
Rational Elliptic Surface without Section (2)

Shigehiro Ushiki Dec. 14, 2022



Abstract

There exist rational elliptic surfaces which don’t admit sections.
In [DM](2022), possible multiple fibers for rational elliptic

fibrations are described.
We construct concrete examples of rational elliptic surfaces,

whose generic fibers are elliptic curves representing cohomology
class −3K .
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0. Introduction



Elliptic surface

Let S be a complex manifold of complex dimension 2.
Suppose there is an elliptic fibration onto P1:

ψ : S → P1.

If there is a cross section

σ : P1 → S , ψ ◦ σ = id ,

we can define Mordell-Weil group MW (S) as the set of all
sections.

However, there are elliptic surfaces which don’t admit sections.



Picture of a section (QLc153t2B)



Theorem of Gizatullin

Let F : S → S be an automorphisms of rational surface S .

The dynamical degree λ1 of F is defined as

λ1 = lim
n→∞

||(F n)∗||1/n.

Theorem(Gizatullin [1980], Cantat [1999])
Assume F ∈ Aut(S), λ1 = 1, and {||(F n)∗||}n∈N is

unbounded. Then F preserves an elliptic fibration.



Elliptic fibration

Proposition(Gizatullin[Gi],1980). Let S be a minimal rational
elliptic surface. Then for m large enough, we have
dim| −mKS | ≥ 1. For m minimal with this property, | −mKS | is a
pencil without base point whose generic fiber is a smooth and
reduced elliptic curve.

Remark(Grivaux[Gr], 2019). The elliptic fibration
S → | −mKS |∗ doesn’t have a rational section if m ≥ 2. Indeed,
the existence of multiple fibers ( mD ) is an obstruction for the
existence of a section.



Another elliptic surface

Consider a surface automorphism with invariant elliptic curve
of modulus ε = exp(πi3 ) for orbit data (3, 3, 3), cyclic , choosing
multiplier ω = exp(2πi3 ).

The configuration of the singular fibers is III I91.

By choosing extra parameters, we find surface automorphisms
with

dim| − K | = 0, dim| − 2K | = 0, dim| − 3K | = 1.

Rem. This seems to be the case (a) of theorem 3.3 in [DM]
with

m = n = 3, p = 0.



A (triple) section ? (EWc333b20B)



A (triple) section ? (EWc333b20B)



There exist ...

Theorem. There exist automorphisms of elliptic
surface, induced by quadratic Cremona
transformations, such that the elliptic fibration
don’t admit sections.



Orbit data

1. Orbit data (3, 3, 3), cyclic



From orbit data to Cremona transformation

Let ε = exp(πi/3) and let Λε = Z + εZ.
Let us construct a surface automorphism with

orbit data : (3, 3, 3), cyclic ,

X ∼= C/Λε,

and the multiplier for f |X is ε2.
Suppose the translation of the inner dynamics is b ∈ C/Λε.

And the inner dynamics f |X : t 7→ ε2t + b.

The parametrization of elliptic curve {y2 = 4x3 − g2x − g3} is
given by

p(t) = (℘(t), ℘′(t)), t ∈ C/Λ.



Parametrization

Theorem(Diller, 2011) Let X ⊂ P2 be an irreducible cubic
curve. Suppose we are given points p(p+1 ), p(p+2 ), p(p+3 ) ∈ Xreg , a
multiplier a ∈ C×, and a translation b ∈ C/Λ. Then there exists at
most one quadratic transformation f properly fixing X with
I (f ) = {p(p+1 ), p(p+2 ), p(p+3 )} and f (p(t)) = p(at + b). This f
exists if and only if the following hold.

p+1 + p+2 + p+3 /≡ 0;
a is a multiplier for Xreg ;
a(p+1 + p+2 + p+3 ) ≡ 3b.

Finally, the points of indeterminacy for f −1 are given by
p−j = ap+j − 2b, j = 1, 2, 3.

Conditions for orbit data (n1, n2, n3), σ are as follows (
mod Λε).

p+σ(j) ≡ f |nj−1X (p−j ), j = 1, 2, 3.



X ∼= C/(Z + εZ)

Conditions for orbit data (3, 3, 3), σ = (1, 2, 3), with multiplier
a = ε2, and translation b, are as follows (mod Λε).

p+1 + p+2 + p+3 ≡ −3εb |≡ 0,

p−1 ≡ ε
2p+1 − 2b, p−2 ≡ ε

2p+2 − 2b, p−3 ≡ ε
2p+3 − 2b,

p+2 ≡ p+1 + 3εb, p+3 ≡ p+2 + 3εb, p+1 ≡ p+3 + 3εb.

From the last three equations, we get

9εb ≡ 0.

We put

b =
1

9
β, β ∈ Λε.



And from

p+1 + p+2 + p+3 ≡ 3p+1 + 9εb ≡ −3εb.

We get
3p+1 ≡ −3εb.

We put
3p+1 = −3εb + α, α ∈ Λε.

If −3εb |≡ 0, then we get solutions :

p+1 ≡
8ε

9
β +

1

3
α, p+2 ≡

2ε

9
β +

1

3
α, p+3 ≡

5ε

9
β +

1

3
α,

p−1 ≡
−1

9
β +

ε2

3
α, p−2 ≡

−4

9
β +

ε2

3
α, p−3 ≡

−7

9
β +

ε2

3
α.

If β ∈ Λε \ 3Λε, we have −3εb ≡ − 1
3 εβ |≡ 0, and we can

construct a surface automorphism.



Let Fα,β : Sα,β → Sα,β denote our surface automorphism.

Remark. The characteristic polynomial for orbit data
(3, 3, 3), cyclic is

P(λ) = (λ− 1)2(λ2 − 1)(λ6 + λ3 + 1),

and ε2 is not an eigenvalue.



Base points for α = 0, β = 1

ε 1 + ε
C3 A2

B3 B2

A3 C2

0 C1 B1 A1 1
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2. Configuration

2. Configuration



Now, let Ai ∈ H2(S ,Z) denote the cohomology class of the
exceptional fiber [π−1(f i−1(p(p−1 )))], i = 1, 2, 3. Let
Bi = [π−1(f i−1(p(p−2 )))], i = 1, 2, 3, and
Ci = [π−1(f i−1(p(p−3 )))], i = 1, 2, 3.

Let H ∈ H2(S ,Z) denote the class of a generic line [π−1(L)].
A basis of H2(S ,Z) is given by classes

H,A1,A2,A3,B1,B2,B3,C1,C2,C3, .

Automorphism F ∗ : H2(S ,Z)→ H2(S ,Z) acts as follows.

H 7→ 2H − A3 − B3 − C3,

A3 7→ A2 7→ A1 7→ H − A3 − B3,

B3 7→ B2 7→ B1 7→ H − B3 − C3,

C3 7→ C2 7→ C1 7→ H − A3 − C3.



Periodic roots of positive degree

Let

X = 3H − A1 − A2 − A3 − B1 − B2 − B3 − C1 − C2 − C3

denote the class of anticanonical curve, represented by our
invariant elliptic curve X ∼= C/(Z + εZ).

A class R ∈ H2(S ,Z) is said to be a root of positive degree if

R · X = 0, R2 = −2, R · H > 0.

The characteristic polynomial for orbit data (3, 3, 3), cyclic is

P(λ) = (λ− 1)2(λ2 − 1)(λ6 + λ3 + 1).

If there is a periodic root, the period is 1, 2, or 9.



Period 1 and 2

We have
Ker(F ∗ − id) = < X >,

Ker(F ∗2 − id) = < L,Q > .

where
L = H − A2 − B2 − C2,

Q = 2H − A1 − A3 − B1 − B3 − C1 − C3.

We have
F ∗L = Q, F ∗Q = L,

L2 = Q2 = −2, L · Q = 2,

L+Q = X .

These are roots of positive degree.



Another periodic root of period 2

There exists another 2-cycle of roots of positive degree.

U = L+ X ,

V = Q+ X ,

with
F ∗U = V, F ∗V = U ,

U2 = V2 = −2, U · V = 2.

Moreover,
U + V = 3X .



Singular fiber

If these roots are nodal and there exist curves representing
these classes, they form a singular fiber of type I2 or III.

To decide the type, recall the Lefschetz formula:

∑
f (p)=p

sign(det(Dfp − I )) =
dimM∑
i=0

(−1)i trace(f∗|Hi (M,R)).

To describe periodic cycles in terms of Lefschetz index, for
m ∈ N and k ∈ Z, let

m(k) =

{
m k ≡ 0 (modm)
0 otherwise

.



Periodic points

Recall the characteristic polynomial for orbit data
(3, 3, 3), cyclic :

P(λ) = (λ− 1)2(λ2 − 1)(λ6 + λ3 + 1).

The Lefschetz number Λ(F k) is expressed as

Λ(F k) = 1 + 1 + 1 + 1 + 2− 3 + 9.

The invariant elliptic curve X ∼= C/(Z + εZ) , with inner
dynamics t 7→ ε2t + b, has three fixed points. The inner dynamics
is period three, and these periodic points are not counted in the
Lefschetz number if k ≡ 0 (mod 3).

So, the periodic points in X are counted as 1 + 1 + 1− 3.
The cycle of period 9 comes from singular fibers I91, obtained later.

The periodic points in the curves of period two are described
by 1 + 2, that is, the type of the singular fiber is III.



Roots of period 9

Ker(F ∗9 − id) =< H − A1 − A2 − A3,

A1 − B1, A2 − B2, A3 − B3,

A1 − C1, A2 − C2, A3 − C3 >

Their Picard projection of these roots do not vanish. These
roots ( and the roots in this subspace) are not nodal.

Ã1 − B1 ≡
1

3
β,

˜H − A1 − A2 − A3 ≡
−1− ε

9
β,

· · · e.t.c.



Multiple fibration

3. Multiple fibration



Picard projection

For Rational surface, following commutative diagram holds.

0 −→ Pic(S)
c1−→ H2(S ,Z) −→ 0,

↓ r ↓ ι∗

0→ Pic0(X ) −→ Pic(X )
deg−→ H2(X ,Z) −→ 0.

In our case, X ∼= C/(Z + εZ) is an elliptic cubic curve,

Pic0(X ) ' C/Λε.

For P ∈ H2(S ,Z), with ι∗(P) = 0, we denote

P̃ = r ◦ c−11 (P) ∈ Pic0(X ).

We say P̃ is the Picard projection of P.



Nodality

If P ∈ H2(S ,Z ) is a cohomology class of a (strict transform of
a curve C ⊂ P2, then

ι∗(P) = 0 and r ◦ c−11 (P) = 0.

With our choice of Picard coordinates, we have the following
fact.

Theorem. 3d (not necessarily distinct) points
p1, · · · , p3d ∈ Xreg comprise the intersection of X with a curve of
degree d if and only if

each irreducible V ⊂ X contains d · degV of the points; and∑
pj ∼ 0.



Nodal periodic roots

For our automorphism Fα,β : Sα,β → Sα,β, the Picard
projections of periodic roots of positive degree can be computed as
follows (mod Λε).

b =
1

9
β, α ∈ Λε, β ∈ Λε \ 3Λε,

L̃ ≡ Q̃ ≡ 1 + ε

3
β, X̃ ≡ 2 + 2ε

3
β,

Ũ ≡ Ṽ ≡ 3X̃ ≡ 0.

So, we conclude that if 1+ε
3 β ≡ 0 then the singular fiber of

type III is a cubic curve consisting of a conic and a tangent line.
And if 1+ε

3 β |≡ 0, then singular fiber of type III comprises a
quartic curve and a quintic curve intersecting at a point. In this
case X cannot be the class of generic fibers.



Configuration of sungular fibers

We conclude that the configuration of singular fibers in our case
is :

III I9
1.

And the generic fiber represents the class

3X .



Persson’s list of configurations

In the list of configurations of singular fibers given by
Persson([P],1990), those containing I9 or I91 are :

III I91, I9 I31, I3 I91.



Multiple section (?) (EWc333b10B)



Another multiple section (?) (EWc333b10C)



Diagonal slice (EWc333b10D)



Multiple section (?) (EWc333b12B)



Another multiple section (?) (EWc333b12C)



Diagonal slice (EWc333b12D)

Thank you !
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Fv J d r e p
3I0 0 9 8 0 31− 3
III 1 9 8 3 1 + 2
I9

1 ∞ 9× 1 0 9× 1 9



Picture of a section (EWc333a00b11B)



Multiple fiber

Theorem. (Dolgachev-Martin,[DM]2022) Let f : X → B be a genus
one surface with jacobian J(f ) : J(X )→ B and let Autf (X ) be the group
of automorphisms of X preserving f . Assume that f is cohomologically
flat. Then there is a homomorphism ϕ : Autf (X )→ AutJ(f )(J(f ))
satisfying the following properties, where g ∈ Autf (X ) :
(1) Both g and ϕ(g) induce the same automorphism of B.
(2) Ker(ϕ) ∼= MW(J(f )).
(3) ϕ(g) preserves the zero section of J(f ) : J(X )→ B.
(4) If g acts trivially on Num(X ), then ϕ(g) acts trivially on Num(J(X )).

(5) Let mF0 be a fiber of f of multiplicity m and let (J]0)0 be the identity

component of the smooth part J]0 of the corresponding fiber J0 of J(f ),

then either ϕ(g) acts trivially on (J]0)0 or one of the following holds,
where n = ord(ϕ(g)|(J]

0 )
0) :

(a) F0 is smooth, m = n = 3, p 6= 3.
(b) F0 is smooth, m = 2, n ∈ {2, 4}, p 6= 2.
(c) F0 is smooth and ordinary, m = n = p = 2.
(d) F0 is an irreducible nodal curve, m = n = 2, p 6= 2.
(e) F0 is of type Ã1,m = n = 2, p 6= 2.
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