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Surface automorphism

1. Surface automorphism



Blow-up

The blow-up of a surface X at a point p ∈ X is a surface X̃ ,
together with a projection π : X̃ → X such that the exceptional
fiber E = π−1(p) is equivalent to P1, and π : X̃ \ E → X \ {p} is
biholomorphic.

Γ =
{

((x , y), [ξ : η]) ∈ C2 × P1 | xη = yξ
}

π((x , y), [ξ : η]) = (x , y).



Surface automorphisms with positive entropy

Theorem ( S. Cantat 1999, M. Nagata 1960/1961)
Let X be a connected compact complex surface. Assume

that Aut(X ) contains an automorphism with positive topological
entropy. Then X is a Kähler surface, and

either X is obtained from the plane P2(C) by a finite sequence
of at least ten blowups,

or (the minimal model of) X is isomorphic to a torus, a K3
surface, or an Enriques surface.



(co)homology

Let π : S → P2 be a blow-up of P2 at n distinct points
p1, · · · , pn.

Ei = π−1(pi ) ⊂ S, exceptional fiber, i = 1, · · · , n,

H ⊂ S, generic line.

A basis of H2(S;Z) is given by [H] and [Ei ], i = 1, · · · , n.



Intersection pairing and Minkowski lattice

Intersection pairing on H2(S;Z) :

[H] · [H] = 1, [Ei ] · [Ej ] = −δij , [H] · [Ei ] = 0.

Let Z1,n denote the lattice Zn+1 equipped with the Minkowski
inner product

x · y = x0y0 − x1y1 − x2y2 − · · · − xnyn,

for basis e0, e1, · · · , en.

H2(S;Z) is isomorphic to Z1,n.



Loxodromic automorphism

Let f be an automorphism of a compact Kähler surface S.
Let H1,1(S;R) = H1,1(S;C) ∩ H2(S;R).
Then f ∗ : H1,1(S;R)→ H1,1(S;R) is an isomorphism

preserving the intersection pairing.
Define the dynamical degree λf by

λf = lim
n→∞

||f ∗n||
1
n .

Theorem. If λf > 1, then λf is an eigenvalue of f ∗ with
multiplicity 1, and it is the unique eigenvalue with modulus > 1.

If λf > 1, then λ−1
f is an eigenvalue, too. Other eigenvalues

are of modulus 1.

f is said to be loxodromic if λf > 1.



χ7(z)



Invariant currents and invariant measures

Let f be a loxodromic automorphism of a compact Kähler
surface S.

Theorem (Cantat 2001, Dinh-Sibony 2005). There exist
positive, closed currents T+

f and T−f with invariance property

f ∗T+
f = λf T

+
f and f ∗T−f = λ−1

f T−f .

We obtain an invariant measure µf = T+
f ∧ T−f .

Theorem (Bedford-Lyubich-Smilie 1993, Cantat 2003).
Let Λ(f , k) denote the set of saddle periodic points of f of period
k . Then

µf = lim
k→∞

1

λkf

∑
p∈Λ(f ,k)

δp.



K3 surface

2. K3 surface



Automorphisms of K3 surface by Cantat

S. Cantat (2001) studied the dynamics of holomorphic
diffeomorphisms of compact complex surfaces, especially in the
case of projective K3 surfaces. He proved the existence of the
invariant probability measure of maximal entropy when the
topological entropy of the automorphism is strictly positive.



Automorphisms of K3 surface by McMullen

C. T. McMullen (2002) gave the first examples of K3 surface
automorphisms f : X → X with Siegel disks (domains on which f
acts by an irrational rotation). The set of such examples is
countable, and the surface X must be non-projective to carry a
Siegel disk.



Rational surface

3. Rational surface



Automorphisms of rational surfaces

Theorem (Bedford-Kim 2006, McMullen 2007) For each
n > 3, there exist a, b which satisfy two polynomial equations
Pn(a, b) = 0,Qn(a, b) = 0 such that

fa,b : (x , y) 7→
(
y ,

y + a

x + b

)
induces an automorphism of a surface π : Xa,b → P2 where Xa,b is
obtained by blowing up n points.



Automorphisms of rational surfaces



Rational surface automorphisms

Rational families studied by Bedford and Kim.

f (x , y) = (y ,−δx + cy + y−1).

f (x , y) = (y ,−x + cy +
k−1∑
`=1

a`
y2`

+
1

y2k
).



Cremona transformations with invariant cubic curve

J. Diller (2011) gave a method for constructing automorphisms
with positive entropy on rational complex surfaces.

A birational transformation f : P2 → P2 is called a Cremona
transformation.

A quadratic transformation f : P2 → P2 always acts by blowing
up three (indeterminacy) points I (f ) = {p+

1 , p
+
2 , p

+
3 } in P2 and

blowing down the (exceptional) lines joining them. The inverse
map f −1 is also a quadratic transformation and
I (f −1) = {p−1 , p

−
2 , p

−
3 } consists of the images of the three

exceptional lines.

T. Uehara (2016) gave still more examples of rational surface
automorphisms.



Uehara’s explicit formula of birational maps

Uehara(2016) obtained an explicit formula for Cremona
transformations with an invariant cuspidal cubic curve.

For d ∈ C× and a1, a2, a3 ∈ C with a1 + a2 + a3 6= 0,

X = d ·
{
x +

ν1

3
+

ν1(y − x3)

ν1x2 − ν2x + ν3 − y

}
,

Y = d3·
{

(x +
ν1

3
)3 + y − x3 +

ν1(y − x3)

ν1x2 − ν2x + ν3 − y
(ν1(x +

ν1

3
)− ν2)

}
,

where ν1 = a1 + a2 + a3, ν2 = a1a2 + a2a3 + a3a1, and ν3 = a1a2a3.

If y = x3 then Y = X 3.



Orbit data

Parameters d , a1, a2, a3 are determined from the orbit data
(n1, n2, n3) with permutation σ ∈ Σ3.

Orbit data specifies the behavior of the indeterminate points
and the exceptional lines.

The value d is chosen among the eigenvalues of the
cohomology homomorphism f ∗ : H2(S,Z)→ H2(S,Z).

Parameters a1, a2, a3 are computed from d .

Differential form η = dx∧dy
y−x3 is an eigenform.

f ∗η = d · η.

This defines a meromorphic volume form η ∧ η̄.
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4. Rotating attractor



Orbit data (3,3,4), cyclic permutation



Attracting Hermann ring



Orbit data (3,3,4), cyclic permutation



Orbit data (3,2,5), cyclic permutation



Attracting Hermann ring



Orbit data (3,4,5), id



Attracting Riemann sphere with irrational rotation



Attracting Riemann sphere with irrational rotation



Theorem. In the case of orbit data (3, n2, n3) with
σ(1) = 1, the surface automorphism has an invariant Riemann
sphere passing through three blowup points p+

1 , p
−
1 , and f (p−1 ).



Orbit data (2,4,4), transposition (1,2)



Attracting quadratic curve with irrational rotation



Theorem. In the case of orbit data (2, 4, n) with
transposition (1,2), the surface automorphism has an invariant
quadratic curve passing through six blowup points
p+

1 , p
−
1 , p

+
2 , p

−
2 , f (p−2 ), f 2(p−2 ).
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Rotation domain

Suppose Ω is a Fatou component of a volume preserving
automorphism f with f (Ω) = Ω. Define the set of all limits of
convergent subsequences G by

G =

{
g = lim

nj→∞
f nj : Ω→ Ω

}
.

If g = limnj→∞ f nj is such a limit, then g must preserve volume,
and thus it is locally invertible. It follows that g : Ω→ Ω.

It is known that G is a compact Lie group, by a theorem of H.
Cartan. The connected component G0 of the identity must be a
(real) torus.



Rank of a rotation domain

In the volume preserving Hénon map case, known result is as
follows.

Theorem (Bedford-Smilie 1991).
G0 is isomorphic to Tρ with ρ = 1 or 2.

Same result should hold for surface automorphism case.

Such a domain is called a rotation domain, and we refer to ρ
as the ramk of the rotation domain.



Reinhardt domain

Let D ⊂ C2 be a connected open set. We say that D is a
Reinhardt domain if (e iθz , e iφw) ∈ D for all (z ,w) ∈ D and all
θ, φ ∈ R.

If Ω is a rank 2 rotation domain, then the G-action on Ω may
be conjugated to the standard linear action on C2.

Theorem. (Barrettt-Bedford-Dadok 1989) There are a
Reinhardt domain D ⊂ C2, a linear map L : (x , y) 7→ (αx , βy),
|α| = |β| = 1, and a biholomorphic map Φ : Ω→ D such that
Φ ◦ f = L ◦ Φ.



Reversible dynamics

We say that a map f is reversible by an involution τ if
τ ◦ f ◦ τ = f −1.

Theorem. A Hénon map is reversible by the
(anti-holomorphic) involution τ(x , y) = (ȳ , x̄) if and only if it has
the form

f (x , y) = (y , βp(y)− β2x)

where p(y) is a real polynomial and |β| = 1.

Conjugate diagonal ∆′ = {(x , x̄)|x ∈ C} is the set of fixed
points of involution τ .



Conjugate diagonal slice for Hénon map



Tori in an exotic rotation domain



Conjugate diagonal slice for Hénon map



Conjugate reversible automorphisms

Let T : S → S be the involution of rational surface S, defined
by extending the complex conjugation T (x , y) = (x̄ , ȳ).

In the case of surface automorphism with invariant caspidal
cubic curve, some of them are reversible.

Theorem. For orbit data (n1, n2, n3), with permutation
σ : {1, 2, 3} → {1, 2, 3}, the surface automorphism is reversible by
T if σ−1 = σ, or ni = nj for some i 6= j .
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Orbit data (1,1,8), cyclic permutation, A× D, t3, rank 2.



Orbit data (3,4,6), id, P× D, t1, rank 2.



Theorem. In the case of orbit data (3, n2, n3) with
σ(1) = 1, the surface automorphism has an invariant Riemann
sphere passing through three blowup points p+

1 , p
−
1 , and f (p−1 ).



Orbit data (2,4,4), transposition (1,2), Q × D, t3, rank 2.



Theorem. In the case of orbit data (2, 4, n) with
transposition (1,2), the surface automorphism has an invariant
quadratic curve passing through six blowup points
p+

1 , p
−
1 , p

+
2 , p

−
2 , f (p−2 ), f 2(p−2 ).



Orbit data (2,8,2), transposition (1,2), (C ∪ P)× D, t3,
rank 1.



Orbit data (2,7,3), transposition (1,2), D× D, t2, rank 1.



Orbit data (2,3,7), id, (C ∪ P1 ∪ P2)× D, t3, rank 1.



Orbit data (2,3,8), id, (C ∪ P1 ∪ P2)× D, t4, rank 1.
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