Rotation Attractors and Rotation Domains in Complex Surface Automorphisms

Shigehiro Ushiki

July 16, 2019

Contents

1. Surface automorphism
2. K3 surface
3. Rational surface
4. Rotating attractor
5. Rotation domain
6. Exotic rotation domain

Surface automorphism

1. Surface automorphism

Blow-up

The blow-up of a surface X at a point $p \in X$ is a surface \tilde{X}, together with a projection $\pi: \tilde{X} \rightarrow X$ such that the exceptional fiber $E=\pi^{-1}(p)$ is equivalent to \mathbb{P}^{1}, and $\pi: \tilde{X} \backslash E \rightarrow X \backslash\{p\}$ is biholomorphic.

$$
\begin{gathered}
\Gamma=\left\{((x, y),[\xi: \eta]) \in \mathbb{C}^{2} \times \mathbb{P}^{1} \mid x \eta=y \xi\right\} \\
\pi((x, y),[\xi: \eta])=(x, y)
\end{gathered}
$$

Surface automorphisms with positive entropy

Theorem (S. Cantat 1999, M. Nagata 1960/1961)
Let X be a connected compact complex surface. Assume that $\operatorname{Aut}(X)$ contains an automorphism with positive topological entropy. Then X is a Kähler surface, and
either X is obtained from the plane $\mathbb{P}^{2}(\mathbb{C})$ by a finite sequence of at least ten blowups,
or (the minimal model of) X is isomorphic to a torus, a K3 surface, or an Enriques surface.

(co)homology

$$
\begin{aligned}
& \text { Let } \pi: \mathcal{S} \rightarrow \mathbb{P}^{2} \text { be a blow-up of } \mathbb{P}^{2} \text { at } n \text { distinct points } \\
& p_{1}, \cdots, p_{n} . \\
& E_{i}=\pi^{-1}\left(p_{i}\right) \subset \mathcal{S}, \quad \text { exceptional fiber, } i=1, \cdots, n, \\
& H \subset \mathcal{S}, \quad \text { generic line. }
\end{aligned}
$$

A basis of $H^{2}(\mathcal{S} ; \mathbb{Z})$ is given by $[H]$ and $\left[E_{i}\right], i=1, \cdots, n$.

Intersection pairing and Minkowski lattice

Intersection pairing on $H^{2}(\mathcal{S} ; \mathbb{Z})$:

$$
[H] \cdot[H]=1, \quad\left[E_{i}\right] \cdot\left[E_{j}\right]=-\delta_{i j}, \quad[H] \cdot\left[E_{i}\right]=0
$$

Let $\mathbb{Z}^{1, n}$ denote the lattice \mathbb{Z}^{n+1} equipped with the Minkowski inner product

$$
x \cdot y=x_{0} y_{0}-x_{1} y_{1}-x_{2} y_{2}-\cdots-x_{n} y_{n},
$$

for basis $e_{0}, e_{1}, \cdots, e_{n}$.
$H^{2}(\mathcal{S} ; \mathbb{Z})$ is isomorphic to $\mathbb{Z}^{1, n}$.

Loxodromic automorphism

Let f be an automorphism of a compact Kähler surface \mathcal{S}.
Let $H^{1,1}(\mathcal{S} ; \mathbb{R})=H^{1,1}(\mathcal{S} ; \mathbb{C}) \cap H^{2}(\mathcal{S} ; \mathbb{R})$.
Then $f^{*}: H^{1,1}(\mathcal{S} ; \mathbb{R}) \rightarrow H^{1,1}(\mathcal{S} ; \mathbb{R})$ is an isomorphism
preserving the intersection pairing.
Define the dynamical degree λ_{f} by

$$
\lambda_{f}=\lim _{n \rightarrow \infty}\left\|f^{* n}\right\|^{\frac{1}{n}}
$$

Theorem. If $\lambda_{f}>1$, then λ_{f} is an eigenvalue of f^{*} with multiplicity 1 , and it is the unique eigenvalue with modulus >1.

If $\lambda_{f}>1$, then λ_{f}^{-1} is an eigenvalue, too. Other eigenvalues are of modulus 1 .
f is said to be loxodromic if $\lambda_{f}>1$.
$\chi_{7}(z)$

Invariant currents and invariant measures

Let f be a loxodromic automorphism of a compact Kähler surface \mathcal{S}.

Theorem (Cantat 2001, Dinh-Sibony 2005). There exist positive, closed currents T_{f}^{+}and T_{f}^{-}with invariance property

$$
f^{*} T_{f}^{+}=\lambda_{f} T_{f}^{+} \quad \text { and } \quad f^{*} T_{f}^{-}=\lambda_{f}^{-1} T_{f}^{-} .
$$

We obtain an invariant measure $\mu_{f}=T_{f}^{+} \wedge T_{f}^{-}$.
Theorem (Bedford-Lyubich-Smilie 1993, Cantat 2003).
Let $\Lambda(f, k)$ denote the set of saddle periodic points of f of period k. Then

$$
\mu_{f}=\lim _{k \rightarrow \infty} \frac{1}{\lambda_{f}^{k}} \sum_{p \in \Lambda(f, k)} \delta_{p}
$$

K3 surface

2. K3 surface

Automorphisms of K3 surface by Cantat

S. Cantat (2001) studied the dynamics of holomorphic diffeomorphisms of compact complex surfaces, especially in the case of projective K3 surfaces. He proved the existence of the invariant probability measure of maximal entropy when the topological entropy of the automorphism is strictly positive.

SERGE CANTAT

Automorphisms of K3 surface by McMullen

C. T. McMullen (2002) gave the first examples of $K 3$ surface automorphisms $f: X \rightarrow X$ with Siegel disks (domains on which f acts by an irrational rotation). The set of such examples is countable, and the surface X must be non-projective to carry a Siegel disk.

Rational surface

3. Rational surface

Automorphisms of rational surfaces

Theorem (Bedford-Kim 2006, McMullen 2007)
For each $n>3$, there exist a, b which satisfy two polynomial equations $P_{n}(a, b)=0, Q_{n}(a, b)=0$ such that

$$
f_{a, b}:(x, y) \mapsto\left(y, \frac{y+a}{x+b}\right)
$$

induces an automorphism of a surface $\pi: \mathcal{X}_{a, b} \rightarrow \mathbb{P}^{2}$ where $\mathcal{X}_{a, b}$ is obtained by blowing up n points.

Automorphisms of rational surfaces

Rational surface automorphisms

Rational families studied by Bedford and Kim.

$$
\begin{gathered}
f(x, y)=\left(y,-\delta x+c y+y^{-1}\right) \\
f(x, y)=\left(y,-x+c y+\sum_{\ell=1}^{k-1} \frac{a_{\ell}}{y^{2 \ell}}+\frac{1}{y^{2 k}}\right) .
\end{gathered}
$$

Cremona transformations with invariant cubic curve

J. Diller (2011) gave a method for constructing automorphisms with positive entropy on rational complex surfaces.

A birational transformation $f: \mathbb{P}^{2} \rightarrow \mathbb{P}^{2}$ is called a Cremona transformation.

A quadratic transformation $f: \mathbb{P}^{2} \rightarrow \mathbb{P}^{2}$ always acts by blowing up three (indeterminacy) points $I(f)=\left\{p_{1}^{+}, p_{2}^{+}, p_{3}^{+}\right\}$in \mathbb{P}^{2} and blowing down the (exceptional) lines joining them. The inverse map f^{-1} is also a quadratic transformation and $I\left(f^{-1}\right)=\left\{p_{1}^{-}, p_{2}^{-}, p_{3}^{-}\right\}$consists of the images of the three exceptional lines.
T. Uehara (2016) gave still more examples of rational surface automorphisms.

Uehara's explicit formula of birational maps

Uehara(2016) obtained an explicit formula for Cremona transformations with an invariant cuspidal cubic curve.

For $d \in \mathbb{C}^{\times}$and $a_{1}, a_{2}, a_{3} \in \mathbb{C}$ with $a_{1}+a_{2}+a_{3} \neq 0$,

$$
\begin{gathered}
X=d \cdot\left\{x+\frac{\nu_{1}}{3}+\frac{\nu_{1}\left(y-x^{3}\right)}{\nu_{1} x^{2}-\nu_{2} x+\nu_{3}-y}\right\}, \\
Y=d^{3} \cdot\left\{\left(x+\frac{\nu_{1}}{3}\right)^{3}+y-x^{3}+\frac{\nu_{1}\left(y-x^{3}\right)}{\nu_{1} x^{2}-\nu_{2} x+\nu_{3}-y}\left(\nu_{1}\left(x+\frac{\nu_{1}}{3}\right)-\nu_{2}\right)\right\},
\end{gathered}
$$

where $\nu_{1}=a_{1}+a_{2}+a_{3}, \nu_{2}=a_{1} a_{2}+a_{2} a_{3}+a_{3} a_{1}$, and $\nu_{3}=a_{1} a_{2} a_{3}$.

$$
\text { If } y=x^{3} \text { then } Y=X^{3} .
$$

Orbit data

Parameters d, a_{1}, a_{2}, a_{3} are determined from the orbit data $\left(n_{1}, n_{2}, n_{3}\right)$ with permutation $\sigma \in \Sigma_{3}$.

Orbit data specifies the behavior of the indeterminate points and the exceptional lines.

The value d is chosen among the eigenvalues of the cohomology homomorphism $f^{*}: H^{2}(\mathcal{S}, \mathbb{Z}) \rightarrow H^{2}(\mathcal{S}, \mathbb{Z})$.

Parameters a_{1}, a_{2}, a_{3} are computed from d.
Differential form $\eta=\frac{d \times \wedge d y}{y-x^{3}}$ is an eigenform.

$$
f^{*} \eta=d \cdot \eta
$$

This defines a meromorphic volume form $\eta \wedge \bar{\eta}$.

Rotating attractor

4. Rotating attractor

Orbit data $(3,3,4)$, cyclic permutation

Attracting Hermann ring

Orbit data $(3,3,4)$, cyclic permutation

Orbit data $(3,2,5)$, cyclic permutation

Attracting Hermann ring

Orbit data $(3,4,5)$ ，id

Attracting Riemann sphere with irrational rotation

Attracting Riemann sphere with irrational rotation

Theorem. In the case of orbit data ($3, n_{2}, n_{3}$) with $\sigma(1)=1$, the surface automorphism has an invariant Riemann sphere passing through three blowup points p_{1}^{+}, p_{1}^{-}, and $f\left(p_{1}^{-}\right)$.

Orbit data $(2,4,4)$, transposition $(1,2)$

Attracting quadratic curve with irrational rotation

Theorem. In the case of orbit data ($2,4, n$) with transposition (1,2), the surface automorphism has an invariant quadratic curve passing through six blowup points $p_{1}^{+}, p_{1}^{-}, p_{2}^{+}, p_{2}^{-}, f\left(p_{2}^{-}\right), f^{2}\left(p_{2}^{-}\right)$.

Rotation domain

5. Rotation domain

Rotation domain

Suppose Ω is a Fatou component of a volume preserving automorphism f with $f(\Omega)=\Omega$. Define the set of all limits of convergent subsequences \mathcal{G} by

$$
\mathcal{G}=\left\{g=\lim _{n_{j} \rightarrow \infty} f^{n_{j}}: \Omega \rightarrow \bar{\Omega}\right\}
$$

If $g=\lim _{n_{j} \rightarrow \infty} f^{n_{j}}$ is such a limit, then g must preserve volume, and thus it is locally invertible. It follows that $g: \Omega \rightarrow \Omega$.

It is known that \mathcal{G} is a compact Lie group, by a theorem of H . Cartan. The connected component \mathcal{G}_{0} of the identity must be a (real) torus.

Rank of a rotation domain

In the volume preserving Hénon map case, known result is as follows.

Theorem (Bedford-Smilie 1991).
\mathcal{G}_{0} is isomorphic to \mathbb{T}^{ρ} with $\rho=1$ or 2 .

Same result should hold for surface automorphism case.
Such a domain is called a rotation domain, and we refer to ρ as the ramk of the rotation domain.

Reinhardt domain

Let $D \subset \mathbb{C}^{2}$ be a connected open set. We say that D is a Reinhardt domain if $\left(e^{i \theta} z, e^{i \phi} w\right) \in D$ for all $(z, w) \in D$ and all $\theta, \phi \in \mathbb{R}$.

If Ω is a rank 2 rotation domain, then the \mathcal{G}-action on Ω may be conjugated to the standard linear action on \mathbb{C}^{2}.

Theorem. (Barrettt-Bedford-Dadok 1989) There are a Reinhardt domain $D \subset \mathbb{C}^{2}$, a linear map $L:(x, y) \mapsto(\alpha x, \beta y)$, $|\alpha|=|\beta|=1$, and a biholomorphic map $\Phi: \Omega \rightarrow D$ such that $\phi \circ f=L \circ \Phi$.

Reversible dynamics

We say that a map f is reversible by an involution τ if $\tau \circ f \circ \tau=f^{-1}$.

Theorem. A Hénon map is reversible by the (anti-holomorphic) involution $\tau(x, y)=(\bar{y}, \bar{x})$ if and only if it has the form

$$
f(x, y)=\left(y, \beta p(y)-\beta^{2} x\right)
$$

where $p(y)$ is a real polynomial and $|\beta|=1$.
Conjugate diagonal $\Delta^{\prime}=\{(x, \bar{x}) \mid x \in \mathbb{C}\}$ is the set of fixed points of involution τ.

Conjugate diagonal slice for Hénon map

Tori in an exotic rotation domain

Conjugate diagonal slice for Hénon map

Conjugate reversible automorphisms

Let $T: \mathcal{S} \rightarrow \mathcal{S}$ be the involution of rational surface \mathcal{S}, defined by extending the complex conjugation $T(x, y)=(\bar{x}, \bar{y})$.

In the case of surface automorphism with invariant caspidal cubic curve, some of them are reversible.

Theorem. For orbit data $\left(n_{1}, n_{2}, n_{3}\right)$, with permutation $\sigma:\{1,2,3\} \rightarrow\{1,2,3\}$, the surface automorphism is reversible by T if $\sigma^{-1}=\sigma$, or $n_{i}=n_{j}$ for some $i \neq j$.

Exotic rotation domain

6. Exotic rotation domain

Orbit data $(1,1,8)$, cyclic permutation, $\mathbb{A} \times \mathbb{D}, t_{3}$, rank 2 .

Orbit data $(3,4,6)$, id, $\mathbb{P} \times \mathbb{D}, t_{1}$, rank 2 .

JU1R346: T:r: 0.3926, T:i: 0.9197, x:-1.5000, 1.5000 y:-1.5000, 1.5000

Theorem. In the case of orbit data ($3, n_{2}, n_{3}$) with $\sigma(1)=1$, the surface automorphism has an invariant Riemann sphere passing through three blowup points p_{1}^{+}, p_{1}^{-}, and $f\left(p_{1}^{-}\right)$.

Orbit data $(2,4,4)$, transposition $(1,2), Q \times \mathbb{D}, t_{3}$, rank 2 .

Theorem. In the case of orbit data ($2,4, n$) with transposition (1,2), the surface automorphism has an invariant quadratic curve passing through six blowup points $p_{1}^{+}, p_{1}^{-}, p_{2}^{+}, p_{2}^{-}, f\left(p_{2}^{-}\right), f^{2}\left(p_{2}^{-}\right)$.

Orbit data $(2,8,2)$, transposition $(1,2),(C \cup \mathbb{P}) \times \mathbb{D}, t_{3}$, rank 1.

Orbit data $(2,7,3)$, transposition $(1,2), \mathbb{D} \times \mathbb{D}, t_{2}$, rank 1 .

Orbit data $(2,3,7)$, id, $\left(C \cup \mathbb{P}_{1} \cup \mathbb{P}_{2}\right) \times \mathbb{D}, t_{3}$, rank 1 .

Orbit data $(2,3,8)$, id, $\left(C \cup \mathbb{P}_{1} \cup \mathbb{P}_{2}\right) \times \mathbb{D}, t_{4}$, rank 1 .

References

[BBD] D. Barrett, E. Bedford and J. Dadok, \mathbb{T}^{n}-actions on holomorphically separable complex manifolds. Math. Z. 202(1989), no. 1, 65-82.
[BK1] E. Bedford and KH. Kim. Periodicities in Linear Fractional Recurrences: Degree growth of birational surface maps, Mich. Math. J. 54(2006), 647-670.
[BK2] E. Bedford and KH. Kim. Dynamics of Rational Surface Automorphisms: Linear Fractional Recurrences. J. Geomet. Anal. 19, 553-583(2009).
[BS1] E. Bedford and J. Smilie. Polynomial diffeomorphisms of \mathbb{C}^{2} : currents, equilibrium measures and hyperbolicity. Invent. Math. 103(1991), no. 1, 69-99.
[BS2] E.Bedford and J. Smilie. Polynomial diffeomorphisms of \mathbb{C}^{2}. Stable manifolds and recurrence. J. Amer. Math. Soc. 4(1991), no. 4, 657-679.

References

[C1] S. Cantat. Dynamique des automorphisms des surfaces projectives complexes. C.R. Acad. Sci. Paris Sér I Math., 328(10):901-906, 1999.
[C2] S. Cantat. Dynamique des automorphismes des surfaces K3. Acta Math., 187(1):1-57, 2001.
[C3] S. Cantat. Dynamics of automorphisms of compact complex surfaces. "Frontiers in Complex Dynamics - In Celebration of John Milnor's 80th birthday", Eds. A.Bonifant, M. Lyubich, S. Sutherland, Prinston University Press, Princeton and Oxford, pp. 463-509, 2014

References

[D] J. Diller. Cremona transformations, surface automorphisms, and plane cubics. Michigan Math. J. 60(2011, no. 2, pp409-440, with an appendix by Igor Dolgachev.
[M1] C. T. McMullen. Dynamics on K3 surfaces Salem numbers and Siegel disks. J. reine angew. Math. 545(2002),201-233. [M2] C. T. McMullen. Dynamics on blowups of the projective plane. Publ. Sci. IHES, 105, 49-89(2007).
[N] M. Nagata. On rational surfaces. II. Mem. Coll. Sci. Univ. Kyoto Ser. A Math., 33:271-293, 1960/1961.
[U] T. Uehara. Rational surface automorphisms with positive entropy. Ann. Inst. Fourier (Grenoble) 66(2016), 377-432.

