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Abstract Super-stable manifolds associated to zero eigenvalues of fixed points for
multi-dimensional complex dynamical systems are discussed. Some super-attractive fixed
points and “super-saddle” type fixed points have complex analytic super-stable manifolds.

In this note, we consider stable manifolds of super-attractive fixed points and stable
manifolds of fixed points with a zero eigenvalue of multi-dimensional complex dynamical
systems.

Let f : C → C be a complex analytic mapping. A point p ∈ C is called a super-
attractive fixed point if f(p) = p and f ′(p) = 0 . If f is not a constant function, the
classical Böttcher’s theorem asserts that f is analytically conjugate to a map z 7→ zk

for some integer k > 1 in a neighbourhood of p. In section 1, we recall this theorem.
Let us consider a complex 2-dimensional dynamical system f : C2 → C2 . Assume f

is complex analytic in a neighborhood of the origin, O = (0, 0), and that the origin is a
fixed point of f , i.e., f(O) = O. Furthermore, we assume both of the eigenvalues of
the Jacobian matrix at the origin, DFO, are zero. Such a fixed point is said to be super-
attractive. Hubbard and Papadopol[3] studied the case of super-attractive fixed points for
homogeneous polynomial maps and their perturbations.

In general, it is not possible to find an analytic change of coordinates around the super-
attractive fixed point which transforms the dynamical system into a “simple normal form”,
for example, (x, y) 7→ (x2, y2). In section 2, we describe a class of dynamical systems which
can be “normalized” by an analytic change of coordinates into the simplest normal form
above.

In section 3, we shall discuss about “super-saddle” fixed points. Let f : C2 → C2

be a complex analytic mapping. A fixed point of f is said to be a super-saddle point if
one of the eigenvalues of the Jacobian matrix at the fixed point is zero and the absolute
value of the other eigenvalue is greater than 1. It is known that there exists the unstable
manifold corresponding to the eigenvalue which is greater than 1 in modulus. We shall
prove the existence of the “super-stable” manifold corresponding to the eigenvalue zero.

In the Appendix, we give some examples of 2-dimensional complex dynamical systems
where multi-dimensional version of Böttcher’s theorem can be applied. Computer gener-
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ated pictures suggest that the basin of attraction of the super-attractive fixed point has
“fractal” boundaries.

1. Böttcher’s Theorem

In this section, we recall the classical Böttcher’s theorem. Let f : C → C be complex
analytic in a neighborhood of the origin, O , and assume O is a super-attractive fixed
point, i.e.,

f(O) = O, f ′(O) = 0.

We assume f is not constant near O. By a linear change of coordinates around the
origin if necessary, we may assume

f(z) = zk + ak+1z
k+1 + · · ·

with k ≥ 2 .

Theorem (Böttcher) If

f(z) = zk + ak+1z
k+1 + · · ·

is complex analytic near the origin with k ≥ 2, then there exist neighborhoods U, V of
the origin and a complex analytic diffeomorphism

ϕ : U → V, ϕ(0) = 0, ϕ′(0) = 1

such that
ϕ ◦ f(z) = (ϕ(z))k

holds near the origin.

Proof For r > 0 , let Dr = {z ∈ C | |z| < r}. By taking sufficiently small r > 0,
we can assume the followings :

f is defined and complex analytic in Dr.
closure(f(Dr)) ⊂ Dr .
For all z ∈ Dr , f ◦n(z) → 0 (n→∞) , where f ◦n denotes the composite map defined

by f ◦n = f ◦(n−1) ◦ f .
O is the only critical point of f in Dr .
f(z) 6= 0 if z ∈ Dr \ {0}.

As f : Dr → Dr is a branched covering map of degree k, we can define a complex analytic
function f(z)

1
k . This function is unique up to a k-th root of 1.

For z ∈ Dr , let
ϕ0(z) = z

and
ϕ1(z) = (f(z))

1
k (ϕ′1(0) = 1).

Similarly, define complex analytic maps ϕn : Dr → C for n = 1, 2, · · · by

ϕn(z) = (f ◦n(z))
1

kn (ϕ′n(0) = 1).
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As we shall prove in the next paragraph, ϕn converges uniformly in Dr as n→∞ .
If we set

ϕ = lim
n→∞ ϕn

then

ϕ ◦ f(z) = lim
n→∞ (f ◦n(f(z)))

1
kn = lim

n→∞ ((f ◦(n+1)(z))
1

kn+1 )k = (ϕ(z))k.

Hence, ϕ : Dr → ϕ(Dr) is the analytic coordinate transformation we need.
Let us verify the uniform convergence of ϕn in Dr . Define H : Dr → C by

H(z) =
ϕ1(z)

z
, H(0) = 1.

H is complex analytic and H(z) 6= 0 in Dr . For m > 1, let H(z)
1
m denote the branch

satisfying H(0)
1
m = 1 . As

ϕ1(z) = (f(z))
1
k = zH(z)

and
ϕn+1(z)

ϕn(z)
=

(f ◦(n+1)(z))
1

kn+1

(f ◦n(z))
1

kn
= (

(f(f ◦n(z)))
1
k

f ◦n(z)
)

1
kn

= (
ϕ1(f

◦n(z))
f ◦n(z)

)
1

kn = (H(f ◦n(z)))
1

kn ,

we have

ϕn+1(z) = z
n∏

i=0

ϕi+1(z)

ϕi(z)
= z

n∏

i=0

(H(f ◦i(z)))
1

ki .

Therefore

log(
ϕn+1(z)

z
) =

n∑

i=0

log(H(f ◦i(z))
1

ki ) =
n∑

i=0

1

ki
log(H(f ◦i(z))).

As f ◦i(z) ∈ Dr for z ∈ Dr, i = 0, 1, 2, · · ·, we see log(H(f ◦i(z))) is uniformly bounded
in Dr. Hence the convergence of ϕn is uniform in Dr.

2. Multi-dimensional Böttcher’s Theorem

In this section, we consider the case of dimension two. Similar theory holds for higher
dimensional cases.

Let F : C2 → C2 be complex analytic in a neighborhood of the origin, O = (0, 0) .
Suppose the origin is a fixed point of F , i.e., F (O) = O. Let

F (x, y) = (f1(x, y), f2(x, y)).

We assume that the x-axis, {(x, 0)}, and the y-axis {(0, y)} are invariant under F , i.e.,

f2(x, 0) = 0 and f1(0, y) = 0
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holds for all x and y near the origin. We assume

f1(x, 0) = x2 + h.o.t., f2(0, y) = y2 + h.o.t.

Moreover, we assume det(DF ) = 0 along the x-axis and the y-axis.
These assumptions are quite special and may appear to be quite artificial. However,

if we want F to be analytically conjugated to mappping (x, y) 7→ (x2, y2) , we must
impose at least infinitely many algebraic relations between the Taylor coefficients of F
in order to have a conjugacy map as formal power series.

Under the assumptions above, we can apply the Böttcher’s theorem to normalize the
mapping on the x-axis and the y-axis respectively, we can rewrite the mapping F in
the form

f1(x, y) = x2(1 + yg1(x, y))

f2(x, y) = y2(1 + xg2(x, y))

in a neighborhood of the origin, where g1(x, y) and g2(x, y) are complex analytic in
the neighborhood of the origin. Let ψ : C2 → C2 denote the “normal form” mapping
ψ(x, y) = (x2, y2) .

Theorem If F : C2 → C2 is in the form above, then there exists a complex
analytic diffeomorphism Φ : C2 → C2 defined in a neighborhood of the origin satisfying

Φ(0, 0) = (0, 0), DΦ(0,0) =

(
1 0
0 1

)

such that
Φ ◦ F = ψ ◦ Φ

holds near the origin.

Proof Since

DFO =

(
0 0
0 0

)
,

there exists a neighborhood U ⊂ C2 of the origin, satisfying closure(F (U)) ⊂ U and
that for any (x, y) ∈ U , limn→∞ F ◦n(x, y) = O holds. Moreover, we can assume

|yg1(x, y)| < 1

2
, |xg2(x, y)| < 1

2

for all (x, y) ∈ U . We shall denote the components of F ◦n as

F ◦n(x, y) = (F ◦n1 (x, y), F ◦n2 (x, y)) = (xn, yn).

First, let us construct the first component Φ1 of Φ . Let ϕ0(x, y) = x and define
ϕn(x, y) : U → C by

ϕn(x, y) = (F ◦n1 (x, y))
1

2n

for n = 1, 2, · · ·. Here, we choose the branch of the right hand side satisfying ∂ϕn

∂x
(O) = 1 .

As F maps the y-axis into itself, ϕn is complex analytic in the neighborhood. Let us
verify that ϕn converges uniformly in U . We see

ϕn+1(x, y)

ϕn(x, y)
=

(F
◦(n+1)
1 (x, y))

1
2n+1

(F ◦n1 (x, y))
1

2n
= (

(f1(F
◦n(x, y)))

1
2

F ◦n1 (x, y)
)

1
2n
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= (
(f1(xn, yn))

1
2

xn
)

1
2n = (

(x2
n(1 + yng1(xn, yn)))

1
2

xn
)

1
2n = (1 + yng1(xn, yn))

1
2n+1 .

As |yg1(x, y)| < 1
2

holds in the neighborhood U ,

ϕn+1(x, y) = x
n∏

j=0

(1 + yjg(xj, yj))
1

2j+1

is uniformly convergent in U , where (x0, y0) = (x, y) . Hence, by setting

lim
n→∞ϕn = Φ1 ,

Φ1 is complex analytic in U and satisfies the function equation

Φ1 ◦ F = Φ2
1.

Similarly, the second component Φ2 can be defined. Therefore, by setting

Φ(x, y) = (Φ1(x, y),Φ2(x, y)),

the function equation
Φ ◦ F = ψ ◦ Φ

holds near the origin.

Note that a similar theorem holds for higher degree cases as the following.

Theorem Let F : C2 → C2 be a complex analytic mapping defined near the
origin. Suppose F is of the form

F (x, y) = (xk(1 + yh1(x, y)), y
p(1 + xh2(x, y)))

where k, p ≥ 2 , and h1(x, y) and h2(x, y) are complex analytic near the origin. Then
there exists a complex analytic change of coordinates Φ : C2 → C2 around the origin
with

Φ(0, 0) = (0, 0), DΦO =

(
1 0
0 1

)

such that
Φ ◦ F = Ψ ◦ Φ

holds in a neighborhood of the origin, where Ψ(x, y) = (xk, yp) .

3. Super-Stable Manifold

Let F : C2 → C2 be complex analytic in a neighborhood of the origin and suppose
the origin is a fixed point of F , i.e., F (O) = O. Fixed point is said to be of super-saddle
type if one the eigenvalues of the Jacobian matrix at the fixed point is zero and the other
eigenvalue, say b , is greater than one in modulus. We assume O is a super-saddle type
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fixed point with eigenvalues 0 and b ( |b| > 1 ). We may assume that the Jacobian
matrix of F at O is diagonal and of the form

DFO =

(
0 0
0 b

)
.

We may assume that the y-axis coinsides with the unstable manifold of O , and

F (0, y) = (0, by +O(y2))

holds near the origin. This is always possible by taking an appropriate system of co-
ordinates, since the unstable manifold corresponding to the eigenvalue b is a complex
analytic curve passing by the fixed point of super-saddle type [4],[5]. Furthermore, we
assume

F (x, 0) = (x2 +O(x3), O(x2))

on the x-axis. Finally, we assume the singular locus coinsides with the y-axis, i.e.,
{det(DF ) = 0} = {0} × C in the neighborhood of the origin.

Theorem If F : C2 → C2 satisfies the assumptions above, there exists a complex
analytic embedding σ : D → C2 defined in a neighborhood of the origin of the unit disk
D = {ζ ∈ C | |ζ| < 1} satisfying σ(0) = O and Dσ0 = (1, 0) such that F ◦σ(ζ) = σ(ζ2)
holds in the neighborhood of the origin. This embedding is unique in the sense that if
two such embeddings exist, they are identical in a neighborhood of the origin.

Let us call the image of this embedding the (local) super-stable manifold. The image
σ(D) consists of points which are attracted by O.

Proof By a complex analytic change of coordinates with respect to the y-coordinate
if necessary, we can assume F is linear on the y-axis, i.e.,

F (0, y) = (0, by).

By applying the Böttcher’s theorem to the x-coordinate, we can assume

F (x, 0) = (x2, O(x2)).

Then, F (x, y) can be written in the form

F (x, y) = (F1(x, y), F2(x, y)) = (x2(1 + g1(x, y)), by + xg2(x, y)),

where g1(x, y) and g2(x, y) are complex analytic functions defined in a neighborhood
of the origin satisfying g1(x, 0) = 0 , and g2(0, 0) = 0 .

For r0 > 0 and u > 0 , let

Dr0 = {x ∈ C | |x| < r0}, Du = {y ∈ C | |y| < u}.

We assume

0 < r0 <
1

4
, 0 < u < 1
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and F is complex analytic in Dr0 × Du . Moreover, we assume m1, m2, M1, M2 are
finite where

m1 = sup
(x,y)∈Dr0×Du

|g1(x, y)|, m2 = sup
(x,y)∈Dr0×Du

|g2(x, y)|,

M1 = sup
(x,y)∈Dr0×Du

|∂g1

∂y
(x, y)|, M2 = sup

(x,y)∈Dr0×Du

|∂g2

∂y
(x, y)|.

Next, let β = |b| and let

r = min(r0,
1

2(1 +m1)
,

(β − 1)u

2m2

,
β − 1

16uM1

,
β − 1

4M2

).

Then we have F1(x, y) ∈ D r
2

for (x, y) ∈ Dr ×Du. In fact,

|F1(x, y)| = |x2(1 + g1(x, y))| < r2(1 +m1) <
r

2
.

Let
X = {ϕ : Dr → Du}

denote the space of complex analytic functions of Dr into Du equiped with the supremum
norm

‖ϕ‖ = sup
x∈Dr

|ϕ(x)|.

For a given ϕ ∈ X , consider a function equation with respect to ψ :

F2(x, ψ(x)) = ϕ(F1(x, ψ(x))).

As we shall prove in the following paragraphs, function ψ ∈ X is uniquely determined
as an implicit function. Define a “graph transform” Γ : X → X by Γ(ϕ) = ψ .

For a given ϕ ∈ X and x ∈ Dr , there exists a unique y ∈ Du satisfying

F2(x, y) = ϕ(F1(x, y)).

This fact is proved as follows. Let

h(y) = F2(x, y)− ϕ(F1(x, y)).

As a modified Newton’s method to solve equation h(y) = 0 , consider an iterative
procedure

N(y) = y − 1

b
h(y) = − 1

b
(xg2(x, y)− ϕ(F1(x, y))).

Then, as ϕ(F1(x, y)) ∈ Du if y ∈ Du , we see

|N(y)| ≤ 1

β
(|xg2(x, y)|+ |ϕ(F1(x, y))|)

<
1

β
(rm2 + u) ≤ 1

β
(
β − 1

2
u+ u) =

β + 1

2β
u < u
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Hence N(y) ∈ Dβ+1
2β

u ⊂ Du .

Next, let us verify that N : Du → Du is a contraction mapping. If y1, y2 ∈ Du , then

N(y1)−N(y2) = − 1

b
(x(g2(x, y1)− g2(x, y2)) + (ϕ(F1(x, y1))− ϕ(F1(x, y2)))).

On the other hand, we have

|g2(x, y1)− g2(x, y2)| = |
∫ y1

y2

∂g2

∂y
(x, y)dy| ≤ M2|y1 − y2|

and

|ϕ(F1(x, y1))− ϕ(F1(x, y2))| = |
∫ y1

y2
ϕ′(F1(x, y))

∂F1

∂y
(x, y)dy|

≤ 4u

r
r2M1|y1 − y2| = 4urM1|y1 − y2|.

Here, we used the fact that |ϕ′(z)| ≤ 4u
r

for z ∈ D r
2
. Therefore we obtain

|N(y1)−N(y2)| ≤ 1

β
(rM2 + 4urM1)|y1 − y2|

≤ 1

β
(
β − 1

4
+
β − 1

4
)|y1 − y2| =

β − 1

2β
|y1 − y2| < 1

2
|y1 − y2|,

which shows that N : Du → Du is a contraction mapping. Hence, the unique fixed
point of N yields the unique solution of h(y) = 0 in Du. By setting y = ψ(x) for
each x ∈ Dr , we obtain a function ψ : Dr → Du . Note that |ψ(x)| ≤ β+1

2β
u < u. As

ψ is defined as an implicit function, ψ is complex analytic. Thus the existence and
uniqueness of ψ = Γ(ϕ) is proved.

Next, let us prove that the graph transform Γ : X → X is a contraction mapping
with respect to the norm

‖ϕ‖ = sup
x∈Dr

|ϕ(x)|.

For ϕ1, ϕ2 ∈ X , let ψ1 = Γ(ϕ1) and ψ2 = Γ(ϕ2) . For x ∈ Dr ,

|F2(x, ψ1(x))− F2(x, ψ2(x))| = |b(ψ1(x)− ψ2(x)) + x(g2(x, ψ1(x))− g2(x, ψ2(x)))|

≥ |b(ψ1(x)− ψ2(x))| − |x
∫ ψ1(x)

ψ2(x)

∂g2

∂y
(x, y)dy|

≥ β|ψ1(x)− ψ2(x)| − |x|M2|ψ1(x)− ψ2(x)|
≥ (β − rM2)|ψ1(x)− ψ2(x)|.

On the other hand,
|ϕ1(F1(x, ψ1(x)))− ϕ2(F1(x, ψ2(x)))|

≤ |ϕ1(F1(x, ψ1(x)))− ϕ2(F1(x, ψ1(x)))| + |ϕ2(F1(x, ψ1(x)))− ϕ2(F1(x, ψ2(x)))|

≤ ‖ϕ1 − ϕ2‖ + |
∫ ψ1(x)

ψ2(x)
ϕ′2(F1(x, y))

∂F1

∂y
(x, y)dy|

≤ ‖ϕ1 − ϕ2‖ + 4urM1|ψ1(x)− ψ2(x)|.
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As ψ1 = Γ(ϕ1) and ψ2 = Γ(ϕ2) , we have

F2(x, ψ1(x)) = ϕ1(F1(x, ψ1(y))),

F2(x, ψ2(x)) = ϕ2(F1(x, ψ2(y))).

Hence by combining the two inequalities above, we obtain

(β − rM2 − 4urM1)|ψ1(x)− ψ2(x)| ≤ ‖ϕ1 − ϕ2‖ .

By noting that

β − r(M2 + 4uM1) ≥ 1 + β

2
> 1 ,

and that these inequalities hold for all x ∈ Dr, we conclude that

‖ψ1 − ψ2‖ ≤ 2

1 + β
‖ϕ1 − ϕ2‖ .

Therefore, the graph transform Γ : X → X is a contraction mapping. As uniformly
convergent sequence of complex analytic functions has a complex analytic limit function,
the graph transform Γ has a unique fixed point in X . Let ϕ0 denote the fixed point
of Γ . From the conditions we posed on F , we have

ϕ0(0) = 0, ϕ′0(0) = 0 .

Finally, we define the embedding σ : D → C2 as follows. Let W = {(x, ϕ0(x)) |
x ∈ Dr} be the graph of ϕ0. W is a portion of a complex analytic curve passing by
the origin O of C2, tangent to the x-axis at O, and invariant under F . We use
the coordinate x as the local coordinate of W around the origin. An analytic map
ρ : W → W is induced from F by ρ(x) = F1(x, ϕ0(x)) . As is easily verified, we have

ρ(0) = 0, ρ′(0) = 0, ρ′′(0) = 2 .

We can apply the Böttcher’s theorem to ρ : W → W . Thus, we obtain a complex analytic
mapping σ : D → W defined in a neighborhood of the origin with σ(0) = 0, σ′(0) = 1 ,
which satisfy the function equation

ρ ◦ σ(ζ) = σ(ζ2).

As ρ is the restriction of F to W , this analytic map σ gives the embedding of the
theorem.

Clearly, if (x, y) ∈ W , then

lim
n→∞F

◦n(x, y) = O.

For (x, y) ∈ Dr ×Du , we have

|F2(x, y)− ϕ0(F1(x, y))|

≥ |F2(x, y)− F2(x, ϕ0(x))| − |F2(x, ϕ0(x))− ϕ0(F1(x, y))|
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≥ (β − rM2)|y − ϕ0(x)| − |ϕ0(F1(x, ϕ0(x)))− ϕ0(F1(x, y))|

≥ (β − rM2 − 4urM1)|y − ϕ0(x)| ≥ 1 + β

2
|y − ϕ0(x)| .

Therefore, the “distance from W”, measured by |y−ϕ0(x)|, grows geometrically. Hence,
if y 6= ϕ0(x) , then |F ◦n2 (x, y)| ≥ u for some n > 0 . Thus, the (local) super-stable
manifold W is the local stable set of the super-saddle point O . The global super-stable
set is defined as the union of the preimages of W .

Appendix Numerical Experiments

Assume F : C2 → C2 is a globally defined complex analytic mapping and satisfies the
conditions of section 2. Let A(O) denote the basin of attraction of the super-attractive
fixed point, i.e.,

A(O) = {(x, y) ∈ C2 | lim
n→∞F

◦n(x, y) = O}.
Then, if possible, by extending analytically the generalized Böttcher’s function, Φ , of
section 2, we would obtain a complex analytic mapping

Φ : A(O) → D×D.

Numerical experiments strongly suggest the cases of A(O) with a “fractal” boundary.
All pictures of this appendix represent rectangular regions in the complex line {(x, 0.5)}.

Example 1. Figures 1 to 3 show sections of the attractive basin of complex dynamical
system defined by

F (x, y) = (x2 − 4x2y, y2 + 2.7
√−1xy2) .

The x-coordinates of the rectangular regions are as follows.
Fig. 1. : − 1.2 ≤ <(x) ≤ 1.2, − 0.96 ≤ =(x) ≤ 0.96
Fig. 2. : − 0.77 ≤ <(x) ≤ −0.67, 0.46 ≤ =(x) ≤ 0.54
Fig. 3. : − 0.732 ≤ <(x) ≤ −0.7276, 0.4898 ≤ =(x) ≤ 0.4962
Note that the x-axis and the y-axis are invariant under F and the Julia sets are

unit cicles of the axes. The number of iterations needed before the orbit falls in a small
ball centered at O is used for the color coding.

Example 2. Figures 4 to 6 are for

F (x, y) = (x2 − 4x2y + x3, y2 + 2.7
√−1xy2).

The rectangular regions represented by the pictures are as follows.
Fig. 4. : − 0.9 ≤ <(x) ≤ 1.5, − 0.96 ≤ =(x) ≤ 0.96
Fig. 5. : 0.2 ≤ <(x) ≤ 0.4, 0.62 ≤ =(x) ≤ 0.78
Fig. 6. : 1.161 ≤ <(x) ≤ 1.187, − 0.05 ≤ =(x) ≤ −0.28

Example 3. Figures 7 to 9 are for

F (x, y) = (x2 − 4x2y + x3, y2 + 2.7
√−1xy2 − y3).

The regions are as follows.
Fig. 7. : − 0.9 ≤ <(x) ≤ 1.5, − 0.96 ≤ =(x) ≤ 0.96
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Fig. 8. : 0.375 ≤ <(x) ≤ 0.385, 0.64 ≤ =(x) ≤ 0.648
Fig. 9. : 1.22 ≤ <(x) ≤ 1.34, 0.195 ≤ =(x) ≤ 0.285
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