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Abstract Assume that a complex analytic dynamical system f : C2 → C2 maps the
y-axis into itself and the mapping f restricted to the y-axis has a uniformly expanding
Julia set. If f is critical and non-degenerate on the Julia set, then the Julia set has the
”super-stable manifold” foliated by complex analytic curves.

A fixed point of a two-dimensional complex analytic dynamical system f : C2 → C2

is called a super-saddle if one of the eigenvalues of the Jacobian matix of f at the fixed
point is zero and the other eigenvalue has an absolute value greater than one.

Although the mapping is not diffeomorphic near the fixed point, the existence of
the unstable manifold of the fixed point, which corresponds to the unstable eigen value,
is known since the last century. The author [6] showed the existence of the ”super-
stable manifold” of the super-saddle-type fixed point. The ”super-stable manifold” is the
invariant manifold associated with the eigenvalue zero.

In this note, we consider a class of two-dimensional complex dynamical systems. We
suppose that the dynamical system has a one-dimensional invariant sub-manifold, the
system restricted to this sub-manifold has a compact Julia set, and that the system is
super-attractive in the normal direction to the invariant sub-manifold. The conclusion we
shall obtain is that the ”super-stable manifold” forms a fiber bundle over the Julia set.

1. Super-Saddle-Type Julia Set

Suppose f : C2 → C2 is complex analytic in a neighbourhood of the y-axis, Cy =
{0} × C ⊂ C2, and the y-axis is mapped into itself, i.e.,

(A1) f(Cy) ⊂ Cy.

Let us express f by its components as f(x, y) = (f1(x, y), f2(x, y)). The assumption
(A1) above can be expressed as f1(0, y) = 0. Next, we assume

(A2) detDf = 0 on Cy.
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This assumption may be very particular. Let J ⊂ Cy denote the Julia set of f |Cy : Cy →
Cy. We assume

(A1’) J is compact.

For p = (0, y0) ∈ J , we set

a(p) = f2(0, y0), b(p) =
∂f2

∂y
(0, y0),

c(p) =
∂f2

∂x
(0, y0),

hp(ξ, η) = f2(ξ, y0 + η)− a(p)− b(p)η − c(p)ξ.

Moreover, for a technical reason, we assume that the Julia set is uniformly hyperbolic,
i.e.,

(A3) ∃β > 1, s.t. |b(p)| ≥ β for ∀p ∈ J.
From (A1), it follows that ∂f1

∂y
(0, y) = 0 . Hence if p = (0, y) ∈ Cy then

detDf =
∂f1

∂x
(0, y)

∂f2

∂y
(0, y).

From (A3),

b(p) =
∂f2

∂y
(0, y) 6= 0

holds in a neighborhood of J ⊂ C2, hence we have

∂f1

∂x
(0, y) = 0.

Therefore we can write
f1(x, y) = x2g(x, y)

where g(x, y) is complex analytic in a neighborhood of Cy . For p = (0, y0) ∈ J , we set

gp(ξ, η) = g(ξ, y0 + η).

As a non-degeneracy condition in the normal direction, we assume

(A4) gp(0, 0) 6= 0 for p ∈ J.

The ”Julia set” J is said to be of super-saddle-type if all the conditions above are satisfied.

2. Constants and Definitions

For a positive real number ε, let

Bε = {(ξ, η) ∈ C2 | |ξ|2 + |η|2 ≤ ε2}

and set
α = inf

p∈J,(ξ,η)∈Bε

|gp(ξ, η)|, mg = sup
p∈J,(ξ,η)∈Bε

|gp(ξ, η)|,
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mh = sup
p∈J,(ξ,η)∈Bε

(|∂
2hp
∂ξ2

(ξ, η)|+ | ∂
2hp

∂ξ∂η
(ξ, η)|+ |∂

2hp
∂η2

(ξ, η)|),

mc = sup
p∈J

|c(p)|, Mg = sup
p∈J,(ξ,η)∈Bε

|∂gp
∂η

(ξ, η)|.

We may assume these values are finite by taking sufficiently small ε > 0. As hp(0, 0) =

0, ∂hp

∂ξ
(0, 0) = 0, ∂hp

∂η
(0, 0) = 0 , the following proposition holds.

Proposition 1 For p ∈ J and (ξ, η) ∈ Bε , we have

|∂hp
∂ξ

(ξ, η)| ≤ (|ξ|+ |η|)mh,

|∂hp
∂η

(ξ, η)| ≤ (|ξ|+ |η|)mh,

|hp(ξ, η)| ≤ (|ξ|+ |η|)2mh.

Let p = (0, y0) ∈ J . By regarding (ξ, η) ∈ Bε as a local coordinate around p, we
have

f(ξ, y0 + η) = (ξ2gp(ξ, η), a(p) + c(p)ξ + b(p)η + hp(ξ, η)).

Define fp(ξ, η) = (fp,1(ξ, η), fp,2(ξ, η)) by

fp(ξ, η) = f(ξ, y0 + η)− f(0, y0).

It follows that
fp,1(ξ, η) = ξ2gp(ξ, η)

fp,2(ξ, η) = c(p)ξ + b(p)η + hp(ξ, η)

and that fp : Bε → C2, fp(0, 0) = (0, 0).
We choose sufficiently small r0 > 0 and u0 > 0 so that

Dr0 ×Du0 ⊂ Bε, fp(Dr0 ×Du0) ⊂ Bε

hold for all p ∈ J .
Define positive real constants r and u by

u = min(u0,
β − 1

8mh

, 1)

r = min(
u

2
,
(β − 1)u

4mc

,
1

2mg

,
β − 1

8uMg

)

. The following propositions hold.

Proposition 2 If ξ ∈ Dr and η ∈ ∂Du, then |fp,2(ξ, η)| > u.

Proof
|fp,2(ξ, η)| = |c(p)ξ + b(p)η + hp(ξ, η)|

≥ βu−mcr − (u+ r)2mh

3



> βu− (β − 1)u

2
− 4u2mh

≥ βu− (β − 1)u

4
− 4u

β − 1

8

=
β + 3

4
u

> u

Proposition 3 If (ξ, η) ∈ Dr ×Du , then

|fp,1(ξ, η)| ≤ r

2
, |∂fp,2

∂η
(ξ, η)| ≥ 3

4
(β − 1) + 1 > 1

hold.

Proof
|fp,1(ξ, η)| = |ξ|2|gp(ξ, η)| ≤ r2mg ≤ r

2
.

|∂fp,2
∂η

(ξ, η)| = |b(p) +
∂hp
∂η

(ξ, η)| ≥ β − (|ξ|+ |η|)mh

≥ β − (u+ r)mh ≥ β − 2umh

≥ β − β − 1

4
=

3

4
(β − 1) + 1 > 1.

3. Pull back of a graph

For p ∈ J , let q = f(p). Analytic curves passing by q can be pulled back by the
analytic map f : C2 → C2 to obtain an analytic curve passing by p . Let us consider
this operation in this section. Let

Xp = {ϕ : Dr → Du | ϕ : analytic},

Xq = {ϕ : Dr → Du | ϕ : analytic},
and difine the topology by the supremum norm :

‖ϕ‖ = sup
(ξ,η)∈Dr×Du

|ϕ(ξ, η)|.

For ϕq ∈ Xq, the graph {(ξ, η) ∈ Dr × Du | η = ϕq(ξ)} of ϕq defines an analytic
curve passing near q by identifying Dr×Du ⊂ Bε as a local coordinate around q. The
pull-back ψp ∈ Xp given by f is defined by the equation

fp,2(ξ, ψp(ξ)) = ϕq(fp,1(ξ, ψp(ξ))).

As we shall prove in the following paragraphs, ψp is well defined and ψp ∈ Xp.

Lemma 4 For ϕq ∈ Xq and ξ ∈ Dr, there exists a unique η ∈ Du such that

fp,2(ξ, η) = ϕq(fp,1(ξ, η)).
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Proof Let

N(η) = η − 1

b(p)
(fp,2(ξ, η)− ϕq(fp,1(ξ, η))).

Then

|N(η)| = |η − 1

b(p)
(c(p)ξ + b(p)η + hp(ξ, η)− ϕq(fp,1(ξ, η)))|

=
1

|b(p)| |c(p)ξ + hp(ξ, η)− ϕq(fp,1(ξ, η))|

<
1

β
(mcr + 4u2mh + u)

≤ 1

β
(
β − 1

4
u+

β − 1

2
u+ u) =

3β + 1

4β
u < u.

Hence
N : Du → D 3β+1

4β
u ⊂ Du.

Next, let us show that N : Du → Du is a contraction mapping. Note that |ϕ′q| < 4u
r

holds in D r
2

, since ϕq : Dr → Du is complex analytic in Dr . For η1, η2 ∈ Du , we have

|N(η1)−N(η2)| ≤ 1

β
(|hp(ξ, η1)− hp(ξ, η2)|+ |ϕq(fp,1(ξ, η1))− ϕq(fp,1(ξ, η2))|)

≤ 1

β
(2umh|η1 − η2|+ 4u

r
r2Mg|η1 − η2|)

≤ 1

β
(
β − 1

4
+
β − 1

2
)|η1 − η2|

=
3

4

β − 1

β
|η1 − η2|.

As 3(β−1)
4β

< 1 , we see N is a contraction mapping.

This lemma assures the existence and uniqueness of the solution of equation N(η) = η
for each ξ ∈ Dr. Let ψp(ξ) denote the solution. ψp(ξ) is nothing but the implicit function
defined by

fp,2(ξ, ψp(ξ)) = ϕq(fp,1(ξ, ψp(ξ))).

As ψp : Dr → Du is an analytic function, ψp ∈ Xp.
We denote the mapping defined by the pull-back operation by

Γp : Xq → Xp,

where q = f(p) .

4. Graph bundle and invariant section

Consider the set of graphs Xp for each point p of the Julia set J of super-saddle
type. And let

XJ =
⋃

p∈J
Xp.
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We regard XJ as a fiber bundle over J with Xp the fiber at p and introduce the
(product) topology in a natural way. Let Ξ denote the space of continuous cross-sections
of the fiber bundle XJ . For ϕ ∈ Ξ, ϕp ∈ Xp denotes the graph at p ∈ J given by the
section.

Define a norm ‖ϕ‖ on Ξ by

‖ϕ‖ = sup
p∈J

‖ϕp‖,

where ‖ϕp‖ is the supremum norm on Xp . We define the graph transformation map
Γ : Ξ → Ξ by

(Γ(ϕ))p = Γp(ϕf(p))

for ϕ ∈ Ξ and p ∈ J . We obtain the following theorem.

Theorem 5 Γ : Ξ → Ξ is a contraction map

Proof Let ϕ(1), ϕ(2) ∈ Ξ and ψ(1) = Γ(ϕ(1)), ψ(2) = Γ(ϕ(2)). Let q = f(p). Then,
ψ(1)
p = Γp(ϕ

(1)
q ), ψ(2)

p = Γp(ϕ
(2)
q ). And they satisfy

fp,2(ξ, ψ
(1)
p (ξ)) = ϕ(1)

q (fp,1(ξ, ψ
(1)
p (ξ)))

and
fp,2(ξ, ψ

(2)
p (ξ)) = ϕ(2)

q (fp,1(ξ, ψ
(2)
p (ξ)))

for all ξ ∈ Dr. We have

|fp,2(ξ, ψ(1)
p (ξ))− fp,2(ξ, ψ

(2)
p (ξ))| = |

∫ ψ
(1)
p (ξ)

ψ
(2)
p (ξ)

∂fp,2
∂η

(ξ, η)dη|

= |
∫ ψ

(1)
p (ξ)

ψ
(2)
p (ξ)

(b(p) +
∂hp
∂η

(ξ, η))dη|

= |b(p)(ψ(1)
p (ξ)− ψ(2)

p (ξ)) +
∫ ψ

(1)
p (ξ)

ψ
(2)
p (ξ)

∂hp
∂η

(ξ, η)dη|

≥ β|ψ(1)
p (ξ)− ψ(2)

p (ξ)| − (u+ r)mh|ψ(1)
p (ξ)− ψ(2)

p (ξ)|

≥ (β − β − 1

4
)|ψ(1)

p (ξ)− ψ(2)
p (ξ)|

= (
3

4
(β − 1) + 1)|ψ(1)

p (ξ)− ψ(2)
p (ξ)|,

and on the other hand, we have

|ϕ(1)
q (fp,1(ξ, ψ

(1)
p (ξ)))− ϕ(2)

q (fp,1(ξ, ψ
(2)
p (ξ)))|

≤ |ϕ(1)
q (fp,1(ξ, ψ

(1)
p (ξ)))− ϕ(2)

q (fp,1(ξ, ψ
(1)
p (ξ)))|

+|ϕ(2)
q (fp,1(ξ, ψ

(1)
p (ξ)))− ϕ(2)

q (fp,1(ξ, ψ
(2)
p (ξ)))|

≤ ‖ϕ(1)
q − ϕ(2)

q ‖+
2u

r
r2Mg|ψ(1)

p (ξ)− ψ(2)
p (ξ)|
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≤ ‖ϕ(1) − ϕ(2)‖+
β − 1

4
|ψ(1)
p (ξ)− ψ(2)

p (ξ)|.
Hence,

(
1

2
(β − 1) + 1)|ψ(1)

p (ξ)− ψ(2)
p (ξ)| ≤ ‖ϕ(1) − ϕ(2)‖

holds for all p ∈ J and ξ ∈ Dr . Therefore, we have

‖ψ(1) − ψ(2)‖ ≤ 1
1
2
(β − 1) + 1

‖ϕ(1) − ϕ(2)‖,

which implies that Γ : Ξ → Ξ is a contraction mapping.

This contraction mapping has a unique fixed point. We denote the unique invariant
section by σ ∈ Ξ. Thus we obtained the following theorem.

Theorem 6 There exists a unique σ ∈ Ξ such that Γ(σ) = σ.

5. Super-stable manifold

As is easily verified, the family of analytic curves given by the invariant section σ ∈ Ξ,
which is obtained in the preceeding section, satisfies σp(0) = 0 for all p ∈ J . For each
p = (0, y0) ∈ J , we denote by Wp the complex analytic curve passing by p corresponding
to the invariant section, i.e.,

Wp = {(ξ, y0 + η) ∈ C2 | ξ ∈ Dr, η ∈ Du, η = σp(ξ)}

Let
WJ =

⋃

p∈J
Wp

and we call it the local super-stable manifold of J . WJ is a fiber bundle over J and
each fiber is an open disk analytically embedded in C2. The union of preimages of WJ

by f is called the super-stable manifold of J .

Theorem 7 Let p = (0, y0) ∈ J and (ξ, η) ∈ Dr ×Du.
1) If η = σp(ξ) (i.e., (ξ, y0 + η) ∈ Wp ), then

lim
n→∞ dist(fn(ξ, y0 + η), fn(p)) = 0.

2) If η 6= σp(ξ) , then
dist(fn(ξ, y0 + η), fn(p)) > u

for some positive integer n .

Proof First, consider the case η = σp(ξ). Let (ξ0, η0) = (ξ, η) and let

(ξk+1, ηk+1) = fpk
(ξk, ηk), k = 0, 1, · · · ,

where pk = fk(p). This sequence of points corresponds to the orbit of (ξ0, y0 + η0). As
σ is the invariant section, we see

ηk = σpk
(ξk).
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On the other hand, |ξk+1| ≤ 1
2
|ξk| , (k = 0, 1, 2, · · ·) implies limk→∞ ξk = 0. For k > 0 ,

we have ξk ∈ D r
2
. Hence,

|ηk| ≤ 4u

r
|ξk|.

Therefore, limk→∞ ηk = 0. That is to say

lim
n→∞ dist(fn(ξ, y0 + η), pn) = 0.

Next, consider the case η 6= σp(ξ). Similarly as in the case above, let (ξ0, η0) = (ξ, η)
and define (ξk, ηk) for k = 0, 1, 2, · · · . In this case, the sequence is defined only for k
with ξk ∈ Dr and ηk ∈ Du. Let pk = (0, yk). We examine the distance between the
point (ξk, yk + ηk) and the curve Wpk

. For this purpose, consider |ηk − σpk
(ξk)|. We

have
|ηk+1 − σpk+1

(ξk+1)| = |fpk,2(ξk, ηk)− σpk+1
(fpk,1(ξk, ηk))|

≥ |fpk,2(ξk, ηk)− fpk,2(ξk, σpk
(ξk))| − |fpk,2(ξk, σpk

(ξk))− σpk+1
(fpk,1(ξk, ηk))|

≥ (
3

4
(β − 1) + 1)|ηk − σpk

(ξk)| − |σpk+1
(fpk,1(ξk, σpk

(ξk)))− σpk+1
(fpk,1(ξk, ηk))|

≥ (
3

4
(β − 1) + 1)|ηk − σpk

(ξk)| − 4u

r
r2Mg|ηk − σpk

(ξk)|

≥ (
1

4
(β − 1) + 1)|ηk − σpk

(ξk)|,
which proves the theorem.

6. Harmonic function on the super-stable manifold

There exists a real valued continuous function defined on the super-stable manifold
WJ of the Julia set J of super-saddle type. The continuous function is well adapted to
the dynamics of the system. We discuss about this ”potential function” in this section.

Theorem 8 There exists a positive, real-valued continuous function ρ : WJ \ J →
R+ defined on WJ \ J , such that ρ is harmonic on each fiber Wp \ {p}, and such that
for all z ∈ WJ \ J ,

ρ(f(z)) = 2ρ(z)

holds.

Proof For (x, y) ∈ WJ ⊂ C2, let

χ0(x, y) = − log |x|.

As |x| < r , χ0(x, y) > log 1
r
> 0. Obviously, χ0(x, y) is continuous on WJ \ J , and is

harmonic on each fiber. Next, let

χ1(x, y) = − 1

2
log |f1(x, y)|.

We have

χ1(x, y) = − 1

2
log |x2g(x, y)|
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= − log |x| − 1

2
log |g(x, y)|

= χ0(x, y)− 1

2
log |g(x, y)|.

For n ≥ 1, let

χn+1(x, y) = − 1

2n+1
log |f1(f

◦n(x, y))|.
We denote as f ◦n(x, y) = (xn, yn). Then,

χn+1(x, y) = − 1

2n+1
log |x2

ng(xn, yn)|

= − 1

2n
log |xn| − 1

2n+1
log |g(xn, yn)|

= χn(x, y)− 1

2n+1
log |g(xn, yn)|.

Thus, we obtain

χn+1(x, y) = − log |x| −
n∑

k=0

1

2k+1
log |g(xk, yk)|.

For (x0, y0) ∈ WJ \ J , we see (xk, yk) ∈ WJ \ J for k = 0, 1, 2, · · · . Recall that
α ≤ |g(x, y)| ≤ mg holds on WJ . When n→∞ , χn(x, y)+ log |x| converges uniformly
in WJ \ J . Let

ρ(x, y) = lim
n→∞χn(x, y).

Then for z ∈ WJ \ J , we have

ρ(f(z)) = lim
n→∞χn(f(z))

= lim
n→∞−

1

2n+1
log |f1(f

◦n(f(z)))|

= lim
n→∞−

1

2n+1
log |f1(f

◦(n+1)(z))|
= 2 lim

n→∞χn(z)

= 2ρ(z).

This completes the proof.

7. Numerical experiments

Let f : C2 → C2 be an analytic map satisfying the conditions in section 1. Let
A(O) denote the attractive basin of the origin defined as

A(O) = {(x, y) ∈ C2 | lim
n→∞ f

◦n(x, y) = O}.

The Julia set J of super-saddle type is included in the boundary of the attractive basin
A(O) . In this case, the super-stable manifold of J is included in the bondary of A(O),
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too. If, moreover, f maps the x-axis into the x-axis, and if the Julia set in the x-axis
is of super-saddle type, then the super-stable manifold of the latter Julia set is included
in the boundary of A(O) as well. Hence, the attractive basin A(O) can have different
forms as its boundary. The boundary of the attractive basin is not “self-similar”, if the
“self-similarity” means that any small portion of the set includes a miniature of the set
itself.

We executed numerical experiments for the case where the x-axis and the y-axis are
respectively invariant under the mapping f , and the Julia sets in each of the axes are of
super-saddle type. We denote these Julia sets by Jx and Jy respectively. Note that
Jx ⊂ Cy and Jy ⊂ Cy. In [5], we showed the case where Jx and Jy are unit circles.
The mappings used there are as follows.

f(x, y) = (x2 − 4x2y, y2 + 2.7ixy2)

f(x, y) = (x2 − 4x2y + x3, y2 + 2.7ixy2)

f(x, y) = (x2 − 4x2y + x3, y2 + 2.7ixy2 − y3)

Figire ! of this article is for the dynamical system defined by

f(x, y) = (3x2 − 2x3 − 4x2y, y2 + 2.7ixy2).

In this case, the Julia set Jx is same as the usual Julia set in C of the dynamical system
x 7→ 3x2 − 2x3, which has two super-attractive fixed points at x = 0 and x = 1. Jy is
the unit circle. In this figure, we can observe portions of the boundary of the attractive
basin A(O), which resemble the two different Julia sets. The region represented in the
figure is the rectangular region given by the following.

Fig.1: y = 0.9, − 0.9 ≤ <x ≤ 0.9, − 0.72 ≤ =x ≤ 0.72

Figures 2 and 3 are for the case with

f(x, y) = (x2 − 4x2y,−0.9y + y2 + 2.7ixy2).

In this case, the origin is an attractive fixed point with eigenvalues 0 and − 0.9. The
figures represent the regions indicted in the following..

Fig.2: y = 0.7, − 0.9 ≤ <x ≤ 0.9, − 0.72 ≤ =x ≤ 0.72

Fig.3: y = 0.7, 0.4697 ≤ <x ≤ 0.7, − 0.05309 ≤ =x ≤ −0.05285

Figure 4 corresponds to the case with

f(x, y) = (3x2 − 4x2y − 2x3, (0.7 + 0.2i)y + y2 + 2.7ixy2).

The region is as follows.

Fig.4: y = 0.5, − 0.4 ≤ <x ≤ 0.6, − 0.1 ≤ =x ≤ 0.7

Figures 5 to 8 are for

f(x, y) = (3x2 − 4x2y − 2x3, 3y2 + 2.7ixy2 − 2y3).
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This dynamical system has three super-attractive fixed points. The regions represented
by the figures are as follows.

Fig.5: y = 0.5, − 0.7 ≤ <x ≤ 0.7, − 0.56 ≤ =x ≤ 0.56

Fig.6: y = 0.5, 0.4 ≤ <x ≤ 0.44, 0.464 ≤ =x ≤ 0.496

Fig.7: y = 0.5, 0.427133 ≤ <x ≤ 0.47135, 0.4812912 ≤ =x ≤ 0.4812928

Fig.8: y = 0.5, 0.4245 ≤ <x ≤ 0.4385, 0.5364 ≤ =x ≤ 0.5476.
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