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1. Decomposition of Complex Ruelle operator

Let R: C — C be a hyperbolic rational mapping. We assume that all
the attractive periodic points of R are fixed points, all the critical points of
R are non-degenerate, and that the Julia set of R, Jg, is inculed in C. Let
N denote the number of attractive fixed points and let ai,---,ay denote
the attractive fixed points. Let Aj; denote the attractive basin of a;. Let
Cgr denote the set of critical points of R.

For k=1,---, N, let v+ denote an oriented multicurve in Ay, such that
Vi = 02k, where {2 is an open set satisfying R_l(Qk) C Q, QUAL =C,
and Cr N QN Ay = ¢. Let v = UN_ v, and Q = N, Q.

For open set O C C, let Oy(O) denote the space of functions g : O — C
holomorphic in O and has an analytic extention to a neighbourhood of
the closure of O, and satisfies g(oo) = 0 if 0o belongs to the closure of O.
We have the following decomposition of holomorphic functions. The direct

sum in the theorem means the uniqueness of the decomposition.

THEOREM 1.1 N
Oo(2) = D Op().

k=1
PROOF Let g € Oy(2). Then g can be expressed as

9(z) = 271m' wg(—Tl

dr, x € €.
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For k=1,--- N, let 'y : Og(Q2) — Op(2) be defined by

(Fkg)(x) = ! g(T) dT, T € Qk

2wt I T — X

As g(7) is bouded on 7, ['kg is holomorphic in 2 and vanishes at the
infinity. Hence T'vg € Oy(Q). As v = UL_;v, we have the decomposition

N
g= > Ig.
k=1

To prove the uniqueness of the decomposition, assume g, € Oy(€2;) for
k=1,---,N, and

N
> gr=0.
=1

Then g;. is holomorphic in €25, and at the same time it can be analytically
extended to Ay, since —gr = > jx; g; is holomorphic in Aj. This shows
that g; is constant for k = 1,---, N. However, g; takes value zero at the
infinity if the infinity belongs to the domain of its definition. Therefore,
gr=0forall k=1,---, N, except one. But the exceptional one must be

Zero since E{c\f:l gr = 0.
THEOREM 1.2
I'; Oo(Q) —>00(Qk), kZl,---,N

are projections.

Proor  For all g € Oy(2), ['xg is holomorphic in €y, hence we have
I'2g = [yg. If j # k, then v; C A; C Q4. Therefore, [';Tyg = 0 for all
g € Op(). As we saw in the previous theorem, S8 Ty = id.

DEFINITION 1.3 We define complex Ruelle operator L : Oy(2) —
Oo(€2) by

_ 9(y) N
(Lg)(z) = yERZl(m) R 9 € Oo(Q), = € Q.

Note that R7'(z) C Q and R'(y) # 0 as we assumed R is hyperbolic
and €2 contains no critical points. As indicated by [1], the complex Ruelle



operator can be expressed as an integral operator of the form :

1

_ 9(7)
(L)) =57, RORE) -0

This formula is easily verified by applying the Cauchy’s theorem about
residues and it shows that Lg € Oy(2). Comparing L with the Perron-

Frobenius operator, we see that the spectral radius of L is smaller than
1.

DEFINITION 1.4

Lz’j : 00(9]) — 00(91) is defined by Lij =10L ‘OO(Q]') .
The Ruelle operator can be expressed as an NV X N matrice of operators

L = (Lij)
The components L;; are computed as follows.

PROPOSITION 1.5 If i # j, then for g; € Oy(Q2;) and z € €,

ey g(c)
(Liggi)(@) == 2> Rie)(R(e) —2)

PROOF  As g; € Oy(€;) and L;;g; is defined by

_ 1 9;(7)
2mi Jvi R'(7)(R(T) — 7)

(Lijg;)(x) dr,

we can apply the residue theorem to the complement of 2;. The residues
at the critical points in A; give the formula.

PROPOSITION 1.6  For g; € Oy(£2;) and for z € Q;,

N le) — 9i(y) gj(c)
(Lioi(m) = 2 ()R T e, B (RO — 2)

Proor  In this case, we can apply the residue theorem to €2;.

2. Mbobius transformation and complex Ruelle operator



In this section, we observe the behavior of the complex Ruelle operator
under a coordinate change of the Riemenn sphere by a Mobius transfor-
mation.

Let M : C — C be a Mobius transformation of the Riemann sphere.
Let « = M~'(c0), # = M(c0), and R = Mo Ro M. We set O =
M(Q),Q = M(Q), and assume o ¢ Q. In order to avoid confusion, we
denote the complex Ruelle operator defined in the previous section by Lg
associated to the rational mapping R. Now, we define a “complex Ruelle
operator” associated to the Mobius transformation M.

DEFINITION 2.1
go M~ (&)
(M'(M~1(2)))*

Lir: Op(Q) = Oy(Q) s defined by (Lirg)(%) =

for g € Oy(Q) and # € Q.
PROPOSITION 2.2

Ly- =Ly, Lp=LyoLgoLy-.

PrROOF First equality is easily verified by computing L,;-1 o Ly, and
Ly o Ly directly. Second equality is easily verified similarly by the
definition of the complex Ruelle operator. However, we would like to give
a proof for the operator defined as an integral operator. Let g € (90(@).
Then we have, for z € Q and z € Q,

i go M(x)
(Lar—19)(z) = (M-Y)(M(z)))?’
i 1 Ly-1g)(T
(LRLMflg)(x) - 27i /7 R’((T)(R(QT))(_)x)dT

_ 1 / go M(r)
2mi Iy R'(7)(R(7) — ) ((M~1) o M(7))?

dr,

and
(LyrLrLa1g)(%)
1 1 / go M(r)dr
(Mo M~Hz))?2mi )y R'(7)(R(r) — M~H(Z))(M~1)" o M(7))?




_ 1 / go M(t)(M'(r))%dr '

27i Jy (Mo M=1(%))?R/(1)(R(1) — M~1(Z))
On the other hand, by a change of variables o = M (7), we have
o1 g(o)do

(L)) = 271 /W R’(a)( ~(0) — )
_ / go M(r)M'(r)dr
2mi Sy M'(R(7))R/(T)(M~1) o M(7)(M o R(T) — &)
Hence we obtain

(LMLRLM—lg)(~) (Lpg)(7)

/ go M(r)(M'(r))*
R/(7)
X ( ! — ! ) dr.

(Mo M~Y(%))*(R(1) — M~Y(&)) M'oR(1)(MoR(T)— %)

As R'(1) # 0 and M' o R(7) # 0 for 7 € €2, the integrand can have poles

only at 7 € R™1 o M~1(%) N Q. The residues at such points are, by setting

z=M"(Z) and y € R™!(z), computed as

éoM(y)(M’(y))z( 1 B 1 ):0
R'(y) (M'(2))2R'(y) Mo R(y)(M'o R(y)R(y)) '

Hence the proposition follows.

X

27rz

DEFINITION 2.3 Components Ly ;; : Op(€2 ) — Oy(€;) is defined by
Laijg; = DiLyg; for g; € Og(Q;), where T; : Og(Q) — Oy(€2;) denote the

projection.

PROPOSITION 2.4  If oo € €);, then

v Vo) R g;(7)
(La13391) (%) = (Laeg;) () + Resroo s ey =73

If oo & €2;, then
(Larjigi) (@) = (Larg;)(Z).
If i # 7 and oo € €;, then
Ly i; = 0.
If i £ 5 and oo ¢ €2;, then
9;(7)

M'(T)(M(7) — %)

(La1ijg9i)(2) = —Resr—oo



PROOF These formulas are easily verified by a direct computation by
applying the residue theorem.

3. Partial complex Ruelle operator

In this section, we examine a diagonal component of the complex Ru-
elle operator. The Fredholm determinant and the resolvent of the adjoint
diagonal component L;; : Oy(£2;) — Oy(€;) of the complex Ruelle operator
can be computed in a similar manner as is given by [1] and [2].

For the sake of simplicity, we assume a; = oo, and a; is an attactive
fixed point with eigenvalue o satisfying 0 < |o| < 1. We define the partial
Ruelle operator as follows.

DEFINITION 3.1  Partial Ruelle operator Lyy : Oy(21) — Op(£21) is

defined by , (rd
g(T)dr

~ 2mi R'(7)(R(T) — z)’

(L119)()

An expicit formula for the partial Ruelle operator is given by proposition
1.6. We shall consider the dual operator.

DEFINITION 3.2  The dual space Oj(§21) of Op(£21) is the space of
continuous, complex linear, and holomorphic functional F' : Oy(€;) — C.
The topology of Oy(€21) is understood as the uniform convergence in a
neighborhood of the closure of {2;. A functional is said to be holomorphic
if the value F[g,] is holomophic with respect to the parameter p for a
holomorphic family of functions g,,.

PROPOSITION 3.3 For any F' € O}(€1), there exists an f € Oy(C\y),
such that

1
Flgl= 5 [ f(ng(r)dr, for g e Ou().
PrROOF In fact, the so called Cauchy transform
£(2) = Fl—]
2) = Fl— c
gives such a function. As %—( is a holomorphic family of functions in Oy(£2;)

parametrized by z € C \ Q1. f(2) is holomorphic in C \ Q1 and f(c0) = 0,



hence f € Oy(C \ ). For g € Op(y),

Flgl = F[271rz o0 zg(—Z)Cdz]
= 5 | 0GPl = 5= | a1 ()i

Note that such function f(z) € Oy(C \ Q1) is unique since

1 1
i o T = 1)

PROPOSITION 3.4 The dual operator Lj; : Of(21) — OF(£2) is
represented by integral operator £3; : Oy(C \ Q1) — Oy(C \ Q) defined,
for f € Op(C\ Q) and z € C\ Q4, by

; 1 f(R(r))dT
(L1 f)l) = 2mi Jn R'(1)(z — 1)
SR SR)

R(z)  cedpna, R'(c)(z =)

PROOF  The proof is almost same as in [1]. By a direct computation,

(L1 f)(2) = (L’{lF)[%] = F[Lu[;Z]]
= F[m Iy & )(R(df oG )
- 2m f% f(C)dCQM f% R'(r R(T)T O)(z—T1)
f dr f ( )dC
2m "N R’ (r)(2— 2m M R(1)—(¢
i f(R(T ))dT
?5%(75 e f
= TZZ) — YeeCpnds ReSr=c o2y
_ [(R(z f(R(c
- J(R'((z))) ~ 2ceCRNA(c) RH((C)((Z)—)C)-
Note that £}, f € Oy(C \ ;) and the poles at the critical ponts in the

last line of the above calculation cancel out.

we have

4. Fredholm determinant of the adjoint Ruelle operator

In this section, we compute the Fredholm determinant and the resolvent
of the adjoint operator £j;. The calculation is almost same as in [1].



Let n; denote the number of critical points in A;. And let {cy,---, ¢, }
be the critical points in A;. Let

00 A"
H(:E, Z5 )‘) - nz::O (Ron)’(z)(Ron(Z) - 37)’
and let )\ "
M()\) = (52']' + WH(C]'; R(Cz’)§ )‘)) o

be an n; X ny matrice.

THEOREM 4.1  The Fredholm determinant D11() of £}, is given by
Dii(AN) = [1(1 = o™X\ det M(N).

It is meromorphic in C and holomorphic for |A| < |o|72. L%, has no essential

spectrum.

This theorem follows immediately from proposition 4.3 below. We as-
sume that the backward orbits of critical points do not intersect with the

curve ;. Let
OQr = @\ (Ql U U {Z e ‘ RI(ROn(Z)) = 0})
n=0

Then 00(91) C Oo(QR) Define ﬁ} : Oo(QR) — Oo(QR) by

(Lrf)z) = 2711'2' ”n }{;Ef-%)((?)—d:)

for f € Oy(2r). We see immediately that the image of L} is included in
Oo(€21), and L} and L3, coincide on Oy(£21). Therefore, L} and L3, has
the same spectrum. Define a operator K : Oy(Qr) — Oy(2r) by

f(R(2))
R(z)

(/Cf)(z) = fe Oo(QR),Z € Qp.
PROPOSITION 4.2  The spectrum of K is {o""1}>; and the Fredholm

determinant is given by

det(I — AK) = T[ (1 — o™*1N).

n=1



The eigenfunction f,(z) for eigenvalue A=! = ¢"*! is given by
1
' (2)(e(2))"

where holomorphic function ¢ : Qr — C is the Schroder’s function of the

fa(z) =

az
z

form ¢(z) = 24 ap +
Schroder’s equation o(R(2)) = o p(2).

+-+-+ % + - near the infinity and satisfying the

+1 is

PROOF  The fact that f,(z) is an eigenfunction for eigenvalue o
immediately verified by using the Shroder’s equation. Eigenfunction f,(2)
can be extended to {2r by using the function equations

_ a1 _ Ju(R(2))

Kf,=0c""f, and (Kf,)(z)= ")
As the eigenfunctions {f,}°2; form a complete basis of Oy(2¥), where
(0¥ denotes the connected component of {2z containing the infinity, and
as the eigenfunctions are determined from a germ at the infinity of the
eigenfunction by the function equation above, the Fredholm determinant

is given by the formula in the proposition.

Define linear maps G : Oy(2g) — C™ and F : C" — Oy(Qg) by

Gf - (m)  fe o),

R’ (c;) j=1
- _ 9 n
Fa=7Y , a=(a;) e C™,
j=1% 7€
We have
Ly =K —-FgG.

The Fredholm determinant of the adjoint Ruelle operator £} is computed
as follows.

PROPOSITION 4.3
DH()\) = det([ — AL}) = det([ — )\IC) det M()\),

where M(\) = I,,, + AG(I — AK)~'F.



PROOF
det(I — AL%)

et(I — A\ + A\FG)

et(I — M\C) det(I + A(I — A\K) 1 FG)
(
(

et(I — MK) det(L,, + AG(I — MC)~1F)
et(I — M) det M ().

d
d
d
d

~~

The n1 X ny matrice M () is computed as follows.

M) =1, +XG(I - \K)"'\F
= I, + AG(Z2, \"K™) F

N o0 An N
=1, + )G (T (Rony(z)(RO"(z)—cﬂ)jzl

0 An "
= I+ (wtay 0% mrer @)y
— (5ij + %H(Cj’ R(ci); )\)>

ij=1

n+11o00
n:l)

As the spectrum of K is {o M ()) is meromorphic in C and holo-
morphic in {\ | |A| < 72}. This completes the proof of the proposition

4.3 and the Theorem 4.1.

5. The resolvent of the partial adjoint Ruelle operator

The resolvent of the parttial adjoint Ruelle operator £j; can be com-
puted in an analougous manner as in [1] and [2]. First, we compute the
resolvent function of operator K.

PROPOSITION 5.1 The function H(z,z;\) defined in the previous
section is the resolvent function of I, i.e.,

1

Z— X

H(z,z;\) = (I —\K)™

00 P
= Z N —— =) — S )
w0 2= % a0 (B)(2)(B"(2) — z)
where x € Oy, 2 € Qg and A € C\ {o7%}%2,. H(x,2; ) is holomorphic in

x,z and A.

PROOF  As is easily observed, we have

f(B™(2))

SO )



Let f,: Qr — C,n=1,2,---, be the complete system of eigenfunctions of
KC given by propositon 4.2. For each x € €2y, we can expand the function
(z —2)7! € Oy(Qg) in the form

1 00
o 712::1 b () fr(2).
Observe that b,(z) is holomorpic in ;. With this expression, we have
1 2 1
(I —AK)™! = > A"K"
22— ;20 Z—
= Z A"K" Z br(z) fr(2) = 3 be(z) > A"K" fi(2)
=1 k=1 n=0
0 1
k+1\n — -
= Z bi(z )HZO()\U )" fr(2) = kg br(2) 7 i fr(2).

This shows that H(z,z; A\) has an analytic extension to the domain €2; x
Qr x (C\ {o7"}32,).
The resolvent function E(z, z; A) is defined by

1 _
E(z,z;\) = (I—)\E”{l)_lm, r€Q,zeC\Y, A€ E(x,00;\) =0.

E(z, z; A) is holomorphic in z and z, and meromorphic in A.

PROPOSITION 5.2
(I =AC) ' =T -2 = XTI = M) TFMA) TG — M) ™!
where M()\) = I,,, + \G(I — AK)~LF is an n; X n; matrice.

Proo¥ By a direct computation.
(I—=XLj)™t =T -2+ Afg)—l

= (I = MNC)™HIT + AFG(I — AK)~H)~L

= (I = M) (I + S35 (N (FG(I = AC) k)

= (I — MNC) Y I — AF S320(=AG(I — MC)"1)EG (I — AK)~Y)
= (I = AC)™ = A(I = M) LF(M(\)1G(I — MK)~!

As is easily verified, M () in this proposition is same as M () given in the
beginning of the previous section.

Let
1

Z_CZ

Hi(z;A) = ((I = M)~ Jiti = (H(ci, 2 A))ity



be a row vector and let

Ha(w: \) = G(I — \K)'—— — GH(z, 2 A) — (

Z— X

H(z,R(c;); \)\™
R”(Ci) -
be a column vector. With all these things together, we find the explicit

expression of the resolvent function E(z, z; ).

THEOREM 5.3
E(z,2;A) = H(z, 2; ) + AHy(2; \) (M (X)) " Ha(z; )).

The resolvent function is holomorphic in z € €21, and in z € Qg, and mero-
morphic in A € C. The poles are the zeros of the Fredholm determinant
D11(N).
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