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Abstract

Rational surface is constructed by blowing-up the complex
projective space CP2 in several points. Under certain conditions,
birational map from CP2 to itself can be extended to the rational
surface and defines an automorphism of the rational surface.

Such surface automorphisms are studied by E.Bedford, KH.Kim
and C.McMullen. Some of them have invariant cubic curves.

In this note, we derive the explicit formula of invariant cubic
curves by an elementary computation executable by hand.



Linear fractional recurrences

Birational map studied in [BK1],[BK2],

fa,b(x , y) = (y ,
y + a

x + b
)

Birational map studied in [M],

fa,b(x , y) = (a, b) + (y ,
y

x
)

Self-anti-conjugate map

f (x , y) = (y ,
y + α

x + iβ
+ iβ),



Intrinsic parametrization of birational maps

These families of birational maps are equivalent under
correspondence of parameters and change of coordinates.

When there exists an invariant cubic curve, the curve contains
one or two of fixed points. And the cubic curve has a singularity
there. So, we suppose the origin is a fixed point where the
invariant cubic has a singularity, and choose the trace τ and the
determinant δ of the Jacobian matrix at the fixed point, as our
parameters of birational maps. Our family is as follows.

F (u, v) = (v ,
τv − δu
τu + 1

).



Equation of the invariant cubic curve

Let P(u, v) be a cubic polynomial which defines a cubic curve
with a singularity at the origin.

The equation to be satisfied is as follows. (Formulated and
solved in [BK2].)

(∗) P ◦ F (u, v) = tP(u, v) detDF(u,v)

for some t ∈ C.
Rem: This equation is for meromorphic eigenform η = du∧dv

P(u,v) ,

with tF ∗η = η.



Invariant cubic curves

Assume δ 6= 0, τ 6= 0, t 6= 0,±1.

Theorem A. The equation of invariant cubic polynomial has
solutions (up to a constant multiple) in the following cases.

(Γ1) τ = t2 + t3, δ = t5,

P1(u, v) = uv(tu + v) +
1 + t + t2

1 + t
(tu − v

t
)2.

(Γ2) τ = −t − t2, δ = t3,

P2(u, v) = (tu + v)((1 + t)uv + tu + v).

(Γ3) τ = −t, δ = t2,

P3(u, v) = uv(tu + v).



In these three cases, invariant cubic curves were computed in
[BK2]. But the formulas are complicated and not easy to
understand.

(Γ1) Irreducible cubic with a cusp.

(Γ2) Line tangent to a quadric.

(Γ3) Three lines passing through a point.



Uniformization

Theorem B. Uniformizing functions can be taken as follows.

(Γ1) ψC (ζ) =

(
ξ0ζ

2

(ζ + 1)(ζ + t)
,

ξ0ζ
2

(ζ + 1)(ζ + 1
t )

)
, ξ0 =

(1− t)(t3 − 1)

t2
.

(Γ2) ψL(ζ) =

(
ζ

ζ + 1

1− t

t
,

ζ

ζ + 1
(t − 1)

)
,

ψQ(ζ) =

(
t−1ζ

t−1ζ + 1
(t − 1),

tζ

tζ + 1

1− t

t

)
,

(Γ3) ψ0(ζ) =

(
ζ

ζ + 1

t3 − 1

t2
,

ζ

ζ + 1

1− t3

t

)
,

ψ1(ζ) =

(
t−1ζ

t−1ζ + 1

1− t3

t
, 0

)
, ψ2(ζ) =

(
0,

tζ

tζ + 1

t3 − 1

t2

)
.



Schröder’s equations

Theorem C.

(Γ1) F ◦ ψP(ζ) = ψP(tζ).

(Γ2) F ◦ ψL(ζ) = ψQ(tζ),

F ◦ ψQ(ζ) = ψL(tζ).

(Γ3) F ◦ ψ0(ζ) = ψ1(tζ),

F ◦ ψ1(ζ) = ψ2(tζ),

F ◦ ψ2(ζ) = ψ0(tζ).



Indeterminate points

The indeterminate point of F is p = (−1τ ,
−δ
τ2

), and the

indeterminate point of F−1 is q = (−δ
τ2
, −δτ ).

Let ζp = t
t3−t−1 , ζq = t2

1−t2−t3 .

Theorem D.

(Γ1) ψP(ζp) = p, ψP(ζq) = q.

(Γ2) ψQ(ζp) = p, ψQ(ζq) = q.

(Γ3) ψ0(ζp) = p, ψ0(ζq) = q.



eigenvalues

Theorem E. In these cases,

F n(q) = p if and only if ζp = tnζq.

Rem. χn(x) = xn+1(x3 − x − 1) + (x3 + x2 − 1) is the
characteristic polynomial of F ∗ : H1,1(X )→ H1,1(X ). Here, when
F n(q) = p, X is a compact complex surface obtained by blowing
up the projective plane CP2 at the n + 3 points
e1 = [0 : 1 : 0], e2 = [0 : 0 : 1] and F j(q), 0 ≤ j ≤ n.

If ζp = tnζq, then χn(t) = 0.



Coxeter element and Siegel ball

Theorem. For all n sufficiently large, the standard Coxeter
element w ∈Wn can be realized by a surface automorphism with a
cycle of Siegel balls.

Rem. McMullen proved the following.
Theorem(McMullen, 2005). For all n sufficiently large with

n 6= 2, 4 mod 6, the standard Coxeter element w ∈Wn can be
realized by a surface automorphism with a Siegel disk.



Proof of Theorem A

Let

P(u, v) = C0u
3 + C1u

2v + C2uv
2 + C3v

3 + D0u
2 + D1uv + D2v

2.

As F (u, v) = (v , τv−δuτu+1 ), we have detDF = τ2v+δ
(τu+1)2

. Then the

equation (∗) gives rise to polynomial

Φ1(u, v) = (τu + 1)3 (P ◦ F (u, v)− tP(u, v) detDF (u, v)) ,

which vanishes identically with respect to (u, v).

Expand Φ1, and observe that it defines a system of linear
equations.

It may be hard to expand the formula ...



Φ1(u, v) = C0v
3(τu + 1)3 + C1v

2(τv − δu)(τu + 1)2

+ C2v(τv − δu)2(τu + 1) + C3(τv − δu)3 + D0v
2(τu + 1)3

+D1v(τv − δu)(τu + 1)2 + D2(τv − δu)2(τu + 1)

−t(τ2v+δ)(τu+1)(C0u
3+C1u

2v+C2uv
2+C3v

3+D0u
2+D1uv+D2v

2).

Only one term contains u4. Hence −tδτC0 = 0. As we assumed
tδτ 6= 0, necessarily C0 = 0.

Similarly from the term containing v4, we have C3 = 0.

Then from Φ1(u, 0) = δu2(δD2 − tD0)(τu + 1), we get
D2 = t

δ D0.

From these we get ...



Φ2(u, v) = (Φ1(u, v)− Φ1(u, 0))/(v(τu + 1))

= C1{v(τv − δu)(τu + 1)− tu2(τ2v + δ)}

+C2{(τv − δu)2 − tuv(τ2v + δ)}

+ D1{(τv − δu)(τu + 1)− tu(τ2v + δ)}

+D0{v(τu + 1)2− tτ2u2 +
t

δ
(τ2v − 2τδu− tv(τ2v + δ))}.

And from Φ2(u, 0) = {δ(δC2 − tC1)− τ(δD1 + tτD0)}u2

− {δ(1 + t)D1 + 2tτD0}u,

we have D1 =
−2tτ

(1 + t)δ
D0 and δC2 − tC1 =

t(t − 1)

(1 + t)δ
D0.

Assume these conditions to get ....



Φ3(u, v) = (Φ2(u, v)− Φ2(u, 0))/v

= C1{(τv − δu)(τu + 1)− tτ2u2}+C2{τ2v − 2τδu− tu(τ2v + δ)}

+D1{τ(τu + 1)− tτ2u}+ D0{(τu + 1)2 − t2 +
tτ2

δ
(1− tv)}

And from Φ3(u, 0) ≡ 0, we get

D1 =
δ(t2 − 1)− tτ2

τ
τδD0,

C1 + (2τ + t)C2 =
τ

δ
(τ(1− t)D1 + 2D0),

(δ + tτ)C1 = τD0.



Finally, from Φ4(u, v) = (Φ3(u, v)− Φ3(u, 0))/v

= τ(τu + 1)C1 + τ2(1− tu)C2 −
t2τ2

δ
D0 ≡ 0,

we get C1 = tC2, and C1 + τC2 =
t2τ

δ
D0.

Clearly, if all the conditions above are satisfied, they define an
invariant cubic curve.

Summing up the above conditions under C0 = C3 = 0, D2 = t
δD0,

and tτδ 6= 0, t 6= ±1,we obtained the following system of seven
equations.



Equations

(eq.1) D1 =
−2tτ

(1 + t)δ
D0,

(eq.2) D1 =
δ(t2 − 1)− tτ2

τδ
D0,

(eq.3) C1 = tC2,

(eq.4) (δ + tτ)C1 = τD0,

(eq.5) C1 + τC2 =
t2τ

δ
D0,

(eq.6) δC2 − tC1 =
t(t − 1)τ2

(1 + t)δ
D0,

(eq.7) C1 + (2τ + t)C2 =
τ

δ
((1− t)τD1 + 2D0).



Equations (eq.1),(eq.3),(eq.4) determine the solution for given D0.
Other equations should be compatible with these equations.

To have (eq.1) and (eq.2) hold, we have two cases.

(case I) D0 6= 0, and
−2tτ

(1 + t)δ
=
δ(t2 − 1)− tτ2

τδ
.

(case II) D1 = D0 = 0.

In case I, we have

δ =
tτ2

(1 + t)2
and D1 =

−2(1 + t)

τ
D0.

Proposition. In case I, (∗) has a nontrivial solution if and
only if

(∗∗) τ2 + (t − t3)τ − t3(1 + t)2 = 0.



Eliminate δ, C1 and D1 from (eq.4) · · · (eq.7) to get

(eq.4’)
t3

t(1 + t)2
(τ + (1 + t)2)C2 = D0,

(eq.5’)
1

t(1 + t)2
(τ2 + tτ)C2 = D0,

(eq.6’)
tτ2 − t2(1 + t)2

(1 + t)2(t2 − 1)
C2 = D0,

(eq.7’)
1

t(1 + t)2
(τ2 + tτ)C2 = D0.

Evidently, (eq.5’) and (eq.7’) are equivalent.



Equation (eq.6’) can be rewritten as

1

t(1 + t)2

{
τ2 + tτ +

1

t2 − 1
{τ2 + tτ − t3(τ + (1 + t)2)}

}
C2 = D0.

If (eq.4’) and (eq.5’) has a nontrivial solution,

(∗∗) τ2 + (t − t3)τ − t3(1 + t)2 = 0

must be satisfied. Conversely, if (∗∗) is satisfied, (eq.4’), (eq.5’),
(eq.6’), and (eq.7’) are all satisfied.



In case I, there are two subcases.
Equation (∗∗) can be factorized as

(τ − t2 − t3)(τ + t + t2) = 0.

We obtained two cases

(case Γ1) τ = t2 + t3, δ = t5.

(case Γ2) τ = −t − t2, δ = t3.



Now, we go back to (eq.1)· · · (eq.7) and consider the case II, i.e.,
D1 = D0 = 0. We look for a non-trivial solution of

(eq.3”) C1 = tC2,

(eq.4”) (δ + tτ)C1 = 0,

(eq.5”) C1 + τC2 = 0,

(eq.6”) δC2 − tC1 = 0,

(eq.7”) C1 + (2τ + t)C2 = 0.

If δ + tτ 6= 0, then these equations has no non-trivial solutions.
Hence if there is a non-trivial solution, we must have

(case Γ3) τ = −t, and δ = t2.



In cases (case Γ1),(case Γ2),(case Γ3), solutions of (∗) is obtained
as in Theorem A.

(Γ1) τ = t2 + t3, δ = t5,

P1(u, v) = uv(tu + v) +
1 + t + t2

1 + t
(tu − v

t
)2.

(Γ2) τ = −t − t2, δ = t3,

P2(u, v) = (tu + v)((1 + t)uv + tu + v).

(Γ3) τ = −t, δ = t2,

P3(u, v) = uv(tu + v).



Theorem B

Theorem B. Uniformizing functions can be taken as follows.

(Γ1) ψC (ζ) =

(
ξ0ζ

2

(ζ + 1)(ζ + t)
,

ξ0ζ
2

(ζ + 1)(ζ + 1
t )

)
, ξ0 =

(1− t)(t3 − 1)

t2
.

(Γ2) ψL(ζ) =

(
ζ

ζ + 1

1− t

t
,

ζ

ζ + 1
(t − 1)

)
,

ψQ(ζ) =

(
t−1ζ

t−1ζ + 1
(t − 1),

tζ

tζ + 1

1− t

t

)
,

(Γ3) ψ0(ζ) =

(
ζ

ζ + 1

t3 − 1

t2
,

ζ

ζ + 1

1− t3

t

)
,

ψ1(ζ) =

(
t−1ζ

t−1ζ + 1

1− t3

t
, 0

)
, ψ2(ζ) =

(
0,

tζ

tζ + 1

t3 − 1

t2

)
.



Proof of Theorem B

The invariant cubic curve {P(u, v) = 0} has a uniformization
coordinate ψ(ζ).
Theorem B gives the explicit formulas for each cases. It was
computed in [BK2]. Here, we try to execute the computation by
hand.

In (u, v)-coordinates, the other fixed point is (ξ0, ξ0), with

ξ0 =
τ − δ − 1

τ
.

In case (Γ1), ξ0 = −(t − 1)2(1 + t + t2)/t2.



case (Γ1)

In this case, τ = t2 + t3, δ = t5, and

P1(u, v) = uv(tu + v) +
1 + t + t2

1 + t
(tu − v

t
)2.

The cubic curve C = {P1(u, v) = 0} has a caspidal singular point
at the origin. The cubic curve contains the other fixed point
(ξ0, ξ0).
We look for a uniformizing rational function ψC : C→ C , satisfying

ψC (0) = (0, 0), ψC (∞) = (ξ0, ξ0), P1(ψC (ζ)) ≡ 0,

and
F ◦ ψC (ζ) = ψC (tζ).



We set ψC (ζ) = (u(ζ), v(ζ)), and

u(ζ) =
a1ζ + b1ζ

2 + ξ0ζ
3

1 + a0ζ + b0ζ2 + ζ3
,

v(ζ) =
a2ζ + b2ζ

2 + ξ0ζ
3

1 + a0ζ + b0ζ2 + ζ3
,

where constants ai , bi depend on t.

Then compute

Ψ1(ζ) =
(1 + a0ζ + b0ζ

2 + ζ3)3

ζ2
P1(u(ζ), v(ζ)).

May appear cumbersome ...



Ψ1(ζ) = ζ(a1 + b1ζ + ξ0ζ
2)(a2 + b2ζ + ξ0ζ

2)

×(ta1 + a2 + (tb1 + b2)ζ + (t + 1)ξ0ζ
2)

+
1 + t + t2

1 + t
(1 + a0ζ + b0ζ

2 + ζ3)

×(ta1 −
a2
t

+ (tb1 −
b1
t

)ζ + (t − 1

t
)ξ0ζ

2)2.

As Ψ1(ζ) ≡ 0, from Ψ1(0) = 0, we have a2 = t2a1. From
Ψ′1(0) = 0, we have a1a2(ta1 + a2) = 0. Thus, we have

a1 = a2 = 0,

provided t 6= 0, t 6= −1.



Next, let

Ψ2(ζ) =
1

ζ2
Ψ1(ζ)

= ζ2(b1 + ξ0ζ)(b2 + ξ0ζ)(tb1 + b2 + (t + 1)ξ0ζ)

+
1 + t + t2

1 + t
(1 + a0ζ + b0ζ

2 + ζ3)(tb1 −
b2
t

+ (t − 1

t
)ξ0ζ)2.

From Ψ2(0) = 0, we have b2 = t2b1.
Then from the terms of lowest degree, we have

b1b2(tb1 + b2) +
1 + t + t2

1 + t
(t − 1

t
)2ξ20 = 0.

Hence we get
t3b31 = ξ30 .



We choose b1 = 1
t ξ0. Then b2 = tξ0. (Other cases give similar

formulas with slight change of coordinates.)
Then

Ψ3(ζ) =
1

ζ2
Ψ2(ζ)

= ξ30(1 + t)

(
(

1

t
+ ζ)(t + ζ)(1 + ζ)− (1 + a0ζ + b0ζ

2 + ζ3)

)
.

Hence we get

a0 = b0 = 1 + t +
1

t
.

And for ψC (ζ) = (u(ζ), v(ζ)),

u(ζ) =
ξ0ζ

2

(ζ + 1)(ζ + t)
, v(ζ) =

ξ0ζ
2

(ζ + 1)(ζ + 1
t )
.



Note that around the other fixed point (ξ0, ξ0), the invariant curve
is regular and can be uniformized by χ = ζ−1 as

u − ξ0 =
−ξ0χ(χ+ 1 + 1

t )

(χ+ 1)(χ+ 1
t )

, v − ξ0 =
−ξ0χ(χ+ 1 + 1

t )

(χ+ 1)(χ+ t)
.



case (Γ2)

In case (Γ2), τ = −t − t2, δ = t3, and

P2(u, v) = (tu + v)((1 + t)uv + tu + v).

The cubic consists of a line L = {tu + v = 0}, and a quadric
Q = {(1 + t)uv + tu + v = 0}. They are tangent at the origin.

Periodic points of period 2 are R0 = (1−tt , t − 1), and
R1 = (t − 1, 1−tt ).

R0 ∈ L, and R1 ∈ Q.

Uniformizing rational function ψL : C→ L satisfies ψL(0) = (0, 0),
and ψL(∞) = R0. We can take

ψL(ζ) =

(
ζ

ζ + 1

1− t

t
,

ζ

ζ + 1
(t − 1)

)
.



Uniformizing rational function ψQ : C→ Q should satisfy
ψL(0) = (0, 0), ψQ(∞) = R1, and

F ◦ ψL(ζ) = ψQ(tζ), F ◦ ψQ(ζ) = ψL(tζ).

Hence we have

ψQ(ζ) =

(
t−1ζ

t−1ζ + 1
(t − 1),

tζ

tζ + 1

1− t

t

)
.



case (Γ3)

In case (Γ3), τ = −t, δ = t2, and

P3(u, v) = uv(tu + v).

The cubic consists of three lines L0 = {tu + v = 0}, L1 = {v = 0},
and L2 = {u = 0}. They intersect at the origin.

Periodic point of period 3 are S0 = ( t
3−1
t2
, 1−t3

t ), S1 = (1−t
3

t , 0),

and S2 = (0, t3−1
t2

).

S0 ∈ L0, S1 ∈ L1, S2 ∈ L2,

S1 = F (S0), S2 = F (S1), S0 = F (S2).



Uniformizing rational functions ψi : C→ Li , i = 0, 1, 2 should
satisfy

ψi (0) = (0, 0), ψi (∞) = Si , i = 0, 1, 2,

F ◦ ψi (ζ) = ψi+1(tζ), (i mod 3).

Hence we have

ψ0(ζ) =

(
ζ

ζ + 1

t3 − 1

t2
,

ζ

ζ + 1

1− t3

t

)
,

ψ1(ζ) =

(
t−1ζ

t−1ζ + 1

1− t3

t
, 0

)
, ψ2(ζ) =

(
0,

tζ

tζ + 1

t3 − 1

t2

)
.



Proof of Theorems C, D, E

Proof of Theorems C, D, E are straightforward.



Theorem C.

Theorem C.

(Γ1) F ◦ ψP(ζ) = ψP(tζ).

(Γ2) F ◦ ψL(ζ) = ψQ(tζ),

F ◦ ψQ(ζ) = ψL(tζ).

(Γ3) F ◦ ψ0(ζ) = ψ1(tζ),

F ◦ ψ1(ζ) = ψ2(tζ),

F ◦ ψ2(ζ) = ψ0(tζ).



Theorem D.

The indeterminate point of F is p = (−1τ ,
−δ
τ2

), and the

indeterminate point of F−1 is q = (−δ
τ2
, −δτ ).

Let ζp = t
t3−t−1 , ζq = t2

1−t2−t3 .

Theorem D.

(Γ1) ψP(ζp) = p, ψP(ζq) = q.

(Γ2) ψQ(ζp) = p, ψQ(ζq) = q.

(Γ3) ψ0(ζp) = p, ψ0(ζq) = q.



Theorem E.

Theorem E. In these cases,

F n(q) = p if and only if ζp = tnζq.

Rem. χn(x) = xn+1(x3 − x − 1) + (x3 + x2 − 1) is the
characteristic polynomial of F ∗ : H1,1(X )→ H1,1(X ). Here, when
F n(q) = p, X is a compact complex surface obtained by blowing
up the projective plane CP2 at the n + 3 points
e1 = [0 : 1 : 0], e2 = [0 : 0 : 1] and F j(q), 0 ≤ j ≤ n.

If ζp = tnζq, then χn(t) = 0.



from δ, τ to α, β

Let us derive the parameter correspondence between our
parameters δ, τ for family

F (u, v) = (v ,
τv − δu
τu + 1

),

and parameters α, β of our family of self-anti-conjugate maps

f (x , y) = (y ,
y + α

x + iβ
+ iβ),



Fixed point (xs , xs) of f is given by

x2s − xs = α− β2.

And the Jacobian matrix of f at the fixed point is

Df =

(
0 1

− xs+α
(xs+iβ)2

1
xs+iβ

)
.

So, we have τ = 1
xs+iβ , and δ = xs+α

(xs+iβ)2
. From these equations,

we get

α =
2δ − τ − τδ

2τ2
, iβ =

1− δ
2τ

,

a = α + iβ =
δ(1− τ)

τ2
, b = 2iβ =

1− δ
τ

.



Finally, we get the following.

(Γ1) τ = t2 + t3, δ = t5,

α =
−1− t + 2t3 − t5 − t6

2t2(1 + t)2
, iβ =

1− t5

2t2(1 + t)
,

(Γ2) τ = −t − t2, δ = t3,

α =
1 + t + 2t2 + t3 + t4

2t(1 + t)2
, iβ =

t3 − 1

2t(1 + t)
,

(Γ3) τ = −t, δ = t2,

α =
(1 + t)2

2t
, iβ =

t2 − 1

2t
,



In [BK2] functions ϕj(t) are as follows.

(Γ1) ϕ1(t) =

(
t − t3 − t4

(1 + t)2
,

1− t5

t2(1 + t)

)
.

(Γ2) ϕ2(t) =

(
t(1 + t + t2)

(1 + t)2
,

t3 − 1

t(1 + t)

)
.

(Γ3) ϕ3(t) =

(
1 + t, t − 1

t

)
.
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