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Abstract

Family of birational maps f3(x,y) = (y, yTJFa) extends to a
family of surface automorphisms F; : X; — X,.

Rational surface X; is constructed by blowing-up the complex
projective space P2 in 9 points.

If a+# 0,1, F, is of infinite order. The degree of F;" grows
quadratically. The entropy of these automorphisms are zero.

It is known that these automorphisms have invariant foliations
(with singularities) with elliptic leaves.

In this note, we prove that there exists an F, which has a
quasi-periodic orbit dense in an elliptic curve.
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1. Birational automorphism



Birational automorphism
Define a family of birational automorphisms £, : C2 — C?, for
parameter a € C, by

y+a
X

fa(x7y)(C2 = (y7 )(C2'

In homogeneous coordinates, with (x,y)c2 <> [1: x:y],
fot % :§] = [t&: &y : t(y + at)].

By lifting £, to a homogenious polynomial map f, : C3 — C3,

X1

133

Df, =

o

L

t 0
y x|,
y+2at 0 t

we have det Df, = 2t%(j + at).



Critical locus and points of indeterminacy

The Jacobian det Df, = 2tX(y + at) vanishes in three
exceptional curves :

Yo={t=0}p, X,={X=0}p, X,={y+at=0}p.
folt - %:y] = [t&: Xy : t(y + at)] has three points of
indeterminacy :

ex=[0:1:0], e =[0:0:1], p.,=[1:0:-a].






2. Surface automorphism



Surface automorphism

THEOREM [Bedford,Kim, 2006]

If a#£ 0,1, there is a complex manifold X, obtained by blowing
up P2 at 9 points, and a biholomorphic map F, : X, — X, induced
by f,. The degree of F3" grows quadratically in n.

It is known that these automorphisms have invariant foliations
by elliptic curves [Gizatullin 1980].
The entropy of these maps are all zero.



First blowup

Exceptional curves are mapped as :
Y, = e = Yg=> e = Xy,
where ¥, = {J = O}p2, and f(X,) = Z,.
Blowup P2 in e, and e, to obtain a surface X; with projection
pry : X; — P? and exceptional fibers
E.=pr;'(ex) and E, =pr7i(e)).
We have a cycle of curves of period 5.

Ly =E, =Yy E == 1,






Coordinates in exceptional fibers

We need coordinates near the exceptional fibers. Let (u, v)g,
denote a local coordinate system of X; near E, with
E, = {u=0}g, and

(u,v)g, <> [u:uv:1].

Near >, f, extends to a holomorphic map into X, except at

P
X

y+a

fa(x,¥)e2 = ( Y)E,-

So,
F1(07.y)(c2 = (an)Ey-



Near E,
fa(u, V)E, = falu:wv:1]=[uv:v:1+aul
So,
F1(0,v)g, =[0: v : 1] € X,.
Near X g,

falt :x:1]=[t:1: ].

With coordinates (u, v)g, <> [u:1: uv], we have

1+ at
X

Filt: x: 1] = (¢,

1
)E,, and F1[0:x:1]:(0,7)EX.



So,

Finally, (u, v)g, is mapped as

falu:1:w]=[1:v:u(v+a)

Fi(0,v)g, =[1:v:0] < (v,0)c2 € 4.



Second blowup

F1 : X1 — Xi has an exceptional curve (strict transform of)
Yo={yV+at=0}p
and a point of indeterminacy
pe=[1:0:—a] + (0,—a)c2.
Exceptional curve ¥4 is mapped to
g=1[1:—-a:0] < (—a,0)ce.

Set qx = F{*(q) for k =0,1,2,--- ,6. Then gs = ps.



go=q=(—2a,0)c2 € X,
g1 =(0,-1)c2 € X,
g2 =(0,-1)g, € Ey,
g3=1[0:-1:1] € Xo,
q = (0,-1)g, € E,
g5 = (—1,0)c2 € Xy,

g6 = p« = (0,—a)c2 € L.






We blow up Xi in 7 points qo, g1, ..., g, to obtain a surface
X, with projection
pry @ Xy — Xi,

and denote the exceptional fibers as

pryt(qk) = Q, k=0,1,---,6.

F1 : X1 — Xy induces an automorphism F, : X; — X,.






Around exceptional fibers

Let (£,7)q, be a local coordinate of X, near exceptional fiber

Qo, given by ({,m)q, ¢» [1: —a+&: &n).
Near >,

+a 1
Fil:x:y]l=[x:xy:y+al=[1:—a+(y+a): yT] < (y+a, 7)Q0.

Near the exceptional fiber Qs = pr—*(p.), take local coordinates

(&mqe < [1:E&n:—a+£]

Recall the coordinates near E,, given by (u,v)g, <> [u:uv :1].

Fa(é?”)Qa = (777_a+§)Ey-



3. Invariant function



Invariant function

It is known that rational function
1 1
ra(x,y) = (1 + 7)(1 + 7)(X +y+a)
is invariant under f, [Lyness 1942, 1945, 1961]. We understand

this function as

iy = LDy 2 e)

PROPOSITION. If a £ 0,1, then r, lifts to a holomorphic map

F;,,:Xa—>(@.



Proof of proposition
Invariant function r, has indeterminate points in C2.
do = (_aa 0)C2> a1 = (O? _1)((:27

qs = (_]"0)@27 de = Px = (0, —3)(@2.

These points are blown up and 7, is holomorphic near the
exceptional fibers.
For example, in local coordinates (£,7)q, <> (—a +&,£n)c2,

near Qo
e (Cater (et D)
a(&n)QO = (—3+§)77 .
Especially,
7(0,7) @ = W'






In the line at infinity Xo \ {[0:1:0],[0:0:1],[0: —1:1]},
70 x : y] = o0,

Near exceptional fiber E, with coordinates
(u,v)g, > [u:uv: 1],

~ _(v+1)(u+1)(uv + 14 au)
fa(u, v)g, = o .

So, 7(0,v)g, = oo unless v = —1.



Near @7, take local coordinates (£,71)q, by

(&mq < (& —1+E&n)g, < [€:&6(-1+&n) 1]

Then ) ) .
. - +
ra(fa 77)02 = n(g - )( _61_:_552 - 35)7
and
2(0,7)q, = —n.

Near other exceptional fibers, 7, is defined similarly and gives a
holomorphic map
Xy — C.



PROPOSITION. 5 is invariant under F;.

faoFy=F,.

PROPOSITION. f3 is non-constant in each of

207 EX7 Eyu QO7 le Q27 Q37 Q47 Q57 Qﬁ'

1

fa

ProPOSITION.  Critical points of 7, ( or
or periodic point of F,.
PROOF. Number of critical points is finite.

) are fixed point



Critical points

In C?,
O _ )0 -y=a) O (x+1)P-x-2)
ox x2y ©oay xy? ’
and
g(i) _ —y(x* —y —a)
ox' .’ Y+ D)x+1)2(x+y+a)?
D1y rox-a)
oy ra’ (x+D(y+1)3(x+y+a)?



Critical points are

(-1, —1)¢e2,(—1,1—a)c2, (1 — a, —1)c2, (period 3),
1 1 1 1 . .
(5 +4/a Z’ 5T (Cz (fixed points),
1 3 1 3 .
(—5 + —p 5T ~2 )c2, (period 2),
(0,0)¢2,(0,0)g,, (0,00)E,, (0,00)Eg,, (0,0)g,, (period 5).



Critical values

o3 = 0, (period 3 cycle),
o5 = 00, (period 5 cycle),
gy = a— 1,

(period 2 cycle),

1 1 1
o1+ = a+5—2—a:|:(4+5) a+Z, (fixed oints).

The critical values of fixed point can be expressed as

(xo+1)° 2

o1 = ) Xg = Xp + a.
X0



4. |nvariant curves



Invariant curves

For o € C, let C, denote invariant cubic curve in X, defined by

C, = 7 o).

Cy, consists of three lines:
{x+y+a=0}c, {y+1=0}c, {x+1=0}c,
which are mapped cyclically.

— -1 1-— 1—
(¢ ~1)es o3 (~1, agl)@z - ("’Cl, —aa = (el

Eigenvalues at periodic point in the curve (and of the 3-cycle) are
a—1and i






Cs, consists of a line and a quadric which are mapped to each
other by F,.

{x+y+1=0}c, {xy+x+y+a=0}c.

-1 -1 1-
)C2l—>(—1—|—a a

(G, —C—1)ca s (~1—C, 142

Eigenvalues of the 2-cycle are 1Tla(a - % +4/a— %)



S
o
A =



Cys consists of five "lines”
ZX? zyv Eya 207 Ex-

which are mapped cyclically by F,.

a
¢
C 2

Hm?&Hgm@H@%mHn_

QMQH@?@H&)QHWgﬁH

Eigenvalues of 5-cycle are a—! and a.






Cs, is @ Riemann sphere with a node.
For fixed point (xo,%0)c2, (X2 =x0+a) , set
X=Xp+Uu,y=y +v.

{uv(u+ v) + (xo + 1)(v? —Xlouv+v) 0}.

Eigenvalues of fixed point (xp, Xo)c2 are

5 0(1:|:\/1—4x)



5. Elliptic curves



Elliptic curves

If o € C\ {0,00,a—1,014,01_}, where 014+ = b t1) i+1) with
Xy = % +4/a+ %, then C, is an elliptic curve defined by
Po(x,y) = (x+ )y + 1)(x +y +a) —oxy =0.

REMARK
P5(x,y)dx A dy is an automorphic form of weight —1, and dx(/\dj/’)

is invariant under ;.

Py(fa(x,y)) = Ps(x, y)det Df,(x, y).

. (dx/\dy) _dxAdy
Ps(x,y))  Po(x,y)
The Jacobian of periodic point is always equal to 1.



Riemann surface

Let

Then x +y =2s, xy = s? — t2. From equation P,(x,y) =0, we
get

o —a

(1) (=I5 = S+ (2- )s2+(1+a)s—|—%.

Note that when s = 252, the right hand side is equal to
1o(o — (a—1)), which does not vanish since we assumed
o#0,a—1.

Equation (x) defines a Riemann surface over s-plane.



Near Q3

REMARK.
For s =

o—

>, the elliptic curve C, passes through a point in Q3.

Q=pr(gs), gs=[0:-1:1]€Xo.
Near Qs, take a local coordinate (&,7)q, given by
(€M < [§:—1:1+&n].
Note that s = 5 = L if £ #£ 0.
f(0ne =nt+ta=o

gives n =0 — a.



From

ﬁo({én)oa:(_1+s)(1+5n+s)(n+a)+a(1+€n> =0,

we get a quadratic equation in & :
(n+a)n+1E+no—a—ni+o—a—n =0,
whose discriminant is
D = (0—a—n)((c—a—n)—4n+a)(n+1)).
If =0 —athen D=0. If nis near ¢ — a and n # o — a, then

D # 0 ( because 0 # a — 1).

This shows s = 52 is a branch point of the Riemann surface.




Near Q> with local coordinates

&mae < (& -1+, < [§:6(-1+&n) 1],

we get

ISU(§7 77) @
£2
By the implicit function theorem, C, is regular at (0, —0)q,.

Similarly, near Qa, C, passes through (0, —c)q, with local
coordinates

=o+n+(a—o0)n+(a— 1)+ 0% + En.

(5777)@4 AN (57_1 +€n)Ex A [f 1 é(—l +§77)]



Branch points

The Riemann surface defined by equation () has 4 branch
points.

0—37 solutions of s3+(2— U_a)sz+(1+a)5+§:0_

S =

(In our case, these 4 points are distinct. By Riemann-Hurwiz
formula, G, is a torus.)

THEOREM(Abel,Jacobi)  There exists a 7 € H, and a
holomorphic isomorphism

AJ:C/A; = Gy,

where A = {n+m7 | n,m e Z}.



6. Translation in elliptic
curve



Translation in elliptic curves

For 7 € H, let T, denote the torus C/A-.

For 1 € C, translation by p in T is defined as

Trp:Tr =Ty, z—z4+p (modAy).

Suppose 7 = 7(o) and p = u(c) depend holomorphically on o.
Let 7 = u+ iv, p = &+ in. Define real functions (7, ) and

(7, 1) by

UCATES ii






Let ®: (x,y) — (@(7, 1), ¥ (7, 1)) be defined as

(xy) = o =x+iy = (7(0), (o)) = (&(7, 1), (7, 1))
® is real analytic with respect to (x,y) € R?.
PROPOSITION A.

14
det D& = —v(p? + 90}2,) = _WM + 1/’5)'

PROOF. By Cauchy-Riemann formula,

Ux = Vy, Uy, = —Vy, Ex = Ny, §y = —7x-



As ) =& —ug and ¢ = -

n,
_ "
hx = Ex = Uxp = Upx =1y — vy~ - = U

vTy — Vy1)
_V%_US@X:VSO}/—UQOX.

= — n
wy7§y_uygp_u90}/*_77x+Vx7—U(Py

—VNx + w7
y—= X1

N V2 —Upy = —Vpx — Upy.
Hence,
det ( Px Py > = det ( Px Py )
wx wy VP, — Uy —Vx — Up,,
— ()OX Spy _ 2 2
e ( vy  —Vox > = —v(ext¢))-



And by

1
u? + v2

Px = (—ux — wa)u Py = (vipx — Uwy)a

2+ 2
we have
$x Py ) _
det( ’IIZ)X ¢y > — U2 —I— 2(¢x+wy)

This completes the proof of Proposition A.



7. Periods of elliptic curve



Periods of elliptic curve

If sg, 51, 52,53 are branch points of Riemann surface C, over
s-plane, then elliptic integral

[
Vh(s)
defines a coordinate in a torus C/A, where

h(s) = (s — s0)(s — s1)(s — $2)(5 — 3),

and
N ={nwi + mwy | n,me Z}

with




Y|

®
<3



As m(qo) = — 5, and 7(q1) = —%, (by an appropriate choice

of branch)
1 -
wo) = w1 /; h(s)

gives the translation vector in torus T, with

o
&

w2
(o) = —.
w1

Observe that 7 and p are (locally) holomorphic in o.



Take a real value a, with —% < a < 0, as an example. We fix
a and suppress suffix a, in the followings.
The surface automorphism

y+a

f=rf:(xy)~(, .

)

has real rational invariant function

(x+ D +D(x+y+a)
Xy

r(x,y) = ra(x,y) =
The branch points of the Riemann surface C, = r~(o) are the
solutions of h,(s) =0, where

o —a

2

ho(s) = (s = T52)(s* + (2= T50)s2 + (1 + a)s + ).









From h,(s) =0, we have
oc=2s5+a
and

1
o= 5—2(5 +1)%(2s + a).

From % =0, we have

1 L t4/a+ L
S = — S = — a .
’ 2 4

Recall that —% < a<0. Let

1+\/ T ! \/ + =
= — a _— = — — a —_—
2= 20 077 4

Then,0<—%<vo<%<u2.









Vo
L&

1
I




Let

w +1)3 vo +1)3
oy = o) = M’ o, =o(v) = M'
us Vo

Let up < up < u3 be the solutions of h,,(s) = 0.

oy—a
2

oy —a
B

up = —2—2U2, usz =

Let vo < v» < v3 be the solutions of h,,(s) = 0.

GV2_3—2—2VO, v3:0\,2—a.

Vo =

Suppose o0 be 0, < 0 < oy, and let sg, 51, S», 53 be the
solutions for h,(s) = 0 with

Up <Ssp < W<s1<u<s< v, u3z < s3 < v3, Sy < S3.



-
L







We have

he(s) = (s —s0)(s — s1)(s — s2)(s — 3).

INGe

gives a coordinate in the elliptic curve. Periods are

Elliptic integral

2/52 ds ) /50 ds
w1 = ) wy = —
st hs(s) s i/ —hs(s)

Period wjy is real and positive. Period wy is pure imaginary with
positive imaginary part.



By Abel-Jacobi theorem, this elliptic integral defines an
isomorphism
Cy, — C/N,

where A = {nw1 + mwy | n,m € Z}.
As g = (~2,0), £(g) = (0,~1), and m(q) = —&,
m(f(g)) = — -, translation vector 4 is given by
- ds
/_1,1 = , \/?
I U(S)

We have



D¢



S\ _ g,
[
|
W, f
)
Gop- o e TR, 2,2, 4],
% 30 15 e Py
1w, (l
(
J ;rwl : W,
§2






8. Dynamics near fixed
points



Dynamics near fixed points

Under the assumption —% < a < 0, we have the following
proposition. By abuse of notation, ¥(o) = ¢ (7(0), u(o)),

_ S(=%)
¢(Ta ,u) - g(_i)

PROPOSITION B.

CTIi/n;V (o) =0, oli\rr;u (o) > 0.

PRrROOF. As —% <a<0,and o, < 0 < o, we have

a
—7<U0<50<V0<51<U2<52<V2<V3, up < uz < s3 < vs.

Note that ug, vo, us, v, U3, v3 depend only on a and do not depend
on o.



Recall hy(s) = (s — s0)(s — s1)(s — s2)(s — s3).
First, we show that the translation vector

1

(0) = P ds
2 P %ha(s)

is uniformly bounded for o, < 0 < 0,.






Next, consider the case ¢ " o,. We have

lim sp = lim s1 = vy im so = w lim s3 = v3.
o/loy o/loy ’ o,/oy ’ o,/loy
Let us show that
lim w; = 4o0.

o,/ oy



Take 0 < A < min(vy — up, u2 — vp), and fix A.
Then take 0 < ¢ < A.
Take o sufficiently near o, so that

|so — vo| <€ and [s1 — w| <e.
Then for 51 < s < v+ A, we have
0<s—s5<s—s51+2, 0<s—s5 <A,

O<sy,—s<wm—vy, 0<sz3—s<wv3— .




From these inequalities, we have
0 < hy(s) < (s—s1+2)(s—s1)(v2a — wo)(vz3 — W),

and

vo+A ds 1 vo+A ds

>
s1 Vho(s) — (v —w)(vs — v) /s V(s —s1+2¢)(s — 1)

_ 1 /V0+A—51 dt
V(v2 —w)(vs — w) Jo Vit +2e)

Set A1 = vp+ A — 51 and

d

A dt 1441 u
| :/ :/
o it +20) 1 Vu?—1

A
= arccosh(1 + —1)
€



Hence,

v

lim I, = +o0.
\/(V2 — Vo)(V3 — Vo) eNo }

So,

lim wi(c) =400, and lim (o) =0.
Jim. 1(0) U/(va( )

Note that wy remains pure imaginary and bounded in this case,

since

lim Sy = Vo, lim S3 = Vv3,
ooy ooy

and vp,v3 are simple roots of h,, .



Next, consider the case o \, g,.
Let us show that
27

Uli\(n;u W1(O-) - \/(u2 — Uo)(U3 — U2) >0

Assume, for € > 0, that

max{|sp — uo|, |s1 — 2|, |s2 — wa|,|s3 — u3|} < e.
Then, for 51 < s < 59,
Up — g — 26 < s — sy < Up — Ug + 2¢,

Uz —Up —2e < 53— 5 < uz — Uy + 2¢.



So,
(U2 — ug — 28)(U3 — Uy — 26)(5 — 51)(52 — S) < ho—(S)

< (up — up + 2¢)(u3 — up + 2¢)(s — s1)(s2 — 5).
And as

s2 ds /1 dt
st \/(s—sl)(sz —s) 1vV1—1t2

we have

™ /52 ds
\/(UQ — ug + 28)(U3 — Uy + 25) s hg(s)
< il .
V(w2 — ug — 2¢)(uz — up — 2¢)




This shows
2 d 2
lim wi(o) =2 lim g T

v Novts Vho(s) /(w2 — wo)(us — u2)’

Hence

. o p(o)
Ull\‘rg'u ¢(U) N Ull\‘rg'u (.4.11(0) >0

is a finite positive value. This completes the proof of Proposition
B.




9. Twist dynamics



Twist dynamics

THEOREM. There exists a parameter a, such that surface
automorphism F, : X; — X, has an orbit which is dense in an
elliptic curve in Xj.

PROOF. Take a € R, —% < a < 0. By proposition B, real
analytic function (o) is non-constant. There is a point oo with
¥5(00) + 4y (a0) # 0.

By proposition A, in a neighborhood of gg, there exists a value

with irrational
o)

(o)

5

(o), (o), and

<



10. WeierstralB p-function



WeierstraB g-function

For each a € C\ {0,1}, and 0 € C\ {0,00,a — 1,014,071},
there exists a birational map (s, t) — (X, Y), such that elliptic
curve G, :

t?(2s+a—o0) = (s+1)*(2s + a) — 0s°
is transformed into the Weierstrall normal form :

Y2 =4X3 — & X — gs.

Let p =252 and u =5 —p. Then

a
t2u = u3+(2p+2)u2+(p2+4p+a+1)u+2p2+(a+1)p+7.



By setting

a
b1 =2p+2, 3by=p>+4p+a+l, b=2p+(a+1)p+—,

2
we get
t?u = u® + biu® + 3byu + bs.
If b3 =0, then 0 =0 or 0 = a— 1. So, under our assumptions,
bs # 0.
Set u = lebz to have
b b3 b1 b3 3byb
£2 3 3 + 173 273 + bs.

X—b (X—b)3 X-b)2 X-b

Multiply % to both sides.



We get
t2(X — b)? = X3 — (3b3 — byb3)X — (b3 4 3b3 + bybybs — b3).

Let Y = 2t(X — by), and set g» = 4(3b3 — b1 b3),
g3 = 4(b3 + 3b5 + bybyb3 — b3), to obtain

Y2 =4X3 - g X — g3

Birational transform (s, t) <> (X, Y) is as follows.

b b
X=—2_ Y=2(— —b),
ST ST
b3 o—a Y
s=— , t=

X 2 2(X — by)
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