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1. Parabolic basin and holomorphic quadratic differentials

In this note, we investigate the behavior of partial Ruelle operator asso-
ciated to a parabolic basin of a complex dynamical system. Let R: C — C
be a rational mapping of the Riemann sphere to itself. We assume that
the infinity is a parabolic fixed point of R of the form :

P(z)

R(z)=z+1+ 002)’ deg P < deg@ — 2,

where P(z) and Q(z) are polynomials without common factor. Let Ay
denote the immediate parabolic basin of the infinity, and let K = C\ A
and K = KU{oo}. We call K the filled Julia set of R. Further, we assume
that all the critical points in A,, are non-degenerate, and the forward orbit
of each critical point does not contain other critical points. For the sake of
simplicity, we assume K is connected.

Let Oy(K) denote the space of functions g : K — C holomorphic in
a neighborhood of K and g(co) = 0. The topology is defined as follows
. sequence of functions {g,} in Oy(K) converges to some function g, in
Oy(K) if there exists a neighborhood of K such that {g,} are extendable
to this neighborhood and the sequence converges to g, uniformly in this
neighborhood.

Let O(A) denote the space of holomorphic functions f : A, — C
with the topology of local uniform convergence. We denote by Oy(As) the
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set of holomorphic functions f € O(Ay) satisfying lim,_,, f(z) = 0. We
define the pairing of functions in these spaces.
DEFINITION 1.2 (pairing) For g € Oy(K) and f € O(Ay), Let

= o | f(g(ryr,

where v is a closed curve surrounding and passing near K with an orien-
tation looking K on the left hand side. The contour courve v should be
chosen so that there is no critical point of R between 0K and . The choice
of v depends on g, but the value of (f, g) does not depend on the choice,

provided that the curve v passes sufficiently near the filled Julia set K.

PROPOSITION 1.3 Each f € O(Ay) defines a continuous, holomorphic,
and complex linear functional f : Oy(K) — C by f lg] = (f,g) for g €
O(K).

Here, functional f is said to be holomorphic if f [g,] is holomorphic with
respect to v for all holomorphic family {g,} in Oy(K).

PROOF Let {g,} be a sequence of functions in Oy(K) and assume g,
converges to 0 in Oy(K). Then by the definition of the topology of Oy(K),
there exists a neighborhood U of K such that g, are extendable to U and
sup,cr [9.(2)] — 0. Take a curve v C U and set M = sup,, |f(7)|, and
let |y| denote the length of . Then

1 1
(.00 =I5 [ F()gn(r)dr] < S|y M sup |ga(2)] 0.

Clearly by definition, the functional is complex linear and holomorphic in
the sense above.

DEFINITION 1.4  The dual space Of(K) is the space of continuous,

holomorphic and complex linear functionals F': Oy(K) — C.
PROPOSITION 1.5 For a functional F' € Of(K),
1
= F[—— Ay
f(C) [C—J’CE

defines a holomorphic function f € O(Ay) and for g € Oy(K),

Flgl = (f,9)



holds.

PROOF For each ¢ € A, C € Oy(K). It is a holomorphic family of
holomorphic functions. Hence we have f € O(A,). Next, for g € Oy(K),
by applying the residue theorem, we have
1 1 9(7)

9 = g b

dr, z€ K

since g(oo) = 0, the resudue at the infinity vanishes. Therefore,

1 9(7-)ciT]—L F[ 1

2m Iy T — 2 271 T —Z

= o [ Fa(r)dr = (£,0).

Propositions 1.3 and 1.5 yield the following.

Flg] = FJ lg(r)dr

PROPOSITION 1.6 O(K) is isomorphic to O(Ay).

The isomorphism defined in proposition 1.5 is called the Cauchy trans-

formation.

2. Complex Ruelle operator and its adjoint operator
We define a linear operator L : Og(K) — Oy(K) by

g(T)dr
(Lo)(z) 2m/R’ )(R(T) —z)’

We call this operator a complex Ruelle operator. More precisely, it is a

g € 00(7),213 c K.

component of a Ruelle operator for a perticular weight (R'(z))~2 in the
decompostion of the operator described in [4]. The coutour curve v depends
upon g. Observe that Lg is holomorphic in a neighborhood of K and
g(00) = 0. Note that Lg can be expressed as

) — 9(y) g(c)
(Lg)(z) yeRE—:l(x) (R'(y))? + ceC(zR;)ﬂf R"(¢)(R(c) — z)

in a neighborhood of K.

The dual operator L* : Of(K) — Of(K) defines the adjoint Ruelle oper-
ator L* : O(Ax) — O(A) through the Cauchy transformation described

in the previous section.



PROPOSITION 2.1  The adjoint operator £* : Oy(Ax) = Op(Ax) is
given by

(L) =5 Pfgg((?)_d:), f € Op(Ax), 2 € Ax.
Moreover,
) _ f(R(2) f(R(c))
ENE =R ol Bz — )

PROOF  This is verified by a direct calculation. Let f € Of(K) be
a functional and f € O(A) be the corresponding holomorphic function.
Then we have

D)) =) [ =] = f

_ A[ 1 dr -|
f 27m'/7R’ r)(R(T)—C)(Z—T)J

1
:%/’yf() (ZWZ/R’(T )(R(r) — C)(z—7‘)>
1

f(O)d
2m/ R(1)(z—T) QWZ/VR(T C)

F(R(r)d
T 2mi v R(1)(z — 7')
fRE) L)
RGeS R - 1)
_H(R() F(R()

R(2) ot ROz —¢)

This proposition shows that the adjoint Ruelle operator decomposes
into two parts. This decomposition is similar to that introduced in [1],
and the analysis of spectrum below is almost same as described there. Let
Ap ={z € Ax | (R*)(2) # 0 for n > 0}, and let O(Ag) denote the
space of holomorphic functions on Ag with the topology of local uniform



convergence. Note that O(Ay) C O(Ag). Define a linear operator K :
O(Ar) = O(Ag) by FRE)
z

Let ¢ : Ayx — C denote the Fatou map defined by

o(z) = lim (R™"(2) — n), z€ Aw.

n—oo

Under our assumption on R, ¢ is holomorphic in A, and stisfies function
equation
poR(z)=p(2)+1, z€ Ay

and
¢©'(2) #0 for =z € Ap.

Define a linear isomorphism 7 : O(Ag) — O(Ag) by

(TH(2) = f(2)¢'(2).

The linear operater K is conjugate to M = T oKoT ! and M : O(Ag) —
O(Ag) is a very simple operator.

PROPOSITION 2.2

(Mh)(2) = ho R(2), he O(Ap).

PrROOF By a direct computation.

(Th)(2) = h(2)(#'(2)

) =
“'h)(R(2)) _ h(R(2))(¢'(R(2)))
R'(2) R'(2) ’
and, as we have ¢'(R(z))R/'(z) = ¢/(z) by differentiating the function equa-

(KT 'h)(2) = Gl

tion po R = ¢+ 1,

h)(e) = (77 ) = “EEMEED) o) — )

If a complex number v # 0 is an eigenvalue of the operator M and
h, € O(Ag) is an eigenfunction associated to v, then h, must satisfy the
function equation

(Mhy)(z) = hy(R(2)) = vhy,(2).



The Fatou function ¢ : Ay, — C has an inverse function ¥ = ¢! defined
for {x € C | Rz > r} for sufficiently large r. In this region, we have

ho ($(x + 1)) = vh, ($()).

Hence, by taking an appropriate value for log v,

p(x) = e " hy, (¢ ()

is a periodic function of z of period 1. This function p(z) must be an entire
function of period 1. We obtain an expression of the eigenfunction

h(2) = e?E8 p(p(2)).

The eigenfunction f, € O(Ag) of the operator K corresponding to h, is
given by
e? %8 p(ip(2))
A .
PROPOSITION 2.3  Any v € C\ {0} is an eigenvalue of £*, and its
eigenfunction f, € O(Ay) is given by

e?(2)10gvp(p(2))
¢ (2)

fulz) =

fu(2) =

where ¢ : A, — C is the Fatou function and p : C — C is an entire
periodic function of period 1 satisfying p(¢(c)) = 0 for all critical point
c € Ax.

PrROOF The Fatou function ¢ has critical points at the critical points of
R and at the backward images of these critical points. As we assumed that
the critical points of R are simple and the critical points do not collide, the
function f, is holomorphic in A,,. In case if critical points are not simple
or collision of critical points occur, we pose appropriate degenrate zero
conditions upon p at the corresponding points ¢(c). There exists entire
periodic functions with prescribed zeroes at the images ¢(c) of critical
points. For such periodic entire functions p, functions f, belong to O(Ax).
And as f,(R(c)) = 0 for all critical points ¢ € C(R) N Ay, they are also
eigenfunctions of L*.



We define a subspace of O(Ay) which is invariant under the adjoint
Ruelle operator L*.

DEFINITION 2.4
O1(Ax) ={f € O(Ay) |Vt > 0,3IM > 0,3r > 0,
st.|f(z)] < M for Rz >r and |Sz| < t}.

PROPOSITION 2.5 The space O1(Ax) is invariant under £*.

PROOF  As R(z) = 2+ 1+ O(272) near the infinity, we have R'(z) =
1 + O(z71). Therefore, by taking sufficiently large positive number s >
(max.co(rna,, c) + 1, we can assume

1 1
|R(z) —z—1] < 2 and |R'(z) — 1| < 2

holds for Rz > s. If f € O1(Ay), then for any ¢ > 0, we can find
positive constants My and ry such that |f(z)| < My holds for Rz > ry and
1Sz < t+ 1. Let

B f(R(c))
M =200+ ceC(%ﬂAm | R'(c)

| (1 +e])

and r; = max(s, rg, 2). Then we have

F(R(=) FR@) 1
B2 | oo, B =
(

f(R(c))
2M,
= 2o ceC(%):mAm | R'(c)

(L7 1) (2)] <]

| (T+cl) < M,

for Rz > ry and |z] < t.

PROPOSITION 2.6 The adjoint operator L* restricted to the subspace
O1(Ay) has a continuum of eigenvalues {v € C | 0 < |v| < 1}. The

eigenfunctions are as given in proposition 2.3.

3. Discrete eigenvalues of the operator

In this section, we apply the perturbation method described in [1] to
our case. Let ¢ denote the number of critical points of R in A, and



let C(R)N Ay = {c1,---,¢¢}. Define linear maps G : O(Ag) — C° and
F:C" = O(Ag) by

or- (L) . coum,
and , |
Flog) = ¥ - fﬂcj, (o) € C".

The adjoint operator L£* can be expressed as
L'=K—-Fg.
AskerG ={f € O(ARr) | f(R(¢;)) =0,7=1,---,¢}, We see that
L [kerg= K lkerg

and

O(Ag)/kerG ~ C".
We define an ¢ x ¢ matrice M () by

M) = I + G (f )\’“IC’“) F.

k=0
- F(RH(2)
. B z
the (4, j)-component of M (\) is given by
00 )\k
dij + >

i=1 (R2F)" (i) (ReM(ei) — ¢5)
Note that M ()) is holomorphic for |A| < 1, since critical points ¢; are in
the parabolic basin A,.

PrROPOSITION 3.1  If det M (A\) = 0 holds for some A with 0 < |A| < 1
and there exists an eigenvector u € ker M () \ {0} satisfying M (A)u = 0,
then .

V=3 NK'Fu
k=0
satisfies

1
V=V
£ A



Moreover, V € O1(Aw).

PROOF  Let u = (o) and v = Fu = X, Zf@j. Clearly, v belongs to
O(Ag), since

Ko = T Mo = T7H((Tv) o R°Y)

and V' converges uniformly on compact subsets of Az. Next we show that
V € O(Ax). V may have poles at critical point ¢; or at its backward
images by R. The residue of K*v at critical point ¢; is given by

€S k’U = InEs 7U(R0k(z)) = InEs g 2
Reseeek 0 = Resee ey () = R0 2 B () (B — )
=S %

Hence we have

N > B oo [/ )\kOéj
es.—,V (2) = ai + kz::l ]; (BoR)" (i) (R*(ci) — ¢;)

14 00 )\k
= (5” 2 R () (RH(er) — cj>> @ =0

Therefore V' is regular at critical points ¢; and consequently it is regular

at the backward images of the critical points. This implies that V' €
O(Ay). Furthermore V' belongs also to O1(A). For, as we assumed
R(z) = z+ 14 O(z7?), for any t > 0, we can find some t; > ¢t and 7 > 0
such that if Rz > r and |Sz| < ¢ then § < |¢/(2)] < 2, R(R**(2)) > r and
[S(R*(2))] < t1 holds for k =1,2,---. Let m = supg,~, (<, [v(2)¢'(2)].
As N N N

TV =Y M7 = S XMMETw = 32 A (Tw) o R,

k=0 k=0 )

we have . 5
V() <23 Afm= "
k=0 1 — [\l

Hence V' € O1(Ax).
We have also

ALV = AK = FG)V

M2

Nekcky — AFG (f A’%k> Fu

k=1 k=0



o0

= z NeKChy + F (I — M(\) u

Z NIy + Fu =V,
=1
Hence V' is an eigenfunction of L*.

4. Eigenfunctions of L corresponding to the discrete eigen-
values

In this section, we consider eigenfunctions for the Ruelle operator L
itself. As we saw in the previous section, the adjoint operator has a contin-
uum of eigenvalues. In order to distinguish eigenvalues and eigenfunctions,
we have to examine the eigenspaces for each eigenvalues. The Cauchy’s
integral formula

~ omi / ( — z
indicates that rational functions of the form
1
Z—n

Xn(2) =
form a “basis” of the function space Oy(K). For n € Ay, X, belongs to
Oo(K). The image Ly, is computed as follows.

ProposiTION 4.1 Ifn e A, \ C(R), then
1 1

(Lxy)(z) = yeRZl( @ ))an(y) CEC(%)HF 0 n)xR(c)(w)
and
1 ¢ 1
Lxn = WXR(U) +j:1 R”(c]-)(cj _ n)XR(Cj)'

PROOF  These formulas are directly verified by applying the residue
formula to domains inside and outside of the contour courve ~.

Let us consider a formal sum of the following form.

{ oo
U= Z Z Qi kX Rk (c Q; € C.
1=1k=1



The space of functions of this form is invariant under L. In this space, we

can formulate a formal eigen equation

1
LU = -U.
v A

By a formal computation, we obtain an equation for A as follows.

PROPOSITION 4.2  If the eigen equation has a solution, then A satisfies
det N(A) = 0, where N()) is an £ X {-matrice

A A
N ) = (05 7o) &, (R = e R

Proor  This is verified by a straightforward computation.

PRrRoOPOSITION 4.3
det N(\) = det M ()).

PrROOF  The (i, j)-component of M () is given by

)\k
0 + Z | (RFY () (R (er) — )
)\k
= 0;j + 21 (Ro (k— 1)) (R(c,-))R”(ci)(Ro(k_l)(R(Ci)) — Cj)
N AP

=0 Rie) 5 (B (R (BHA(e) — )

Let S denote the diagonal ¢ x £-matrice whose (7, 7)-component is A/ R"(¢;),

and let W denote the ¢ x ¢-matrice whose (i, j)-component is

00 )\k

2 (R (R(e)) (R (R(e)) — o)

Then we see that
M) =1;+SW and tN()\) =1, +WS.

Hence we have det M (A\) = det N()).

Finally, we compute the eigenfunction for the eigenvalue \~*.



ProrPoOSITION 4.4  Formal eigenfunction of the Ruelle operator L is

given by
! oo
U= > irXroke)
i=1k=1
where (a1, -+, 1) is a vector in the kernel of N()\) and

)\k_laz',l
(Ret=Y(R(ci))

Q) = for k=1,2,---.
Note that the obtained eigen function converges as a meromorphic func-

tion if |A| < 1. However, the limit function does not belong to the space

0y(K).
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