpBlocks[t], P, is the submatrix of P; deleting
the j-th row, and P = { P, ..., P, } is obtained by

StanyEquivalentFCheckPSubdirectProduct(ﬁ,l1,lg) under the assumption
that there exists ¢ € Z such that R[t] = {j}.

When there exist t1, ty € Z such that R[t1] = {j1}, Rlt2] = {j=}, we can
use:

SearchPBilinear

‘» SearchPBilinear(M,P1,P2)

returns the matrix [det(M + P, + P;,)];, ¢ Bl € Bjt,) for an n x n matrix
M which is obtained by inserting the two zero rows into the j;-th row and the
ja-throw of (n — 2) X nmatrix My = >, o py 1, gy, G F; with all invariant
factors 1 and Py = {P;, }i By, P2 = { B },263 it,]» Where B[t] =

SearchPRowBIlocks(P).bpBlocks[t1], B[t2] = SearchPRowBlocks(P
).bpBlocks[ts], P/ is the submatrix of P; deleting the j;-th and the jo-th rows,

and P = {Py,..., P,} is obtained by

StanyEquivalentFCheckPSubdirectProduct(ﬁ,l1,lg) under the assumption
that there exist t1,t2 € Z such that R[t;] = {j1} and R[t2] = {j2}.

When there exists ¢ € Z such that R[t] = {j1, j2}, we can use:

SearchPQuadratic

‘» SearchPQuadratic(M,P1)

returns the matrix

(5 (det(M + P, + P,,) — det(M + P;,) — det(M + P,))l;, s, c By for an
n X n matrix M which is obtained by inserting the two zero rows into the j;-th
row and the ja-th row of (n — 2) X nmatrix M, = >, , gy ¢; P} with all
invariant factors 1 and Py = {P; };cpjy), where B[t] = SearchPRowBlocks(P
).bpBlocks[t], Pi’ is the submatrix of P; deleting the j1-th and j2-th rows and
P={P,...,P,}is obtained by
StanyEquivalentFCheckPSubdirectProduct(ﬁ,l1,lz) under the assumption
that there exists t € Z such that R[t] = {j1, j2}-



When R[1] = {1,...,m}, we can use:

SearchP1

‘» SearchP1(P) |

returns a matrix P = 221 ¢; P; with ¢; € {0,1}, G1 P = PG, and det

P = +1 where GG1 (resp. (G5) is the matrix representation group of the action
of H on the left-hand side (©!_, Z[H /H;]®%) @ F®" (resp. the right-hand
side (®7_,Z[H /H;|®%) @ F'®") of the isomorphism (8) for

P ={P,..., P,} which is obtained by
StanyEquivaIentFCheckPSubdirectProduct(ﬁ,ll,lg) under the assumption
that R[1]={1,...,m}.

'+ SearchP1(P,C) |

returns the same as SearchP1(P) but with respect to ¢; € C instead of
¢; € {0, 1} for the list C of integers.

Endomorphismring

‘» Endomorphismring(G) |

returns a Z-basis of Endy ) (M) for a finite subgroup G of GL(n, Z).

IsCodimJacobsonEnd1

‘» IsCodimJacobsonEndl1(G,p) |

returns true (resp. false) if dimy, ,7(E/pE) /J(E/pE) = 1 (resp. # 1)
where E = Endyg)(Mg) for a finite subgroup G of GL(n, Z) and prime
number p. If this returns true, then Mg ®z, Z,, is an indecomposable Z,[G]-

lattice. In particular, M is an indecomposable G-lattice (see [HY, Lemma
6.11]).

IdempotentsModp

‘» IdempotentsModp(B,p) |

returns all idempotents of R/pR for a Z-basis B of a subring R of n X n
matrices M (n, Z) over Z and prime number p. If this returns only the zero and
the identity matrices when R = Endy ) (Mg), then Mg ®z Z, is an
indecomposable Z,|G]-lattice. In particular, M is an indecomposable G-
lattice (see [HY, Lemma 6.10]).

ConjugacyClassesSubgroups2WSEC



‘» ConjugacyClassesSubgroups2WSEC(G) |

returns the records ConjugacyClassesSubgroups2 and WSEC where
ConjugacyClassesSubgroups? is the list [g1, . . . , gm| of conjugacy classes of
subgroups of G < GL(n,Z) (n = 3,4) with the fixed ordering via the
function ConjugacyClassesSubgroups2(G) (see [HY17, Section 4.1]) and
WSEC is the list [w1, . . . , wy,| Where g; is in the w;-th weak stably k-
equivalent class WSEC,,, in dimension n.

MaximallnvariantNormalSubgroup

‘» MaximalInvariantNormalSubgroup(G,ConjugacyClassesSubgroups2WSEC(G)) |

returns the maximal normal subgroup IV of GG which satisfies that

w(Hy,) = w(H;) implies ¢(Hy) = v(Hs) for any Hy, Hy < G where

m: G — G/ N is the natural homomorphism, v : H; — w;, and H; is in the
w;-th weak stably k-equivalent class WSEC,,, in dimension n.

PossibilityOfStablyEquivalentSubdirectProducts with "WSEC"
option

» PossibilityOfStablyEquivalentSubdirectProducts(G,G’,
ConjugacyClassesSubgroups2WSEC(G),
ConjugacyClassesSubgroups2WSEC(G"), ["WSEC"])

returns the list [ of the subdirect products H < G x G’ of G and G’ up to
(GL(n1,Z) x GL(nsg, Z))-conjugacy which satisfy wy = ws for any

H < H where @i (H) is in the w;-th weak stably k-equivalent class WSEC,,
in dimension n (n = 3,4) and H < G x G is a subdirect product of G and
G’ which acts on Mg and M through the surjections ¢ : H — G and

P9 : H G respectively (indeed, this function computes it for H up to
conjugacy for the sake of saving time).

IsomorphismFromSubdirectProduct

‘» IsomorphismFromSubdirectProduct (H~) |

returns the isomorphism o : G/N — G’/ N' which satisfies

o(¢1(R)N) = p3(h)N' forany h € H where N = ¢ (Ker(ys)) and
N' = @y(Ker(g1)) for a subdirect product H < G x G’ of G and G’ with
surjections 7 : H — G and 9 H — G

AutGSubdirectProductsWSECInvariant

‘» AutGSubdirectProductsWSECInvariant(G)

returns subdirect products H ,, = {(g,9°") | g € G, g’ € G}



(1 <m < s)of G and G where {01, ...,0,} is a complete set of
representatives of the double coset X\ Z/ X,

Inn(G) < X <Y < Z < Aut(G),
X = Autgrnz)(G) = {0 € Aut(G) | G and G” are conjugate inGL(n,Z)} -

Y = {0 € Aut(G) | [Mg]"! = [Mg-]"" as H -lattices where H = {(g,9°) | g «
Z = {o € Aut(G) | [Mg)" ~ [My-)*" for any H < G},

Inn(G) is the group of inner automorphisms on G, Aut(G) is the group of
automorphisms on G, Ngr,(5,z)(G) is the normalizer of G in GL(n, Z) and
ZG1(n,z)(G) is the centralizer of G in GL(n, Z).

AutGSubdirectProductsWSECInvariantGen

‘» AutGSubdirectProductsWSECInvariantGen(G) |

returns the same as AutGSubdirectProductsWSEClInvariant(G) but with

respect to {01, ...,0.} where 01, ...,0; € Z are some minimal number of
generators of the double cosets of X\ Z /X, i.e. minimal number of elements
O1,...,0¢ € Z which satisfy (o1,...,04,x | x € X) = Z, instead of a

complete set of representatives of the double coset X\ Z/X. If this returns [],
thenweget X =Y = 7.

AutGLnZ

|+ AutGLnZ(G) |

returns

X = Autgrnz)(G) = {0 € Aut(G) | G and G” are conjugate in GL(n,Z)}

N3WSECMembersTable

‘» N3WSECMembersTable[r][1i] |

returns an integer j which satisfies that [V ; is the ¢-th group in the weak
stably k-equivalent class WSEC,..

NAWSECMembersTable

|+ NAWSECMembersTable[r][i] |

is the same as N3WSECMembersTable[r][]] but using N4 ; instead of V3 ;.



I4WSECMembersTable

‘» TAWSECMembersTable[r][1] |

is the same as N3WSECMembersTable[r][/] but using I4 ; instead of V3 ;.

AutGWSECINvariantSmallDegreeTest

‘» AutGWSECINvariantSmallDegreeTest(G) |

returns the list | = [l,...,1l] (I < --- <) of integers with the minimal
ls, ..., 11 which satisfies Z = Z' where

Z = {o € Aut(G) | [My])" ~ [Mg-]"" for any H < G},
Z' = {o € Aut(G) | [My]"' ~ [My.])" for any H < G with [G : H] € I}

for G < GL(n,Z) (n = 3,4).
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