Rational Elliptic Surface without Section (2)

Shigehiro Ushiki

Dec. 14, 2022

・ロト ・ 四ト ・ ヨト ・ ヨト ・ ヨ

Abstract

There exist rational elliptic surfaces which don't admit sections. In [DM](2022), possible multiple fibers for rational elliptic fibrations are described.

We construct concrete examples of rational elliptic surfaces, whose generic fibers are elliptic curves representing cohomology class -3K.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Contents

- 0. Introduction
- 1. Orbit data (3,3,3) cyclic

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- 2. Configuration
- 3. Multiple fibation

0. Introduction

Elliptic surface

Let S be a complex manifold of complex dimension 2. Suppose there is an elliptic fibration onto \mathbb{P}^1 :

$$\psi: \mathcal{S} \to \mathbb{P}^1.$$

If there is a cross section

$$\sigma: \mathbb{P}^1 \to S, \qquad \psi \circ \sigma = id,$$

we can define Mordell-Weil group MW(S) as the set of all sections.

However, there are elliptic surfaces which don't admit sections.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Picture of a section (QLc153t2B)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Theorem of Gizatullin

Let $F : S \rightarrow S$ be an automorphisms of rational surface S.

The **dynamical degree** λ_1 of *F* is defined as

$$\lambda_1 = \lim_{n \to \infty} ||(F^n)^*||^{1/n}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

THEOREM(Gizatullin [1980], Cantat [1999]) Assume $F \in Aut(S)$, $\lambda_1 = 1$, and $\{||(F^n)^*||\}_{n \in \mathbb{N}}$ is unbounded. Then F preserves an elliptic fibration.

Elliptic fibration

PROPOSITION(Gizatullin[Gi],1980). Let S be a minimal rational elliptic surface. Then for m large enough, we have $\dim |-mK_S| \ge 1$. For m minimal with this property, $|-mK_S|$ is a pencil without base point whose generic fiber is a smooth and reduced elliptic curve.

REMARK(Grivaux[Gr], 2019). The elliptic fibration $S \rightarrow |-mK_S|^*$ doesn't have a rational section if $m \ge 2$. Indeed, the existence of multiple fibers (mD) is an obstruction for the existence of a section.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Another elliptic surface

Consider a surface automorphism with invariant elliptic curve of modulus $\epsilon = \exp(\frac{\pi i}{3})$ for orbit data (3,3,3), cyclic, choosing multiplier $\omega = \exp(\frac{2\pi i}{3})$.

The configuration of the singular fibers is III I_1^9 .

By choosing extra parameters, we find surface automorphisms with

$$\dim |-K| = 0, \quad \dim |-2K| = 0, \quad \dim |-3K| = 1.$$

REM. This seems to be the case (a) of theorem 3.3 in [DM] with

$$m=n=3, p=0.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

A (triple) section ? (EWc333b20B)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

A (triple) section ? (EWc333b20B)

There exist ...

THEOREM. There exist automorphisms of elliptic surface, induced by quadratic Cremona transformations, such that the elliptic fibration don't admit sections.

Orbit data

1. Orbit data (3, 3, 3), cyclic

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

From orbit data to Cremona transformation

Let $\epsilon = \exp(\pi i/3)$ and let $\Lambda_{\epsilon} = \mathbb{Z} + \epsilon \mathbb{Z}$. Let us construct a surface automorphism with

orbit data : (3, 3, 3), *cyclic*,

 $X \cong \mathbb{C}/\Lambda_{\epsilon},$

and the multiplier for $f|_X$ is ϵ^2 .

Suppose the translation of the inner dynamics is $b \in \mathbb{C}/\Lambda_{\epsilon}$. And the inner dynamics $f|_X : t \mapsto \epsilon^2 t + b$.

The parametrization of elliptic curve $\{y^2 = 4x^3 - g_2x - g_3\}$ is given by

$$p(t)=(\wp(t),\wp'(t)), \hspace{0.5cm} t\in \mathbb{C}/\Lambda_{+}$$

Parametrization

THEOREM(Diller, 2011) Let $X \subset \mathbb{P}^2$ be an irreducible cubic curve. Suppose we are given points $p(p_1^+), p(p_2^+), p(p_3^+) \in X_{reg}$, a multiplier $a \in \mathbb{C}^{\times}$, and a translation $b \in \mathbb{C}/\Lambda$. Then there exists at most one quadratic transformation f properly fixing X with $l(f) = \{p(p_1^+), p(p_2^+), p(p_3^+)\}$ and f(p(t)) = p(at + b). This f exists if and only if the following hold.

$$\begin{array}{l} p_1^+ + p_2^+ + p_3^+ \not\equiv \ 0;\\ a \ \text{is a multiplier for } X_{reg};\\ a(p_1^+ + p_2^+ + p_3^+) \equiv 3b.\\ \end{array}$$

Finally, the points of indeterminacy for f^{-1} are given by $p_j^- = ap_j^+ - 2b, \ j = 1, 2, 3. \end{array}$

Conditions for orbit data $(n_1, n_2, n_3), \sigma$ are as follows (mod Λ_{ϵ}).

$$p_{\sigma(j)}^+ \equiv f|_X^{n_j-1}(p_j^-), \ \ j=1,2,3.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

$X \cong \mathbb{C}/(\mathbb{Z} + \epsilon \mathbb{Z})$

Conditions for orbit data $(3, 3, 3), \sigma = (1, 2, 3)$, with multiplier $a = \epsilon^2$, and translation *b*, are as follows (mod Λ_{ϵ}).

$$p_1^+ + p_2^+ + p_3^+ \equiv -3\epsilon b \equiv 0,$$

$$p_1^- \equiv \epsilon^2 p_1^+ - 2b, \quad p_2^- \equiv \epsilon^2 p_2^+ - 2b, \quad p_3^- \equiv \epsilon^2 p_3^+ - 2b,$$

$$p_2^+ \equiv p_1^+ + 3\epsilon b, \quad p_3^+ \equiv p_2^+ + 3\epsilon b, \quad p_1^+ \equiv p_3^+ + 3\epsilon b.$$

From the last three equations, we get

$$9\epsilon b \equiv 0.$$

We put

$$b=rac{1}{9}eta,\qquadeta\in\Lambda_\epsilon.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

And from

$$p_1^+ + p_2^+ + p_3^+ \equiv 3p_1^+ + 9\epsilon b \equiv -3\epsilon b.$$

We get

$$3p_1^+ \equiv -3\epsilon b.$$

We put

$$3p_1^+ = -3\epsilon b + \alpha, \quad \alpha \in \Lambda_{\epsilon}.$$

If $-3\epsilon b \equiv 0$, then we get solutions :

$$p_1^+ \equiv \frac{8\epsilon}{9}\beta + \frac{1}{3}\alpha, \quad p_2^+ \equiv \frac{2\epsilon}{9}\beta + \frac{1}{3}\alpha, \quad p_3^+ \equiv \frac{5\epsilon}{9}\beta + \frac{1}{3}\alpha,$$

$$p_1^- \equiv \frac{-1}{9}\beta + \frac{\epsilon^2}{3}\alpha, \quad p_2^- \equiv \frac{-4}{9}\beta + \frac{\epsilon^2}{3}\alpha, \quad p_3^- \equiv \frac{-7}{9}\beta + \frac{\epsilon^2}{3}\alpha.$$

If $\beta \in \Lambda_{\epsilon} \setminus 3\Lambda_{\epsilon}$, we have $-3\epsilon b \equiv -\frac{1}{3}\epsilon\beta \equiv 0$, and we can construct a surface automorphism.

Let $F_{\alpha,\beta}: S_{\alpha,\beta} \to S_{\alpha,\beta}$ denote our surface automorphism.

Remark. The characteristic polynomial for orbit data (3,3,3), *cyclic* is

$$P(\lambda) = (\lambda - 1)^2 (\lambda^2 - 1)(\lambda^6 + \lambda^3 + 1),$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

and ϵ^2 is not an eigenvalue.

Base points for $\alpha = 0, \beta = 1$

・ロト ・四ト ・ヨト ・ヨト

æ

EWc333a10b10R

2. Configuration

2. Configuration

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Now, let $A_i \in H^2(S, \mathbb{Z})$ denote the cohomology class of the exceptional fiber $[\pi^{-1}(f^{i-1}(p(p_1^{-1})))], i = 1, 2, 3$. Let $B_i = [\pi^{-1}(f^{i-1}(p(p_2^{-})))], i = 1, 2, 3, \text{ and}$ $C_i = [\pi^{-1}(f^{i-1}(p(p_3^-)))], i = 1, 2, 3.$ Let $H \in H^2(S, \mathbb{Z})$ denote the class of a generic line $[\pi^{-1}(L)]$. A basis of $H^2(S,\mathbb{Z})$ is given by classes

 $H, A_1, A_2, A_3, B_1, B_2, B_3, C_1, C_2, C_3, ...$

Automorphism $F^*: H^2(S, \mathbb{Z}) \to H^2(S, \mathbb{Z})$ acts as follows.

$$H \mapsto 2H - A_3 - B_3 - C_3,$$

 $A_3 \mapsto A_2 \mapsto A_1 \mapsto H - A_3 - B_3,$
 $B_3 \mapsto B_2 \mapsto B_1 \mapsto H - B_3 - C_3,$

A

 $C_3 \mapsto C_2 \mapsto C_1 \mapsto H - A_3 - C_3$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Periodic roots of positive degree

Let

$$\mathcal{X} = 3H - A_1 - A_2 - A_3 - B_1 - B_2 - B_3 - C_1 - C_2 - C_3$$

denote the class of anticanonical curve, represented by our invariant elliptic curve $X \cong \mathbb{C}/(\mathbb{Z} + \epsilon \mathbb{Z})$.

A class $\mathcal{R} \in H^2(S, \mathbb{Z})$ is said to be **a root of positive degree** if

$$\mathcal{R}\cdot\mathcal{X}=0,\quad \mathcal{R}^2=-2,\quad \mathcal{R}\cdot H>0.$$

The characteristic polynomial for orbit data (3, 3, 3), cyclic is

$$P(\lambda) = (\lambda - 1)^2 (\lambda^2 - 1) (\lambda^6 + \lambda^3 + 1).$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

If there is a periodic root, the period is 1, 2, or 9.

Period 1 and 2

$$\operatorname{Ker}(F^* - id) = \langle \mathcal{X} \rangle,$$

$$\operatorname{Ker}(F^{*2} - id) = \langle \mathcal{L}, \mathcal{Q} \rangle.$$

where

We have

$$\mathcal{L} = H - A_2 - B_2 - C_2,$$
$$\mathcal{Q} = 2H - A_1 - A_3 - B_1 - B_3 - C_1 - C_3.$$

We have

$$F^*\mathcal{L} = \mathcal{Q}, \quad F^*\mathcal{Q} = \mathcal{L},$$

 $\mathcal{L}^2 = \mathcal{Q}^2 = -2, \quad \mathcal{L} \cdot \mathcal{Q} = 2,$
 $\mathcal{L} + \mathcal{Q} = \mathcal{X}.$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

These are roots of positive degree.

Another periodic root of period 2

There exists another 2-cycle of roots of positive degree.

 $\mathcal{U} = \mathcal{L} + \mathcal{X},$ $\mathcal{V} = \mathcal{Q} + \mathcal{X},$

with

$$F^*\mathcal{U} = \mathcal{V}, \quad F^*\mathcal{V} = \mathcal{U},$$

 $\mathcal{U}^2 = \mathcal{V}^2 = -2, \quad \mathcal{U} \cdot \mathcal{V} = 2.$

Moreover,

$$\mathcal{U}+\mathcal{V}=3\mathcal{X}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Singular fiber

If these roots are nodal and there exist curves representing these classes, they form a singular fiber of type I_2 or III.

To decide the type, recall the Lefschetz formula:

$$\sum_{f(p)=p} \operatorname{sign}(\det(Df_p - I)) = \sum_{i=0}^{\dim M} (-1)^i \operatorname{trace}(f_*|_{H_i(M,\mathbb{R})}).$$

To describe periodic cycles in terms of Lefschetz index, for $m \in \mathbb{N}$ and $k \in \mathbb{Z}$, let

$$\mathbf{m}(k) = \begin{cases} m & k \equiv 0 \pmod{m} \\ 0 & \text{otherwise} \end{cases}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Periodic points

Recall the characteristic polynomial for orbit data (3,3,3), *cyclic* :

$$P(\lambda) = (\lambda - 1)^2 (\lambda^2 - 1)(\lambda^6 + \lambda^3 + 1).$$

The Lefschetz number $\Lambda(F^k)$ is expressed as

$$\Lambda(F^k) = 1 + 1 + 1 + 1 + 2 - 3 + 9.$$

The invariant elliptic curve $X \cong \mathbb{C}/(\mathbb{Z} + \epsilon\mathbb{Z})$, with inner dynamics $t \mapsto \epsilon^2 t + b$, has three fixed points. The inner dynamics is period three, and these periodic points are not counted in the Lefschetz number if $k \equiv 0 \pmod{3}$.

So, the periodic points in X are counted as 1 + 1 + 1 - 3. The cycle of period 9 comes from singular fibers I_{1}^{9} , obtained later.

The periodic points in the curves of period two are described by $\mathbf{1} + \mathbf{2}$, that is, the type of the singular fiber is III.

Roots of period 9

$$\begin{aligned} & \operatorname{Ker}(F^{*9} - id) = < H - A_1 - A_2 - A_3, \\ & A_1 - B_1, \quad A_2 - B_2, \quad A_3 - B_3, \\ & A_1 - C_1, \quad A_2 - C_2, \quad A_3 - C_3 > \end{aligned}$$

Their Picard projection of these roots do not vanish. These roots (and the roots in this subspace) are not nodal.

$$\widetilde{A_1 - B_1} \equiv \frac{1}{3}\beta,$$
$$H - \widetilde{A_1 - A_2} - A_3 \equiv \frac{-1 - \epsilon}{9}\beta,$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

···e.t.c.

Multiple fibration

3. Multiple fibration

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Picard projection

For Rational surface, following commutative diagram holds.

$$\begin{array}{cccc} 0 \longrightarrow \operatorname{Pic}(S) & \stackrel{c_1}{\longrightarrow} & H^2(S, \mathbb{Z}) \longrightarrow 0, \\ & & \downarrow r & & \downarrow \iota^* \\ 0 \to \operatorname{Pic}_0(X) \longrightarrow \operatorname{Pic}(X) & \stackrel{\operatorname{deg}}{\longrightarrow} & H^2(X, \mathbb{Z}) \longrightarrow 0. \end{array}$$

In our case, $X\cong \mathbb{C}/(\mathbb{Z}+\epsilon\mathbb{Z})$ is an elliptic cubic curve,

 $\operatorname{Pic}_0(X) \simeq \mathbb{C}/\Lambda_{\epsilon}.$ For $\mathcal{P} \in H^2(S, \mathbb{Z})$, with $\iota^*(\mathcal{P}) = 0$, we denote $\widetilde{\mathcal{P}} = r \circ c_1^{-1}(\mathcal{P}) \in \operatorname{Pic}_0(X).$

We say $\widetilde{\mathcal{P}}$ is the **Picard projection** of \mathcal{P} .

Nodality

If $\mathcal{P} \in H^2(S, Z)$ is a cohomology class of a (strict transform of a curve $C \subset \mathbb{P}^2$, then

$$\iota^*(\mathcal{P})=0$$
 and $r\circ c_1^{-1}(\mathcal{P})=0.$

With our choice of Picard coordinates, we have the following fact.

THEOREM. 3d (not necessarily distinct) points $p_1, \dots, p_{3d} \in X_{reg}$ comprise the intersection of X with a curve of degree d if and only if each irreducible $V \subset X$ contains $d \cdot \deg V$ of the points; and $\sum p_j \sim 0$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Nodal periodic roots

For our automorphism $F_{\alpha,\beta}: S_{\alpha,\beta} \to S_{\alpha,\beta}$, the Picard projections of periodic roots of positive degree can be computed as follows (mod Λ_{ϵ}).

$$b = \frac{1}{9}\beta, \quad \alpha \in \Lambda_{\epsilon}, \quad \beta \in \Lambda_{\epsilon} \setminus 3\Lambda_{\epsilon},$$
$$\widetilde{\mathcal{L}} \equiv \widetilde{\mathcal{Q}} \equiv \frac{1+\epsilon}{3}\beta, \quad \widetilde{\mathcal{X}} \equiv \frac{2+2\epsilon}{3}\beta,$$
$$\widetilde{\mathcal{U}} \equiv \widetilde{\mathcal{V}} \equiv 3\widetilde{\mathcal{X}} \equiv 0.$$

So, we conclude that if $\frac{1+\epsilon}{3}\beta \equiv 0$ then the singular fiber of type III is a cubic curve consisting of a conic and a tangent line.

And if $\frac{1+\epsilon}{3}\beta \equiv 0$, then singular fiber of type III comprises a quartic curve and a quintic curve intersecting at a point. In this case \mathcal{X} cannot be the class of generic fibers.

Configuration of sungular fibers

We conclude that the configuration of singular fibers in our case is :

III I_1^9 .

And the generic fiber represents the class

 $3\mathcal{X}.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

Persson's list of configurations

In the list of configurations of singular fibers given by Persson([P],1990), those containing $\rm I_9$ or $\rm I_1^9$ are :

 ${\rm III} \ {\rm I}_1^9, \ {\rm I}_9 \ {\rm I}_1^3, \ {\rm I}_3 \ {\rm I}_1^9.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Multiple section (?) (EWc333b10B)

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Another multiple section (?) (EWc333b10C)

Diagonal slice (EWc333b10D)

Multiple section (?) (EWc333b12B)

Another multiple section (?) (EWc333b12C)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 - のへで

Diagonal slice (EWc333b12D)

Thank you !

<ロト <回ト < 回ト < 回ト

э

EWc333a00b10W

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

Picture of a section (EWc333a00b11B)

Multiple fiber

THEOREM. (Dolgachev-Martin, [DM]2022) Let $f : X \to B$ be a genus one surface with jacobian $J(f): J(X) \to B$ and let $Aut_f(X)$ be the group of automorphisms of X preserving f. Assume that f is cohomologically flat. Then there is a homomorphism $\varphi : \operatorname{Aut}_{f}(X) \to \operatorname{Aut}_{J(f)}(J(f))$ satisfying the following properties, where $g \in Aut_f(X)$: (1) Both g and $\varphi(g)$ induce the same automorphism of B. (2) $\operatorname{Ker}(\varphi) \cong \operatorname{MW}(J(f)).$ (3) $\varphi(g)$ preserves the zero section of $J(f) : J(X) \to B$. (4) If g acts trivially on Num(X), then $\varphi(g)$ acts trivially on Num(J(X)). (5) Let mF_0 be a fiber of f of multiplicity m and let $(J_0^{\sharp})^0$ be the identity component of the smooth part J_0^{\sharp} of the corresponding fiber J_0 of J(f), then either $\varphi(g)$ acts trivially on $(J_0^{\sharp})^0$ or one of the following holds, where $n = \operatorname{ord}(\varphi(g)|_{(l^{\sharp})^0})$:

[BK1] E. Bedford and K. Kim. Dynamics of Rational Surface Automorphisms: Linear Fractional Recurrences. J. Geomet. Anal. **19**(2009), 553-583.

[BK2] E. Bedford and K. Kim. Dynamics of rational surface automorphisms: rotation domains. Amer. J. Math. **134**(2012), no. 2, 379-405.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

[C1] S. Cantat. Dynamique des automorphisms des surfaces projectives complexes. C.R. Acad. Sci. Paris Sér I Math., 328(10):901-906, 1999.

[C2] S. Cantat. Dynamics of automorphisms of compact complex surfaces. "Frontiers in Complex Dynamics – In Celebration of John Milnor's 80th birthday", Eds. A.Bonifant, M. Lyubich, S. Sutherland, Prinston University Press, Princeton and Oxford, pp. 463-509, 2014

[D] J. Diller. Cremona transformations, surface automorphisms, and plane cubics. Michigan Math. J. **60**(2011), no. 2, pp409-440, with an appendix by Igor Dolgachev.

[DM] I. Dolgachev, G. Martin. Automorphism groups of rational elliptic and quasi-elliptic surfaces in all characteristics. Advances in Mathemaics 400(2022).

[Gi] M. H. Gizatullin. Rational G-surfaces. Izv. Akad. Nauk SSSR Ser. Mat. **44**(1980), 110-144, 239.

[Gr] J. Grivaux. Parabolic automorphisms of projective surfaces (after M. H. Gizatullin). Moscow Mthematical Journal, Independent University of Moscow 2016, 16(2), pp.275-298. hal-01301468. https://hal.archives-ouvertes.fr/hal-01301468
[HL] B. Harbourne, W. Lang, Multiple fibers on rational elliptic surfaces, Trans. Am. Math. Soc. bf 307 (1) (1988) 205-223.
[K] T. Karayayla. The Classification of Automorphism Groups of Rational Elliptic Surface With Section. Publicly Accessible Penn Dissertations 988, Spring 2011.

https://repository.upenn.edu/edissertations/988

[L] R. C. Lyness. Notes 1581, 1847, and 2952. Math. Gaz. **26**, 62 (1942), **29**, 231 (1945), and **45**, 201 (1961).

[M] C. T. McMullen. Dynamics on blowups of the projective plane. Publ. Sci. IHES, **105**, 49-89(2007).

[N] M. Nagata. On rational surfaces. II. Mem. Coll. Sci. Univ. Kyoto Ser. A Math., 33:271-293, 1960/1961.

[OS] K. Oguiso and T. Shioda. The Mordell-Weil Lattice of a Rational Elliptic Surface. Commentarii Mathematici Universitatis Sancti Pauli **40** (1991), 83-99.

[P] Persson, Ulf. "Configurations of Kodaira Fibers on Rational Elliptic Surfaces", *Mathematische Zeitschrift* vol. 205, no.1 (1990), 1-47.

[S] T. Shioda. On the Mordell-Weil latticses, Comment. Math. Univ. St. Pauli, **39** (1990), 211-240.

[SS] M. Schütt, T. Shioda. Elliptic surfaces, Algebraic Geometry in East Asia – Seoul 2008, pp.51-160, Advanced Strudies in Pure Mathematics **60**, 2010.

[U1] T. Uehara. Rational surface automorphisms preserving cuspidal anticanonical curves. Mathematische Annalen, Band 362, Heft 3-4, 2015.

[U2] T. Uehara. Rational surface automorphisms with positive entropy. Ann. Inst. Fourier (Grenoble) **66**(2016), 377-432.