Twist dynamics of rational surface Shigehiro Ushiki, Kyoto #### **Abstract** Family of birational maps $f_a(x,y) = (y, \frac{y+a}{x})$ extends to a family of surface automorphisms $F_a: X_a \to X_a$. Rational surface X_a is constructed by blowing-up the complex projective space \mathbb{P}^2 in 9 points. If $a \neq 0, 1$, F_a is of infinite order. The degree of $F_a^{\circ n}$ grows quadratically. The entropy of these automorphisms are zero. It is known that these automorphisms have invariant foliations (with singularities) with elliptic leaves. In this note, we prove that there exists an F_a which has a quasi-periodic orbit dense in an elliptic curve. #### Contents - 1. Birational automorphism - 2. Surface automorphism - 3. Invariant function - 4. Invariant curves - 5. Elliptic curves - 6. Translation in elliptic curve - 7. Periods of elliptic curve - 8. Dynamics near fixed points - 9. Twist dynamics - 10. Weierstraß ℘-function # 1. Birational automorphism ## Birational automorphism Define a family of birational automorphisms $f_a: \mathbb{C}^2 \to \mathbb{C}^2$, for parameter $a \in \mathbb{C}$, by $$f_a(x,y)_{\mathbb{C}^2}=(y,\frac{y+a}{x})_{\mathbb{C}^2}.$$ In homogeneous coordinates, with $(x,y)_{\mathbb{C}^2} \leftrightarrow [1:x:y]$, $$\tilde{f}_a[t:\tilde{x}:\tilde{y}] = [t\tilde{x}:\tilde{x}\tilde{y}:t(\tilde{y}+at)].$$ By lifting $ilde f_a$ to a homogenious polynomial map $ilde { ilde f_a}:\mathbb{C}^3 o\mathbb{C}^3$, $$D\tilde{\tilde{f}}_{a} = \begin{pmatrix} \tilde{x} & t & 0 \\ 0 & \tilde{y} & \tilde{x} \\ \tilde{y} + 2at & 0 & t \end{pmatrix},$$ we have det $D\tilde{\tilde{f}}_a = 2t\tilde{x}(\tilde{y} + at)$. ## Critical locus and points of indeterminacy The Jacobian det $D\tilde{\tilde{f}}_a=2t\tilde{x}(\tilde{y}+at)$ vanishes in three exceptional curves : $$\Sigma_0=\{t=0\}_{\mathbb{P}^2}, \quad \ \Sigma_y=\{\tilde{x}=0\}_{\mathbb{P}^2}, \quad \ \Sigma_q=\{\tilde{y}+\mathsf{a}t=0\}_{\mathbb{P}^2}.$$ $\tilde{f}_a[t:\tilde{x}:\tilde{y}]=[t\tilde{x}:\tilde{x}\tilde{y}:t(\tilde{y}+at)]$ has three points of indeterminacy : $$e_x = [0:1:0], \quad e_y = [0:0:1], \quad p_* = [1:0:-a].$$ # 2. Surface automorphism #### Surface automorphism THEOREM [Bedford, Kim, 2006] If $a \neq 0, 1$, there is a complex manifold X_a obtained by blowing up \mathbb{P}^2 at 9 points, and a biholomorphic map $F_a: X_a \to X_a$ induced by f_a . The degree of $F_a^{\circ n}$ grows quadratically in n. It is known that these automorphisms have invariant foliations by elliptic curves [Gizatullin 1980]. The entropy of these maps are all zero. ## First blowup Exceptional curves are mapped as: $$\Sigma_y \Rightarrow e_y \Rightarrow \Sigma_0 \Rightarrow e_x \Rightarrow \Sigma_x$$ where $\Sigma_x = \{ ilde{y} = 0 \}_{\mathbb{P}^2}$, and $ilde{f_a}(\Sigma_x) = \Sigma_y$. Blowup \mathbb{P}^2 in e_x and e_y to obtain a surface X_1 with projection $\operatorname{pr}_1:X_1\to\mathbb{P}^2$ and exceptional fibers $$E_x = \operatorname{pr}_1^{-1}(e_x)$$ and $E_y = \operatorname{pr}_1^{-1}(e_y)$. We have a cycle of curves of period 5. $$\Sigma_y \Rightarrow E_y \Rightarrow \Sigma_0 \Rightarrow E_x \Rightarrow \Sigma_x \Rightarrow \Sigma_y.$$ #### Coordinates in exceptional fibers We need coordinates near the exceptional fibers. Let $(u, v)_{E_y}$ denote a local coordinate system of X_1 near E_y with $E_y = \{u = 0\}_{E_y}$ and $$(u,v)_{E_v} \leftrightarrow [u:uv:1].$$ Near Σ_y , f_a extends to a holomorphic map into X_1 , except at p_* . $$f_a(x,y)_{\mathbb{C}^2}=(\frac{x}{y+a},y)_{E_y}.$$ So, $$F_1(0,y)_{\mathbb{C}^2}=(0,y)_{E_y}.$$ Near E_y , $$\tilde{f}_{a}(u,v)_{E_{y}} = \tilde{f}_{a}[u:uv:1] = [uv:v:1+au].$$ So, $$F_1(0,v)_{E_v} = [0:v:1] \in \Sigma_0.$$ Near Σ_0 , $$\tilde{f}_a[t:x:1] = [t:1:\frac{t(1+at)}{x}].$$ With coordinates $(u, v)_{E_x} \leftrightarrow [u:1:uv]$, we have $$F_1[t:x:1] = (t, \frac{1+at}{x})_{E_x}, \text{ and } F_1[0:x:1] = (0, \frac{1}{x})_{E_x}.$$ Finally, $(u, v)_{E_v}$ is mapped as $$\tilde{f}_a[u:1:uv] = [1:v:u(v+a)].$$ So, $$F_1(0,v)_{E_x} = [1:v:0] \leftrightarrow (v,0)_{\mathbb{C}^2} \in \Sigma_x.$$ ## Second blowup $F_1: X_1 \to X_1$ has an exceptional curve (strict transform of) $$\Sigma_q = \{ ilde{y} + at = 0 \}_{\mathbb{P}^2}$$ and a point of indeterminacy $$p_* = [1:0:-a] \leftrightarrow (0,-a)_{\mathbb{C}^2}.$$ Exceptional curve Σ_q is mapped to $$q = [1:-a:0] \leftrightarrow (-a,0)_{\mathbb{C}^2}.$$ Set $$q_k = F_1^{\circ k}(q)$$ for $k = 0, 1, 2, \dots, 6$. Then $q_6 = p_*$. $$egin{aligned} q_0 &= q = (-a,0)_{\mathbb{C}^2} \in \Sigma_q, \ q_1 &= (0,-1)_{\mathbb{C}^2} \in \Sigma_y, \ q_2 &= (0,-1)_{E_y} \in E_y, \ q_3 &= [0:-1:1] \in \Sigma_0, \ q_4 &= (0,-1)_{E_x} \in E_x, \ q_5 &= (-1,0)_{\mathbb{C}^2} \in \Sigma_x, \end{aligned}$$ We blow up X_1 in 7 points q_0, q_1, \ldots, q_6 , to obtain a surface X_a with projection $$\operatorname{pr}_2: X_a \to X_1,$$ and denote the exceptional fibers as $$\operatorname{pr}_{2}^{-1}(q_{k}) = Q_{k}, \quad k = 0, 1, \cdots, 6.$$ $F_1: X_1 \to X_1$ induces an automorphism $F_a: X_a \to X_a$. #### Around exceptional fibers Let $(\xi,\eta)_{Q_0}$ be a local coordinate of X_a near exceptional fiber Q_0 , given by $(\xi,\eta)_{Q_0}\leftrightarrow [1:-a+\xi:\xi\eta]$. Near Σ_q , $$F_a[1:x:y] = [x:xy:y+a] = [1:-a+(y+a):\frac{y+a}{x}] \leftrightarrow (y+a,\frac{1}{x})_{Q_0}.$$ Near the exceptional fiber $Q_6 = \mathrm{pr}^{-1}(p_*)$, take local coordinates $$(\xi,\eta)_{Q_6} \leftrightarrow [1:\xi\eta:-a+\xi].$$ Recall the coordinates near E_y , given by $(u, v)_{E_y} \leftrightarrow [u : uv : 1]$. $$F_a(\xi,\eta)_{Q_6}=(\eta,-a+\xi)_{E_y}.$$ ## 3. Invariant function #### Invariant function It is known that rational function $$r_a(x,y) = (1+\frac{1}{x})(1+\frac{1}{y})(x+y+a)$$ is invariant under f_a [Lyness 1942, 1945, 1961]. We understand this function as $$r_a(x,y) = \frac{(x+1)(y+1)(x+y+a)}{xy}.$$ PROPOSITION. If $a \neq 0, 1$, then r_a lifts to a holomorphic map $$\tilde{r}_a:X_a\to\hat{\mathbb{C}}.$$ #### Proof of proposition Invariant function r_a has indeterminate points in \mathbb{C}^2 . $$egin{align} q_0 &= (-a,0)_{\mathbb{C}^2}, \quad q_1 &= (0,-1)_{\mathbb{C}^2}, \ \ q_5 &= (-1,0)_{\mathbb{C}^2}, \quad q_6 &= p_* &= (0,-a)_{\mathbb{C}^2}. \end{array}$$ These points are blown up and \tilde{r}_a is holomorphic near the exceptional fibers. For example, in local coordinates $(\xi,\eta)_{Q_0}\leftrightarrow (-a+\xi,\xi\eta)_{\mathbb{C}^2}$, near Q_0 $$\tilde{r}_a(\xi,\eta)_{Q_0} = \frac{(-a+\xi+1)(\xi\eta+1)(\eta+1)}{(-a+\xi)\eta}.$$ Especially, $$\widetilde{r_a}(0,\eta)_{Q_0}= rac{(1-a)(\eta+1)}{-a\eta}.$$ In the line at infinity $\Sigma_0 \setminus \{[0:1:0], [0:0:1], [0:-1:1]\}$, $\tilde{r_a}[0:x:y] = \infty$. Near exceptional fiber E_y with coordinates $(u, v)_{E_y} \leftrightarrow [u:uv:1]$, $$\tilde{r}_{a}(u,v)_{E_{y}} = \frac{(v+1)(u+1)(uv+1+au)}{uv}.$$ So, $\tilde{r}_{\mathsf{a}}(0,v)_{E_{\mathsf{y}}}=\infty$ unless v=-1. Near Q_2 , take local coordinates $(\xi, \eta)_{Q_2}$ by $$(\xi,\eta)_{Q_2} \leftrightarrow (\xi,-1+\xi\eta)_{E_y} \leftrightarrow [\xi:\xi(-1+\xi\eta):1].$$ Then $$\tilde{r}_a(\xi,\eta)_{Q_2} = \frac{\eta(\xi+1)(-\xi+\xi^2\eta+1+a\xi)}{-1+\xi\eta},$$ and $$\tilde{r}_a(0,\eta)_{Q_2}=-\eta.$$ Near other exceptional fibers, \tilde{r}_a is defined similarly and gives a holomorphic map $$\tilde{r}_a: X_a \to \hat{\mathbb{C}}.$$ PROPOSITION. $\tilde{r_a}$ is invariant under F_a . $$\tilde{r}_a \circ F_a = \tilde{r}_a$$. PROPOSITION. \tilde{r}_a is non-constant in each of $$\Sigma_0, E_x, E_y, Q_0, Q_1, Q_2, Q_3, Q_4, Q_5, Q_6.$$ PROPOSITION. Critical points of \tilde{r}_a (or $\frac{1}{\tilde{r}_a}$) are fixed point or periodic point of F_a . PROOF. Number of critical points is finite. ## Critical points In $$\mathbb{C}^2$$, $$\frac{\partial r_{\mathsf{a}}}{\partial x} \; = \; \frac{\big(y+1\big)(x^2-y-\mathsf{a}\big)}{x^2y}, \quad \frac{\partial r_{\mathsf{a}}}{\partial y} \; = \; \frac{\big(x+1\big)(y^2-x-\mathsf{a}\big)}{xy^2},$$ and $$\frac{\partial}{\partial x}(\frac{1}{r_a}) = \frac{-y(x^2 - y - a)}{(y+1)(x+1)^2(x+y+a)^2},$$ $$\frac{\partial}{\partial y}(\frac{1}{r_a}) = \frac{-x(y^2 - x - a)}{(x+1)(y+1)^2(x+y+a)^2}.$$ #### Critical points are $$\begin{split} &(-1,-1)_{\mathbb{C}^2}, (-1,1-a)_{\mathbb{C}^2}, (1-a,-1)_{\mathbb{C}^2}, & \text{(period 3)}, \\ &(\frac{1}{2}\pm\sqrt{a+\frac{1}{4}},\frac{1}{2}\mp\sqrt{a+\frac{1}{4}})_{\mathbb{C}^2}, & \text{(fixed points)}, \\ &(-\frac{1}{2}\pm\sqrt{a-\frac{3}{4}},-\frac{1}{2}\mp\sqrt{a-\frac{3}{4}})_{\mathbb{C}^2}, & \text{(period 2)}, \\ &(0,0)_{\mathbb{C}^2}, (0,0)_{E_y}, (0,\infty)_{E_y}, (0,\infty)_{E_x}, (0,0)_{E_x}, & \text{(period 5)}. \end{split}$$ #### Critical values $$\sigma_3=0,$$ (period 3 cycle), $\sigma_5=\infty,$ (period 5 cycle), $\sigma_2=a-1,$ (period 2 cycle), $\sigma_{1\pm}=a+5- rac{1}{2a}\pm(4+ rac{1}{a})\sqrt{a+ rac{1}{4}},$ (fixed oints). The critical values of fixed point can be expressed as $$\sigma_1 = \frac{(x_0+1)^3}{x_0}, \qquad x_0^2 = x_0 + a.$$ ## 4. Invariant curves #### Invariant curves For $\sigma \in \hat{\mathbb{C}}$, let C_{σ} denote invariant cubic curve in X_a defined by $$C_{\sigma} = \tilde{r_a}^{-1}(\sigma).$$ C_{σ_3} consists of three lines: $$\{x+y+a=0\}_{\mathbb{C}^2},\quad \{y+1=0\}_{\mathbb{C}^2},\quad \{x+1=0\}_{\mathbb{C}^2},$$ which are mapped cyclically. $$(\zeta,-1)_{\mathbb{C}^2}\mapsto (-1, rac{a-1}{\zeta})_{\mathbb{C}^2}\mapsto (rac{a-1}{\zeta}, rac{1-a}{\zeta}-a)_{\mathbb{C}^2}\mapsto (rac{1-a}{\zeta}-a,-1)_{\mathbb{C}^2}.$$ Eigenvalues at periodic point in the curve (and of the 3-cycle) are a-1 and $\frac{1}{a-1}$. C_{σ_2} consists of a line and a quadric which are mapped to each other by F_a . $${x+y+1=0}_{\mathbb{C}^2}, \quad {xy+x+y+a=0}_{\mathbb{C}^2}.$$ $$(\zeta, -\zeta -1)_{\mathbb{C}^2} \mapsto (-1-\zeta, -1+\frac{a-1}{\zeta})_{\mathbb{C}^2} \mapsto (-1+\frac{a-1}{\zeta}, \frac{1-a}{\zeta})_{\mathbb{C}^2}.$$ Eigenvalues of the 2-cycle are $\frac{1}{1-a}(a-\frac{1}{2}\pm\sqrt{a-\frac{3}{4}})$. C_{σ_5} consists of five "lines" $$\Sigma_x, \Sigma_y, E_y, \Sigma_0, E_x$$. which are mapped cyclically by F_a . $$(\zeta,0)_{\mathbb{C}^2}\mapsto (0, rac{a}{\zeta})_{\mathbb{C}^2}\mapsto (0, rac{a}{\zeta})_{E_y}\mapsto [0: rac{a}{\zeta}:1]\mapsto \\ \mapsto (0, rac{\zeta}{a})_{E_x}\mapsto (rac{\zeta}{a},0)_{\mathbb{C}^2}\mapsto (0, rac{a^2}{\zeta})_{\mathbb{C}^2}\mapsto\cdots.$$ Eigenvalues of 5-cycle are a^{-1} and a. C_{σ_1} is a Riemann sphere with a node. For fixed point $$(x_0,x_0)_{\mathbb{C}^2}$$, $(x_0^2=x_0+a)$, set $x=x_0+u$, $y=y_0+v$. $${uv(u+v)+(x_0+1)(u^2-\frac{1}{x_0}uv+v^2)=0}.$$ Eigenvalues of fixed point $(x_0, x_0)_{\mathbb{C}^2}$ are $$\frac{1}{2x_0}(1\pm\sqrt{1-4x_0}).$$ ## 5. Elliptic curves ### Elliptic curves If $$\sigma \in \hat{\mathbb{C}} \setminus \{0, \infty, a-1, \sigma_{1+}, \sigma_{1-}\}$$, where $\sigma_{1\pm} = \frac{(x_{\pm}+1)^3}{x_{\pm}}$ with $x_{\pm} = \frac{1}{2} \pm \sqrt{a + \frac{1}{4}}$, then C_{σ} is an elliptic curve defined by $$P_{\sigma}(x,y) = (x+1)(y+1)(x+y+a) - \sigma xy = 0.$$ Remark $P_{\sigma}(x,y)dx \wedge dy$ is an automorphic form of weight -1, and $\frac{dx \wedge dy}{P_{\sigma}(x,y)}$ is invariant under f_a^* . $$P_{\sigma}(f_{\mathsf{a}}(x,y)) = P_{\sigma}(x,y) \det Df_{\mathsf{a}}(x,y).$$ $$f_a^* \left(\frac{dx \wedge dy}{P_\sigma(x, y)} \right) = \frac{dx \wedge dy}{P_\sigma(x, y)}.$$ The Jacobian of periodic point is always equal to 1. #### Riemann surface Let $$s = \frac{x+y}{2}, \quad t = \frac{x-y}{2}.$$ Then x+y=2s, $xy=s^2-t^2$. From equation $P_{\sigma}(x,y)=0$, we get (*) $$(s-\frac{\sigma-a}{2})t^2 = s^3+(2-\frac{\sigma-a}{2})s^2+(1+a)s+\frac{a}{2}$$. Note that when $s=\frac{\sigma-a}{2}$, the right hand side is equal to $\frac{1}{2}\sigma(\sigma-(a-1))$, which does not vanish since we assumed $\sigma\neq 0, a-1$. Equation (*) defines a Riemann surface over s-plane. ### Near Q_3 #### Remark. For $s=\frac{\sigma-a}{2}$, the elliptic curve C_{σ} passes through a point in Q_3 . $$Q_3 = \operatorname{pr}^{-1}(q_3), \quad q_3 = [0:-1:1] \in \Sigma_0.$$ Near Q_3 , take a local coordinate $(\xi,\eta)_{Q_3}$ given by $$(\xi,\eta)_{Q_3} \leftrightarrow [\xi:-1:1+\xi\eta].$$ Note that $s = \frac{x+y}{2} = \frac{\eta}{2}$, if $\xi \neq 0$. $$\tilde{r}_a(0,\eta)_{Q_3} = \eta + a = \sigma$$ gives $\eta = \sigma - a$. From $$rac{ ilde{P}_{\sigma}(\xi,\eta)_{Q_3}}{\xi}=(-1+\xi)(1+\xi\eta+\xi)(\eta+a)+\sigma(1+\xi\eta)\ =\ 0,$$ we get a quadratic equation in ξ : $$(\eta + a)(\eta + 1)\xi^2 + \eta(\sigma - a - \eta)\xi + \sigma - a - \eta = 0,$$ whose discriminant is $$D = (\sigma - a - \eta)(\eta^2(\sigma - a - \eta) - 4(\eta + a)(\eta + 1)).$$ If $\eta=\sigma-a$ then D=0. If η is near $\sigma-a$ and $\eta\neq\sigma-a$, then $D\neq0$ (because $\sigma\neq a-1$). This shows $s = \frac{\sigma - a}{2}$ is a branch point of the Riemann surface. Near Q_2 with local coordinates $$(\xi,\eta)_{Q_2} \leftrightarrow (\xi,-1+\xi\eta)_{E_y} \leftrightarrow [\xi:\xi(-1+\xi\eta):1],$$ we get $$\frac{\tilde{P}_{\sigma}(\xi,\eta)_{Q_2}}{\xi^2} = \sigma + \eta + (a-\sigma)\xi\eta + (a-1)\xi^2\eta + \xi^2\eta^2 + \xi^3\eta^2.$$ By the implicit function theorem, C_{σ} is regular at $(0, -\sigma)_{Q_2}$. Similarly, near Q_4 , C_{σ} passes through $(0, -\sigma)_{Q_4}$ with local coordinates $$(\xi,\eta)_{Q_A} \leftrightarrow (\xi,-1+\xi\eta)_{E_{\lambda}} \leftrightarrow [\xi:1:\xi(-1+\xi\eta)].$$ ### Branch points The Riemann surface defined by equation (*) has 4 branch points. $$s = \frac{\sigma - a}{2}$$, solutions of $s^3 + (2 - \frac{\sigma - a}{2})s^2 + (1 + a)s + \frac{a}{2} = 0$. (In our case, these 4 points are distinct. By Riemann-Hurwiz formula, C_{σ} is a torus.) Theorem(Abel, Jacobi) There exists a $au \in \mathbb{H}$, and a holomorphic isomorphism $$AJ: \mathbb{C}/\Lambda_{\tau} \to C_{\sigma}$$, where $\Lambda_{\tau} = \{n + m\tau \mid n, m \in \mathbb{Z}\}.$ # 6. Translation in elliptic curve ### Translation in elliptic curves For $\tau \in \mathbb{H}$, let \mathbb{T}_{τ} denote the torus $\mathbb{C}/\Lambda_{\tau}$. For $\mu \in \mathbb{C}$, **translation** by μ in \mathbb{T}_{τ} is defined as $$T_{\tau,\mu}: \mathbb{T}_{ au} o \mathbb{T}_{ au}, \quad z \mapsto z + \mu \pmod{\Lambda_{ au}}.$$ Suppose $\tau=\tau(\sigma)$ and $\mu=\mu(\sigma)$ depend holomorphically on σ . Let $\tau=u+iv$, $\mu=\xi+i\eta$. Define real functions $\varphi(\tau,\mu)$ and $\psi(\tau,\mu)$ by $$\varphi(\tau,\mu) = \frac{\Im(\mu)}{\Im(\tau)} = \frac{\eta}{\nu},$$ $$\psi(\tau,\mu) = \frac{\Im(-\frac{\mu}{\tau})}{\Im(-\frac{1}{\tau})} = \frac{\Im(\mu\bar{\tau})}{\Im(\bar{\tau})} = \frac{u\eta - v\xi}{-v} = \xi - u\varphi(\tau,\mu).$$ Let $\Phi: (x,y) \mapsto (\varphi(\tau,\mu),\psi(\tau,\mu))$ be defined as $$(x,y)\mapsto \sigma=x+iy\mapsto (\tau(\sigma),\mu(\sigma))\mapsto (\varphi(\tau,\mu),\psi(\tau,\mu)).$$ Φ is real analytic with respect to $(x,y) \in \mathbb{R}^2$. Proposition A. $$\det D\Phi = -v(\varphi_x^2 + \varphi_y^2) = -\frac{v}{|\tau|^2}(\psi_x^2 + \psi_y^2).$$ PROOF. By Cauchy-Riemann formula, $$u_x = v_y, \quad u_y = -v_x, \quad \xi_x = \eta_y, \quad \xi_y = -\eta_x.$$ As $\psi = \xi - u\phi$ and $\varphi = \frac{\eta}{v}$, $$\psi_{x} = \xi_{x} - u_{x}\varphi - u\varphi_{x} = \eta_{y} - v_{y}\frac{\eta}{v} - u\varphi_{x}$$ $$= v\frac{v\eta_{y} - v_{y}\eta}{v^{2}} - u\varphi_{x} = v\varphi_{y} - u\varphi_{x}.$$ $$\psi_{y} = \xi_{y} - u_{y}\varphi - u\varphi_{y} = -\eta_{x} + v_{x}\frac{\eta}{v} - u\varphi_{y}$$ $$= v\frac{-v\eta_{x} + v_{x}\eta}{v^{2}} - u\varphi_{y} = -v\varphi_{x} - u\varphi_{y}.$$ Hence, $$\begin{split} \det \left(\begin{array}{cc} \varphi_x & \varphi_y \\ \psi_x & \psi_y \end{array} \right) &= \det \left(\begin{array}{cc} \varphi_x & \varphi_y \\ v\varphi_y - u\varphi_x & -v\varphi_x - u\varphi_y \end{array} \right) \\ &= \det \left(\begin{array}{cc} \varphi_x & \varphi_y \\ v\varphi_y & -v\varphi_x \end{array} \right) = -v(\varphi_x^2 + \varphi_y^2). \end{split}$$ And by $$\varphi_{\mathsf{x}} = \frac{1}{\mathsf{u}^2 + \mathsf{v}^2} (-\mathsf{u}\psi_{\mathsf{x}} - \mathsf{v}\psi_{\mathsf{y}}), \quad \varphi_{\mathsf{y}} = \frac{1}{\mathsf{u}^2 + \mathsf{v}^2} (\mathsf{v}\psi_{\mathsf{x}} - \mathsf{u}\psi_{\mathsf{y}}),$$ we have $$\det \left(\begin{array}{cc} \varphi_x & \varphi_y \\ \psi_x & \psi_y \end{array} \right) = -\frac{v}{u^2 + v^2} (\psi_x^2 + \psi_y^2).$$ This completes the proof of Proposition A. ## 7. Periods of elliptic curve ### Periods of elliptic curve If s_0, s_1, s_2, s_3 are branch points of Riemann surface C_σ over s-plane, then elliptic integral $$\int^s \frac{ds}{\sqrt{h(s)}}$$ defines a coordinate in a torus \mathbb{C}/Λ , where $$h(s) = (s - s_0)(s - s_1)(s - s_2)(s - s_3),$$ and $$\Lambda = \{ n\omega_1 + m\omega_2 \mid n, m \in \mathbb{Z} \}$$ with $$\omega_1 = \int_{\gamma_1} \frac{ds}{\sqrt{h(s)}}, \quad \omega_2 = \int_{\gamma_2} \frac{ds}{\sqrt{h(s)}}.$$ As $\pi(q_0)=-\frac{a}{2}$, and $\pi(q_1)=-\frac{1}{2}$, (by an appropriate choice of branch) $$\mu(\sigma) = \frac{1}{\omega_1} \int_{-\frac{a}{2}}^{-\frac{1}{2}} \frac{ds}{\sqrt{h(s)}}$$ gives the translation vector in torus $\mathbb{T}_{ au}$ with $$\tau(\sigma) = \frac{\omega_2}{\omega_1}.$$ Observe that τ and μ are (locally) holomorphic in σ . Take a real value a, with $-\frac{1}{4} < a < 0$, as an example. We fix a and suppress suffix a, in the followings. The surface automorphism $$f = f_a: (x, y) \mapsto (y, \frac{y+a}{x})$$ has real rational invariant function $$r(x,y) = r_a(x,y) = \frac{(x+1)(y+1)(x+y+a)}{xy}.$$ The branch points of the Riemann surface $C_{\sigma} = r^{-1}(\sigma)$ are the solutions of $h_{\sigma}(s) = 0$, where $$h_{\sigma}(s) = (s - \frac{\sigma - a}{2})(s^3 + (2 - \frac{\sigma - a}{2})s^2 + (1 + a)s + \frac{a}{2}).$$ From $h_{\sigma}(s) = 0$, we have $$\sigma = 2s + a$$ and $$\sigma = \frac{1}{s^2}(s+1)^2(2s+a).$$ From $\frac{\partial \sigma}{\partial s} = 0$, we have $$s = -1, \quad s = \frac{1}{2} \pm \sqrt{a + \frac{1}{4}}.$$ Recall that $-\frac{1}{4} < a < 0$. Let $$u_2 = \frac{1}{2} + \sqrt{a + \frac{1}{4}}, \quad v_0 = \frac{1}{2} - \sqrt{a + \frac{1}{4}}.$$ Then, $0 < -\frac{a}{2} < v_0 < \frac{1}{2} < u_2$. Let $$\sigma_u = \sigma(u_2) = \frac{(u_2+1)^3}{u_2}, \quad \sigma_v = \sigma(v_0) = \frac{(v_0+1)^3}{v_0}.$$ Let $u_0 < u_2 < u_3$ be the solutions of $h_{\sigma_u}(s) = 0$. $$u_0 = \frac{\sigma_u - a}{2} - 2 - 2u_2, \quad u_3 = \frac{\sigma_u - a}{2}.$$ Let $v_0 < v_2 < v_3$ be the solutions of $h_{\sigma_v}(s) = 0$. $$v_2 = \frac{\sigma_v - a}{2} - 2 - 2v_0, \quad v_3 = \frac{\sigma_v - a}{2}.$$ Suppose σ be $\sigma_u < \sigma < \sigma_v$, and let s_0, s_1, s_2, s_3 be the solutions for $h_{\sigma}(s) = 0$ with $$u_0 < s_0 < v_0 < s_1 < u_2 < s_2 < v_2, \quad u_3 < s_3 < v_3, \quad s_2 < s_3.$$ We have $$h_{\sigma}(s) = (s-s_0)(s-s_1)(s-s_2)(s-s_3).$$ Elliptic integral $$\int_{s_1}^s \frac{ds}{\sqrt{h_\sigma(s)}}$$ gives a coordinate in the elliptic curve. Periods are $$\omega_1 = 2 \int_{s_1}^{s_2} \frac{ds}{\sqrt{h_{\sigma}(s)}}, \qquad \omega_2 = 2 \int_{s_1}^{s_0} \frac{ds}{i\sqrt{-h_{\sigma}(s)}}.$$ Period ω_1 is real and positive. Period ω_2 is pure imaginary with positive imaginary part. By Abel-Jacobi theorem, this elliptic integral defines an isomorphism $$C_{\sigma} \to \mathbb{C}/\Lambda$$, where $$\Lambda = \{n\omega_1 + m\omega_2 \mid n, m \in \mathbb{Z}\}.$$ As $$q=(-a,0)$$, $f(q)=(0,-1)$, and $\pi(q)=-\frac{a}{2}$, $\pi(f(q))=-\frac{1}{2}$, translation vector μ_1 is given by $$\mu_1 = \int_{-\frac{a}{2}}^{-\frac{1}{2}} \frac{ds}{-\sqrt{h_{\sigma}(s)}}.$$ We have $$\tau = \tau(\sigma) = \frac{\omega_2}{\omega_1} \in \mathbb{H}, \quad \mu = \mu(\sigma) = \frac{\mu_1}{\omega_1} \in \mathbb{C}.$$ # 8. Dynamics near fixed points ### Dynamics near fixed points Under the assumption $-\frac{1}{4} < a < 0$, we have the following proposition. By abuse of notation, $\psi(\sigma) = \psi(\tau(\sigma), \mu(\sigma))$, $\psi(\tau, \mu) = \frac{\Im(-\frac{\mu}{\tau})}{\Im(-\frac{1}{\tau})}$. Proposition B. $$\lim_{\sigma\nearrow\sigma_{v}}\psi(\sigma)=0,\qquad \lim_{\sigma\searrow\sigma_{u}}\psi(\sigma)>0.$$ PROOF. As $-\frac{1}{4} < a < 0$, and $\sigma_u < \sigma < \sigma_v$, we have $$-\frac{a}{2} < u_0 < s_0 < v_0 < s_1 < u_2 < s_2 < v_2 < v_3, \quad u_2 < u_3 < s_3 < v_3.$$ Note that $u_0, v_0, u_2, v_2, u_3, v_3$ depend only on a and do not depend on σ . Recall $h_{\sigma}(s) = (s - s_0)(s - s_1)(s - s_2)(s - s_3)$. First, we show that the translation vector $$\mu_1(\sigma) = \int_{-\frac{a}{2}}^{-\frac{1}{2}} \frac{ds}{-\sqrt{h_{\sigma}(s)}}$$ is uniformly bounded for $\sigma_u < \sigma < \sigma_v$. If $$-\frac{1}{2} < s < -\frac{a}{2}$$, then $$0 < (u_0 + \frac{a}{2})^4 < h_{\sigma}(s) < (v_3 + \frac{1}{2})^4.$$ Hence, $$0<\frac{\frac{1}{2}-\frac{a}{2}}{(v_3+\frac{1}{2})^2}\leq \int_{-\frac{1}{2}}^{-\frac{a}{2}}\frac{ds}{\sqrt{h_{\sigma}(s)}}\leq \frac{\frac{1}{2}-\frac{a}{2}}{(u_0+\frac{a}{2})^2}<\infty.$$ Next, consider the case $\sigma \nearrow \sigma_v$. We have $$\lim_{\sigma\nearrow\sigma_{v}}s_{0}=\lim_{\sigma\nearrow\sigma_{v}}s_{1}=v_{0},\quad \lim_{\sigma\nearrow\sigma_{v}}s_{2}=v_{2},\quad \lim_{\sigma\nearrow\sigma_{v}}s_{3}=v_{3}.$$ Let us show that $$\lim_{\sigma\nearrow\sigma_{v}}\omega_{1}=+\infty.$$ Take $0 < \Delta < \min(v_0 - u_0, u_2 - v_0)$, and fix Δ . Then take $0 < \varepsilon < \Delta$. Take σ sufficiently near σ_{ν} so that $$|s_0 - v_0| < \varepsilon$$ and $|s_1 - v_0| < \varepsilon$. Then for $s_1 < s \le v_0 + \Delta$, we have $$0 < s - s_0 < s - s_1 + 2\varepsilon, \quad 0 < s - s_1 \leq \Delta,$$ $$0 < s_2 - s \le v_2 - v_0, \quad 0 < s_3 - s \le v_3 - v_0.$$ From these inequalities, we have $$0 < h_{\sigma}(s) \leq (s - s_1 + 2\varepsilon)(s - s_1)(v_2 - v_0)(v_3 - v_0),$$ and $$\begin{split} \int_{s_1}^{v_0 + \Delta} \frac{ds}{\sqrt{h_{\sigma}(s)}} &\geq \frac{1}{\sqrt{(v_2 - v_0)(v_3 - v_0)}} \int_{s_1}^{v_0 + \Delta} \frac{ds}{\sqrt{(s - s_1 + 2\varepsilon)(s - s_1)}} \\ &= \frac{1}{\sqrt{(v_2 - v_0)(v_3 - v_0)}} \int_{0}^{v_0 + \Delta - s_1} \frac{dt}{\sqrt{t(t + 2\varepsilon)}}. \end{split}$$ Set $\Delta_1 = v_0 + \Delta - s_1$ and $$I_{arepsilon} = \int_{0}^{\Delta_{1}} rac{dt}{\sqrt{t(t+2arepsilon)}} = \int_{1}^{1+ rac{\Delta_{1}}{arepsilon}} rac{du}{\sqrt{u^{2}-1}} = \mathrm{arccosh}(1+ rac{\Delta_{1}}{arepsilon}).$$ Hence, $$\lim_{\varepsilon \searrow 0} \int_{s_1}^{s_2} \frac{ds}{\sqrt{h_{\sigma}(s)}} \ge \lim_{\varepsilon \searrow 0} \int_{s_1}^{v_0 + \Delta} \frac{ds}{\sqrt{h_{\sigma}(s)}}$$ $$\ge \frac{1}{\sqrt{(v_2 - v_0)(v_3 - v_0)}} \lim_{\varepsilon \searrow 0} I_{\varepsilon} = +\infty.$$ So, $$\lim_{\sigma\nearrow\sigma_{\mathsf{v}}}\omega_1(\sigma)=+\infty, \ \ \text{and} \ \ \lim_{\sigma\nearrow\sigma_{\mathsf{v}}}\psi(\sigma)=0.$$ Note that ω_2 remains pure imaginary and bounded in this case, since $$\lim_{\sigma\nearrow\sigma_{\nu}}s_{2}=v_{2}, \quad \lim_{\sigma\nearrow\sigma_{\nu}}s_{3}=v_{3},$$ and v_2, v_3 are simple roots of h_{σ_v} . Next, consider the case $\sigma \searrow \sigma_u$. Let us show that $$\lim_{\sigma \searrow \sigma_u} \omega_1(\sigma) = \frac{2\pi}{\sqrt{(u_2 - u_0)(u_3 - u_2)}} > 0.$$ Assume, for $\varepsilon > 0$, that $$\max\{|s_0-u_0|,|s_1-u_2|,|s_2-u_2|,|s_3-u_3|\}<\varepsilon.$$ Then, for $s_1 < s < s_2$, $$u_2 - u_0 - 2\varepsilon < s - s_0 < u_2 - u_0 + 2\varepsilon,$$ $$u_3 - u_2 - 2\varepsilon < s_3 - s < u_3 - u_2 + 2\varepsilon.$$ So, $$(u_2 - u_0 - 2\varepsilon)(u_3 - u_2 - 2\varepsilon)(s - s_1)(s_2 - s) < h_{\sigma}(s)$$ $< (u_2 - u_0 + 2\varepsilon)(u_3 - u_2 + 2\varepsilon)(s - s_1)(s_2 - s).$ And as $$\int_{s_1}^{s_2} \frac{ds}{\sqrt{(s-s_1)(s_2-s)}} = \int_{-1}^1 \frac{dt}{\sqrt{1-t^2}} = \pi,$$ we have $$\frac{\pi}{\sqrt{(u_2 - u_0 + 2\varepsilon)(u_3 - u_2 + 2\varepsilon)}} \le \int_{s_1}^{s_2} \frac{ds}{\sqrt{h_{\sigma}(s)}}$$ $$\le \frac{\pi}{\sqrt{(u_2 - u_0 - 2\varepsilon)(u_3 - u_2 - 2\varepsilon)}}.$$ This shows $$\lim_{\sigma \searrow \sigma_u} \omega_1(\sigma) = 2 \lim_{\sigma \searrow \sigma_u} \int_{s_1}^{s_2} \frac{ds}{\sqrt{h_{\sigma}(s)}} = \frac{2\pi}{\sqrt{(u_2 - u_0)(u_3 - u_2)}}.$$ Hence $$\lim_{\sigma \searrow \sigma_u} \psi(\sigma) = \lim_{\sigma \searrow \sigma_u} \frac{\mu_1(\sigma)}{\omega_1(\sigma)} > 0$$ is a finite positive value. This completes the proof of Proposition B. # 9. Twist dynamics #### Twist dynamics THEOREM. There exists a parameter a, such that surface automorphism $F_a: X_a \to X_a$ has an orbit which is dense in an elliptic curve in X_a . PROOF. Take $a \in \mathbb{R}$, $-\frac{1}{4} < a < 0$. By proposition B, real analytic function $\psi(\sigma)$ is non-constant. There is a point σ_0 with $\psi_x^2(\sigma_0) + \psi_y^2(\sigma_0) \neq 0$. By proposition A, in a neighborhood of σ_0 , there exists a value with irrational $$\varphi(\sigma), \quad \psi(\sigma), \text{ and } \frac{\varphi(\sigma)}{\psi(\sigma)}.$$ ## 10. Weierstraß p-function ### Weierstraß p-function For each $a \in \mathbb{C} \setminus \{0,1\}$, and $\sigma \in \hat{\mathbb{C}} \setminus \{0,\infty,a-1,\sigma_{1+},\sigma_{1-}\}$, there exists a birational map $(s,t) \mapsto (X,Y)$, such that elliptic curve C_{σ} : $$t^{2}(2s + a - \sigma) = (s+1)^{2}(2s + a) - \sigma s^{2}$$ is transformed into the Weierstraß normal form : $$Y^2 = 4X^3 - g_2X - g_3.$$ Let $$\rho = \frac{\sigma - a}{2}$$ and $u = s - \rho$. Then $$t^{2}u = u^{3} + (2\rho + 2)u^{2} + (\rho^{2} + 4\rho + a + 1)u + 2\rho^{2} + (a + 1)\rho + \frac{a}{2}.$$ By setting $$b_1 = 2\rho + 2$$, $3b_2 = \rho^2 + 4\rho + a + 1$, $b_3 = 2\rho^2 + (a+1)\rho + \frac{a}{2}$, we get $$t^2u = u^3 + b_1u^2 + 3b_2u + b_3.$$ If $b_3=0$, then $\sigma=0$ or $\sigma=a-1$. So, under our assumptions, $b_3\neq 0$. Set $u = \frac{b_3}{X - b_2}$ to have $$t^2 \frac{b_3}{X - b_2} = \frac{b_3^3}{(X - b_2)^3} + \frac{b_1 b_3^2}{(X - b_2)^2} + \frac{3b_2 b_3}{X - b_2} + b_3.$$ Multiply $\frac{(X-b_2)^3}{b_3}$ to both sides. We get $$t^{2}(X-b_{2})^{2}=X^{3}-(3b_{2}^{2}-b_{1}b_{3})X-(b_{2}^{3}+3b_{2}^{2}+b_{1}b_{2}b_{3}-b_{3}^{2}).$$ Let $Y = 2t(X - b_2)$, and set $g_2 = 4(3b_2^2 - b_1b_3)$, $g_3 = 4(b_2^3 + 3b_2^2 + b_1b_2b_3 - b_3^2)$, to obtain $$Y^2 = 4X^3 - g_2X - g_3.$$ Birational transform $(s, t) \leftrightarrow (X, Y)$ is as follows. $$X = \frac{b_3}{s - \frac{\sigma - a}{2}}, \quad Y = 2t(\frac{b_3}{s - \frac{\sigma - a}{2}} - b_2),$$ $s = \frac{b_3}{X} + \frac{\sigma - a}{2}, \quad t = \frac{Y}{2(X - b_2)}.$ #### References - [BK] E.Bedford and K.H. Kim: Periodicities in Linear Fractional Recurrences: Degree Growth of Birational Surface Maps, Michigan Math., 647-670, J. 54 (2006). - [BC] F.Beukers, R. Cushman : Zeeman's monotonicity conjecture, J. Differ. Equ. 143(1998), 191-200. - [DFa] J.Diller and C. Favre: Dynamics of bimeromorphic maps of surfaces, Amer. J. Math. 123(2001), 215-236. - [Gi] M. Gizatullin: Rational G-surfaces, Izv. Akad. Nauk SSSR Ser. Mat. 44(1980), 110-144. - [Ly] R.C.Lyness, Notes 1581, 1847, and 2952, Math. Gazette 26(1942), 62; 29(1945),231; 45(1961),201.