Rational Elliptic Surface without Section (2)

Shigehiro Ushiki
Dec. 14, 2022

Abstract

There exist rational elliptic surfaces which don't admit sections. In [DM](2022), possible multiple fibers for rational elliptic fibrations are described.

We construct concrete examples of rational elliptic surfaces, whose generic fibers are elliptic curves representing cohomology class $-3 K$.

Contents

0. Introduction
1. Orbit data $(3,3,3)$ cyclic
2. Configuration
3. Multiple fibation

0 . Introduction

Elliptic surface

Let S be a complex manifold of complex dimension 2 .
Suppose there is an elliptic fibration onto \mathbb{P}^{1} :

$$
\psi: S \rightarrow \mathbb{P}^{1}
$$

If there is a cross section

$$
\sigma: \mathbb{P}^{1} \rightarrow S, \quad \psi \circ \sigma=i d
$$

we can define Mordell-Weil group $M W(S)$ as the set of all sections.

However, there are elliptic surfaces which don't admit sections.

Picture of a section (QLc153t2B)

Theorem of Gizatullin

Let $F: S \rightarrow S$ be an automorphisms of rational surface S.
The dynamical degree λ_{1} of F is defined as

$$
\lambda_{1}=\lim _{n \rightarrow \infty}\left\|\left(F^{n}\right)^{*}\right\|^{1 / n}
$$

Theorem(Gizatullin [1980], Cantat [1999])
Assume $F \in \operatorname{Aut}(S), \lambda_{1}=1$, and $\left\{\left\|\left(F^{n}\right)^{*}\right\|\right\}_{n \in \mathbb{N}}$ is unbounded. Then F preserves an elliptic fibration.

Elliptic fibration

Proposition(Gizatullin[Gi],1980). Let S be a minimal rational elliptic surface. Then for m large enough, we have $\operatorname{dim}\left|-m K_{S}\right| \geq 1$. For m minimal with this property, $\left|-m K_{S}\right|$ is a pencil without base point whose generic fiber is a smooth and reduced elliptic curve.

Remark(Grivaux[Gr], 2019). The elliptic fibration $S \rightarrow\left|-m K_{S}\right|^{*}$ doesn't have a rational section if $m \geq 2$. Indeed, the existence of multiple fibers $(m \mathcal{D})$ is an obstruction for the existence of a section.

Another elliptic surface

Consider a surface automorphism with invariant elliptic curve of modulus $\epsilon=\exp \left(\frac{\pi i}{3}\right)$ for orbit data $(3,3,3)$, cyclic, choosing multiplier $\omega=\exp \left(\frac{2 \pi i}{3}\right)$.

The configuration of the singular fibers is III I_{1}^{9}.
By choosing extra parameters, we find surface automorphisms with

$$
\operatorname{dim}|-K|=0, \quad \operatorname{dim}|-2 K|=0, \quad \operatorname{dim}|-3 K|=1
$$

REM. This seems to be the case (a) of theorem 3.3 in [DM] with

$$
m=n=3, p=0
$$

A (triple) section ? (EWc333b20B)

A (triple) section ? (EWc333b20B)

There exist ...

TheOrem. There exist automorphisms of elliptic surface, induced by quadratic Cremona transformations, such that the elliptic fibration don't admit sections.

Orbit data

1. Orbit data ($3,3,3$), cyclic

From orbit data to Cremona transformation

Let $\epsilon=\exp (\pi i / 3)$ and let $\Lambda_{\epsilon}=\mathbb{Z}+\epsilon \mathbb{Z}$.
Let us construct a surface automorphism with

$$
\begin{aligned}
& \text { orbit data : }(3,3,3), \text { cyclic, } \\
& \qquad X \cong \mathbb{C} / \Lambda_{\epsilon},
\end{aligned}
$$

and the multiplier for $\left.f\right|_{X}$ is ϵ^{2}.
Suppose the translation of the inner dynamics is $b \in \mathbb{C} / \Lambda_{\epsilon}$.
And the inner dynamics $\left.f\right|_{X}: t \mapsto \epsilon^{2} t+b$.
The parametrization of elliptic curve $\left\{y^{2}=4 x^{3}-g_{2} x-g_{3}\right\}$ is given by

$$
p(t)=\left(\wp(t), \wp^{\prime}(t)\right), \quad t \in \mathbb{C} / \Lambda
$$

Parametrization

Theorem(Diller, 2011) Let $X \subset \mathbb{P}^{2}$ be an irreducible cubic curve. Suppose we are given points $p\left(p_{1}^{+}\right), p\left(p_{2}^{+}\right), p\left(p_{3}^{+}\right) \in X_{\text {reg }}$, a multiplier $a \in \mathbb{C}^{\times}$, and a translation $b \in \mathbb{C} / \Lambda$. Then there exists at most one quadratic transformation f properly fixing X with $I(f)=\left\{p\left(p_{1}^{+}\right), p\left(p_{2}^{+}\right), p\left(p_{3}^{+}\right)\right\}$and $f(p(t))=p(a t+b)$. This f exists if and only if the following hold.

$$
p_{1}^{+}+p_{2}^{+}+p_{3}^{+} \not \equiv 0
$$

a is a multiplier for $X_{\text {reg }}$;

$$
a\left(p_{1}^{+}+p_{2}^{+}+p_{3}^{+}\right) \equiv 3 b .
$$

Finally, the points of indeterminacy for f^{-1} are given by $p_{j}^{-}=a p_{j}^{+}-2 b, j=1,2,3$.

Conditions for orbit data $\left(n_{1}, n_{2}, n_{3}\right), \sigma$ are as follows ($\left.\bmod \Lambda_{\epsilon}\right)$.

$$
\left.p_{\sigma(j)}^{+} \equiv f\right|_{X} ^{n_{j}-1}\left(p_{j}^{-}\right), \quad j=1,2,3
$$

$X \cong \mathbb{C} /(\mathbb{Z}+\epsilon \mathbb{Z})$

Conditions for orbit data $(3,3,3), \sigma=(1,2,3)$, with multiplier $a=\epsilon^{2}$, and translation b, are as follows $\left(\bmod \Lambda_{\epsilon}\right)$.

$$
\begin{gathered}
p_{1}^{+}+p_{2}^{+}+p_{3}^{+} \equiv-3 \epsilon b \text { 三 } 0, \\
p_{1}^{-} \equiv \epsilon^{2} p_{1}^{+}-2 b, \quad p_{2}^{-} \equiv \epsilon^{2} p_{2}^{+}-2 b, \quad p_{3}^{-} \equiv \epsilon^{2} p_{3}^{+}-2 b, \\
p_{2}^{+} \equiv p_{1}^{+}+3 \epsilon b, \quad p_{3}^{+} \equiv p_{2}^{+}+3 \epsilon b, \quad p_{1}^{+} \equiv p_{3}^{+}+3 \epsilon b
\end{gathered}
$$

From the last three equations, we get

$$
9 \epsilon b \equiv 0
$$

We put

$$
b=\frac{1}{9} \beta, \quad \beta \in \Lambda_{\epsilon} .
$$

And from

$$
p_{1}^{+}+p_{2}^{+}+p_{3}^{+} \equiv 3 p_{1}^{+}+9 \epsilon b \equiv-3 \epsilon b .
$$

We get

$$
3 p_{1}^{+} \equiv-3 \epsilon b
$$

We put

$$
3 p_{1}^{+}=-3 \epsilon b+\alpha, \quad \alpha \in \Lambda_{\epsilon} .
$$

If $-3 \epsilon b \neq 0$, then we get solutions:
$p_{1}^{+} \equiv \frac{8 \epsilon}{9} \beta+\frac{1}{3} \alpha, \quad p_{2}^{+} \equiv \frac{2 \epsilon}{9} \beta+\frac{1}{3} \alpha, \quad p_{3}^{+} \equiv \frac{5 \epsilon}{9} \beta+\frac{1}{3} \alpha$,
$p_{1}^{-} \equiv \frac{-1}{9} \beta+\frac{\epsilon^{2}}{3} \alpha, \quad p_{2}^{-} \equiv \frac{-4}{9} \beta+\frac{\epsilon^{2}}{3} \alpha, \quad p_{3}^{-} \equiv \frac{-7}{9} \beta+\frac{\epsilon^{2}}{3} \alpha$.
If $\beta \in \Lambda_{\epsilon} \backslash 3 \Lambda_{\epsilon}$, we have $-3 \epsilon b \equiv-\frac{1}{3} \epsilon \beta \equiv 0$, and we can construct a surface automorphism.

Let $F_{\alpha, \beta}: S_{\alpha, \beta} \rightarrow S_{\alpha, \beta}$ denote our surface automorphism.

Remark. The characteristic polynomial for orbit data $(3,3,3)$, cyclic is

$$
P(\lambda)=(\lambda-1)^{2}\left(\lambda^{2}-1\right)\left(\lambda^{6}+\lambda^{3}+1\right),
$$

and ϵ^{2} is not an eigenvalue.

Base points for $\alpha=0, \beta=1$

EWc333a10b10R

2. Configuration

2. Configuration

Now, let $A_{i} \in H^{2}(S, \mathbb{Z})$ denote the cohomology class of the exceptional fiber $\left[\pi^{-1}\left(f^{i-1}\left(p\left(p_{1}^{-}\right)\right)\right)\right], i=1,2,3$. Let $B_{i}=\left[\pi^{-1}\left(f^{i-1}\left(p\left(p_{2}^{-}\right)\right)\right)\right], i=1,2,3$, and $C_{i}=\left[\pi^{-1}\left(f^{i-1}\left(p\left(p_{3}^{-}\right)\right)\right)\right], i=1,2,3$.

Let $H \in H^{2}(S, \mathbb{Z})$ denote the class of a generic line $\left[\pi^{-1}(L)\right]$. A basis of $H^{2}(S, \mathbb{Z})$ is given by classes

$$
H, A_{1}, A_{2}, A_{3}, B_{1}, B_{2}, B_{3}, C_{1}, C_{2}, C_{3},
$$

Automorphism $F^{*}: H^{2}(S, \mathbb{Z}) \rightarrow H^{2}(S, \mathbb{Z})$ acts as follows.

$$
\begin{gathered}
H \mapsto 2 H-A_{3}-B_{3}-C_{3}, \\
A_{3} \mapsto A_{2} \mapsto A_{1} \mapsto H-A_{3}-B_{3}, \\
B_{3} \mapsto B_{2} \mapsto B_{1} \mapsto H-B_{3}-C_{3}, \\
C_{3} \mapsto C_{2} \mapsto C_{1} \mapsto H-A_{3}-C_{3} .
\end{gathered}
$$

Periodic roots of positive degree

Let

$$
\mathcal{X}=3 H-A_{1}-A_{2}-A_{3}-B_{1}-B_{2}-B_{3}-C_{1}-C_{2}-C_{3}
$$

denote the class of anticanonical curve, represented by our invariant elliptic curve $X \cong \mathbb{C} /(\mathbb{Z}+\epsilon \mathbb{Z})$.

A class $\mathcal{R} \in H^{2}(S, \mathbb{Z})$ is said to be a root of positive degree if

$$
\mathcal{R} \cdot \mathcal{X}=0, \quad \mathcal{R}^{2}=-2, \quad \mathcal{R} \cdot H>0
$$

The characteristic polynomial for orbit data (3,3,3), cyclic is

$$
P(\lambda)=(\lambda-1)^{2}\left(\lambda^{2}-1\right)\left(\lambda^{6}+\lambda^{3}+1\right) .
$$

If there is a periodic root, the period is 1,2 , or 9 .

Period 1 and 2

We have

$$
\begin{aligned}
& \operatorname{Ker}\left(F^{*}-i d\right)=<\mathcal{X}> \\
& \operatorname{Ker}\left(F^{* 2}-i d\right)=<\mathcal{L}, \mathcal{Q}>
\end{aligned}
$$

where

$$
\begin{gathered}
\mathcal{L}=H-A_{2}-B_{2}-C_{2} \\
\mathcal{Q}=2 H-A_{1}-A_{3}-B_{1}-B_{3}-C_{1}-C_{3} .
\end{gathered}
$$

We have

$$
\begin{gathered}
F^{*} \mathcal{L}=\mathcal{Q}, \quad F^{*} \mathcal{Q}=\mathcal{L} \\
\mathcal{L}^{2}=\mathcal{Q}^{2}=-2, \quad \mathcal{L} \cdot \mathcal{Q}=2 \\
\mathcal{L}+\mathcal{Q}=\mathcal{X}
\end{gathered}
$$

These are roots of positive degree.

Another periodic root of period 2

There exists another 2-cycle of roots of positive degree.

$$
\begin{aligned}
\mathcal{U} & =\mathcal{L}+\mathcal{X} \\
\mathcal{V} & =\mathcal{Q}+\mathcal{X}
\end{aligned}
$$

with

$$
\begin{gathered}
F^{*} \mathcal{U}=\mathcal{V}, \quad F^{*} \mathcal{V}=\mathcal{U} \\
\mathcal{U}^{2}=\mathcal{V}^{2}=-2, \quad \mathcal{U} \cdot \mathcal{V}=2
\end{gathered}
$$

Moreover,

$$
\mathcal{U}+\mathcal{V}=3 \mathcal{X}
$$

Singular fiber

If these roots are nodal and there exist curves representing these classes, they form a singular fiber of type I_{2} or III.

To decide the type, recall the Lefschetz formula:

$$
\sum_{f(p)=p} \operatorname{sign}\left(\operatorname{det}\left(D f_{p}-I\right)\right)=\sum_{i=0}^{\operatorname{dim} M}(-1)^{i} \operatorname{trace}\left(\left.f_{*}\right|_{H_{i}(M, \mathbb{R})}\right)
$$

To describe periodic cycles in terms of Lefschetz index, for $m \in \mathbb{N}$ and $k \in \mathbb{Z}$, let

$$
\mathbf{m}(k)=\left\{\begin{array}{cc}
m & k \equiv 0(\bmod m) \\
0 & \text { otherwise }
\end{array} .\right.
$$

Periodic points

Recall the characteristic polynomial for orbit data $(3,3,3)$, cyclic :

$$
P(\lambda)=(\lambda-1)^{2}\left(\lambda^{2}-1\right)\left(\lambda^{6}+\lambda^{3}+1\right)
$$

The Lefschetz number $\Lambda\left(F^{k}\right)$ is expressed as

$$
\Lambda\left(F^{k}\right)=\mathbf{1}+\mathbf{1}+\mathbf{1}+\mathbf{1}+\mathbf{2}-\mathbf{3}+\mathbf{9}
$$

The invariant elliptic curve $X \cong \mathbb{C} /(\mathbb{Z}+\epsilon \mathbb{Z})$, with inner dynamics $t \mapsto \epsilon^{2} t+b$, has three fixed points. The inner dynamics is period three, and these periodic points are not counted in the Lefschetz number if $k \equiv 0(\bmod 3)$.

So, the periodic points in X are counted as $\mathbf{1}+\mathbf{1}+\mathbf{1}-\mathbf{3}$. The cycle of period 9 comes from singular fibers I_{1}^{9}, obtained later.

The periodic points in the curves of period two are described by $\mathbf{1 + 2}$, that is, the type of the singular fiber is III.

Roots of period 9

$$
\begin{gathered}
\operatorname{Ker}\left(F^{* 9}-i d\right)=<H-A_{1}-A_{2}-A_{3}, \\
A_{1}-B_{1}, \quad A_{2}-B_{2}, \quad A_{3}-B_{3}, \\
A_{1}-C_{1}, \quad A_{2}-C_{2}, \quad A_{3}-C_{3}>
\end{gathered}
$$

Their Picard projection of these roots do not vanish. These roots (and the roots in this subspace) are not nodal.

$$
\begin{gathered}
\widetilde{A_{1}-B_{1}} \equiv \frac{1}{3} \beta \\
H-\widetilde{A_{1}-A_{2}}-A_{3} \equiv \frac{-1-\epsilon}{9} \beta
\end{gathered}
$$

. . e.t.c.

Multiple fibration

3. Multiple fibration

Picard projection

For Rational surface, following commutative diagram holds.

$$
\begin{aligned}
0 \longrightarrow & \operatorname{Pic}(S) \xrightarrow{c_{1}} H^{2}(S, \mathbb{Z}) \longrightarrow 0 \\
\downarrow r & \downarrow \iota^{*} \\
0 \rightarrow \operatorname{Pic}_{0}(X) \longrightarrow & \operatorname{Pic}(X) \xrightarrow{\operatorname{deg}} H^{2}(X, \mathbb{Z}) \longrightarrow 0 .
\end{aligned}
$$

In our case, $X \cong \mathbb{C} /(\mathbb{Z}+\epsilon \mathbb{Z})$ is an elliptic cubic curve,

$$
\operatorname{Pic}_{0}(X) \simeq \mathbb{C} / \Lambda_{\epsilon} .
$$

For $\mathcal{P} \in H^{2}(S, \mathbb{Z})$, with $\iota^{*}(\mathcal{P})=0$, we denote

$$
\widetilde{\mathcal{P}}=r \circ c_{1}^{-1}(\mathcal{P}) \in \operatorname{Pic}_{0}(X)
$$

We say $\widetilde{\mathcal{P}}$ is the Picard projection of \mathcal{P}.

Nodality

If $\mathcal{P} \in H^{2}(S, Z)$ is a cohomology class of a (strict transform of a curve $C \subset \mathbb{P}^{2}$, then

$$
\iota^{*}(\mathcal{P})=0 \text { and } r \circ c_{1}^{-1}(\mathcal{P})=0
$$

With our choice of Picard coordinates, we have the following fact.

Theorem. 3d (not necessarily distinct) points
$p_{1}, \cdots, p_{3 d} \in X_{\text {reg }}$ comprise the intersection of X with a curve of degree d if and only if
each irreducible $V \subset X$ contains $d \cdot \operatorname{deg} V$ of the points; and $\sum p_{j} \sim 0$.

Nodal periodic roots

For our automorphism $F_{\alpha, \beta}: S_{\alpha, \beta} \rightarrow S_{\alpha, \beta}$, the Picard projections of periodic roots of positive degree can be computed as follows $\left(\bmod \Lambda_{\epsilon}\right)$.

$$
\begin{gathered}
b=\frac{1}{9} \beta, \quad \alpha \in \Lambda_{\epsilon}, \quad \beta \in \Lambda_{\epsilon} \backslash 3 \Lambda_{\epsilon} \\
\widetilde{\mathcal{L}} \equiv \widetilde{\mathcal{Q}} \equiv \frac{1+\epsilon}{3} \beta, \quad \widetilde{\mathcal{X}} \equiv \frac{2+2 \epsilon}{3} \beta \\
\widetilde{\mathcal{U}} \equiv \widetilde{\mathcal{V}} \equiv 3 \widetilde{\mathcal{X}} \equiv 0
\end{gathered}
$$

So, we conclude that if $\frac{1+\epsilon}{3} \beta \equiv 0$ then the singular fiber of type III is a cubic curve consisting of a conic and a tangent line. And if $\frac{1+\epsilon}{3} \beta \equiv 0$, then singular fiber of type III comprises a quartic curve and a quintic curve intersecting at a point. In this case \mathcal{X} cannot be the class of generic fibers.

Configuration of sungular fibers

We conclude that the configuration of singular fibers in our case is :

$$
\text { III } I_{1}^{9} .
$$

And the generic fiber represents the class

$3 \mathcal{X}$.

Persson's list of configurations

In the list of configurations of singular fibers given by Persson([P],1990), those containing I_{9} or I_{1}^{9} are :

$$
\operatorname{III} \mathrm{I}_{1}^{9}, \quad \mathrm{I}_{9} \mathrm{I}_{1}^{3}, \quad \mathrm{I}_{3} \mathrm{I}_{1}^{9}
$$

Multiple section (?) (EWc333b10B)

Another multiple section (?) (EWc333b10C)

Diagonal slice (EWc333b10D)

Multiple section (?) (EWc333b12B)

Another multiple section (?) (EWc333b12C)

Diagonal slice (EWc333b12D)

Thank you!

EWc333a00b10W

$$
\begin{array}{cccccc}
F_{v} & J & d & r & e & p \\
3 \mathrm{I}_{0} & 0 & 9 & 8 & 0 & 3 \mathbf{1 - 3} \\
\mathrm{III}^{2} & 1 & 9 & 8 & 3 & \mathbf{1 + 2} \\
\mathrm{I}_{1}^{9} & \infty & 9 \times 1 & 0 & 9 \times 1 & \mathbf{9}
\end{array}
$$

Picture of a section (EWc333a00b11B)

Multiple fiber

Theorem. (Dolgachev-Martin,[DM]2022) Let $f: X \rightarrow B$ be a genus one surface with jacobian $J(f): J(X) \rightarrow B$ and let $\operatorname{Aut}_{f}(X)$ be the group of automorphisms of X preserving f. Assume that f is cohomologically flat. Then there is a homomorphism $\varphi: \operatorname{Aut}_{f}(X) \rightarrow \operatorname{Aut}_{J(f)}(J(f))$ satisfying the following properties, where $g \in \operatorname{Aut}_{f}(X)$:
(1) Both g and $\varphi(g)$ induce the same automorphism of B.
(2) $\operatorname{Ker}(\varphi) \cong \operatorname{MW}(J(f))$.
(3) $\varphi(g)$ preserves the zero section of $J(f): J(X) \rightarrow B$.
(4) If g acts trivially on $\operatorname{Num}(X)$, then $\varphi(g)$ acts trivially on $\operatorname{Num}(J(X))$.
(5) Let $m F_{0}$ be a fiber of f of multiplicity m and let $\left(J_{0}^{\sharp}\right)^{0}$ be the identity component of the smooth part $J_{0}^{\#}$ of the corresponding fiber J_{0} of $J(f)$, then either $\varphi(g)$ acts trivially on $\left(J_{0}^{\sharp}\right)^{0}$ or one of the following holds, where $n=\operatorname{ord}\left(\left.\varphi(g)\right|_{\left(J_{0}^{\mu}\right)}\right)$:
(a) F_{0} is smooth, $m=n=3, p \neq 3$.
(b) F_{0} is smooth, $m=2, n \in\{2,4\}, p \neq 2$.
(c) F_{0} is smooth and ordinary, $m=n=p=2$.
(d) F_{0} is an irreducible nodal curve, $m=n=2, p \neq 2$.
(e) F_{0} is of type $\tilde{A}_{1}, m=n=2, p \neq 2$.

References

[BK1] E. Bedford and K. Kim. Dynamics of Rational Surface Automorphisms: Linear Fractional Recurrences. J. Geomet. Anal. 19(2009), 553-583.
[BK2] E. Bedford and K. Kim. Dynamics of rational surface automorphisms: rotation domains. Amer. J. Math. 134(2012), no. 2, 379-405.

References

[C1] S. Cantat. Dynamique des automorphisms des surfaces projectives complexes. C.R. Acad. Sci. Paris Sér I Math., 328(10):901-906, 1999.
[C2] S. Cantat. Dynamics of automorphisms of compact complex surfaces. "Frontiers in Complex Dynamics - In Celebration of John Milnor's 80th birthday", Eds. A.Bonifant, M. Lyubich, S.
Sutherland, Prinston University Press, Princeton and Oxford, pp. 463-509, 2014
[D] J. Diller. Cremona transformations, surface automorphisms, and plane cubics. Michigan Math. J. 60(2011), no. 2, pp409-440, with an appendix by Igor Dolgachev.
[DM] I. Dolgachev, G. Martin. Automorphism groups of rational elliptic and quasi-elliptic surfaces in all characteristics. Advances in Mathemaics 400(2022).

References

[Gi] M. H. Gizatullin. Rational G-surfaces. Izv. Akad. Nauk SSSR Ser. Mat. 44(1980), 110-144, 239.
[Gr] J. Grivaux. Parabolic automorphisms of projective surfaces (after M. H. Gizatullin). Moscow Mthematical Journal, Independent University of Moscow 2016, 16(2), pp.275-298. hal-01301468. https://hal.archives-ouvertes.fr/hal-01301468 [HL] B. Harbourne, W. Lang, Multiple fibers on rational elliptic surfaces, Trans. Am. Math. Soc. bf 307 (1) (1988) 205-223. [K] T. Karayayla. The Classification of Automorphism Groups of Rational Elliptic Surface With Section. Publicly Accessible Penn Dissertations 988, Spring 2011.
https://repository.upenn.edu/edissertations/988

References

[L] R. C. Lyness. Notes 1581, 1847, and 2952. Math. Gaz. 26, 62
(1942), 29, 231 (1945), and 45, 201 (1961).
[M] C. T. McMullen. Dynamics on blowups of the projective plane.
Publ. Sci. IHES, 105, 49-89(2007).
[N] M. Nagata. On rational surfaces. II. Mem. Coll. Sci. Univ.
Kyoto Ser. A Math., 33:271-293, 1960/1961.
[OS] K. Oguiso and T. Shioda. The Mordell-Weil Lattice of a Rational Elliptic Surface. Commentarii Mathematici Universitatis Sancti Pauli 40 (1991), 83-99.
[P] Persson, Ulf. "Configurations of Kodaira Fibers on Rational
Elliptic Surfaces", Mathematische Zeitschrift vol. 205, no. 1
(1990), 1-47.

References

[S] T. Shioda. On the Mordell-Weil latticses, Comment. Math. Univ. St. Pauli, 39 (1990), 211-240.
[SS] M. Schütt, T. Shioda. Elliptic surfaces, Algebraic Geometry in East Asia - Seoul 2008, pp.51-160, Advanced Strudies in Pure Mathematics 60, 2010.
[U1] T. Uehara. Rational surface automorphisms preserving cuspidal anticanonical curves. Mathematische Annalen, Band 362, Heft 3-4, 2015.
[U2] T. Uehara. Rational surface automorphisms with positive entropy. Ann. Inst. Fourier (Grenoble) 66(2016), 377-432.

