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Abstract

Automorphisms of complex surfaces can have various invariant
curves. In this note, we consider a family of rational surface
automorphisms with an invariant caspidal cubic curve.

Such rational automorphism can have, at the same time, an
invariant line, or an invariant quadratic curve, or a pair of lines
intersecting at a point.

Dynamics in invariant curves are studied.
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Rational surface

1. Rational surface



Surface automorphism of positive entropy

Theorem (Cantat 1999).
Suppose X is a compact algebraic surface.
If f ∈ Aut(X ) with htop(f ) > 0, then X is either

a torus T2 = C2/L,
a K3 surface or an Enriques surface,

or a rational surface.



Blowups

Theorem (Nagata 1960/1961).
Suppose f is an automorphism on a rational surface X , and f∗

has infinite order.
Then there is a holomorphic, birational map π : X → P2 where

the map π is obtained by a finite blowup process.



Automorphisms of rational surfaces

Theorem (Bedford-Kim 2006, McMullen 2007).
For each n > 3, there exist a, b which satisfy two polynomial

equations Pn(a, b) = 0,Qn(a, b) = 0 such that

fa,b : (x , y) 7→
(
y ,

y + a

x + b

)
induces an automorphism of a surface π : Xa,b → P2 where Xa,b is
obtained by blowing up n points.



Rational surface automorphisms

Rational families studied by Bedford and Kim(2010,2012).

f (x , y) = (y ,−x + cy +
k−1∑
`=1

a`
y2`

+
1

y2k
).

f (x , y) = (y ,−δx + cy + y−1).

J. Diller (2011) gave a systematic method for constructing
automorphisms with positive entropy on rational complex surfaces.

T. Uehara (2016) gave still more examples of rational surface
automorphisms.



Cremona involution

Cremona involution J of P2 is defined by

J[x : y : z ] = [x−1 : y−1 : z−1] = [yz : zx : xy ].

For linear transformations L1, L2 ∈ PGL(P2),

f = L1 ◦ J ◦ L2
is a birational transformation.



Cremona transformations with invariant cubic curve

A birational transformation f : P2 → P2 is called a Cremona
transformation.

A quadratic transformation f : P2 → P2 always acts by blowing
up three (indeterminacy) points I (f ) = {p+1 , p

+
2 , p

+
3 } in P2 and

blowing down the (exceptional) lines joining them. The inverse
map f −1 is also a quadratic transformation and
I (f −1) = {p−1 , p

−
2 , p

−
3 } consists of the images of the three

exceptional lines.

p−i = f (`(p+j , p
+
k )) for {i , j , k} = {1, 2, 3}.

Here, `(p, q) denotes the line passing through p and q.



Orbit data

Suppose that for natural numbers n1, n2, n3, and a permutation
σ : {1, 2, 3} → {1, 2, 3}, f satisfies

f ni−1(p−i ) = p+σ(i), i = 1, 2, 3.

`(p+j , p
+
k )→ p−i → f (p−i )→ · · · → p+σ(i) → `(p−σ(j), p

−
σ(k)).

By blowing up in n1 + n2 + n3 points

p−1 , f (p−1 ), · · · , f n1−1(p−1 ) = p+σ(1),

p−2 , f (p−2 ), · · · , f n2−1(p−2 ) = p+σ(2),

p−3 , f (p−3 ), · · · , f n3−1(p−3 ) = p+σ(3),

f lifts to a surface automorphism.



2. Surface automorphism



Quadratic Cremona transformation

Theorem. (Diller 2011)
Let C be a cuspidal cubic curve, n1, n2, n3 and σ ∈ Σ3 be orbit

data. If f is a quadratic transformation properly fixing C that
tentatively realizes the orbit data, then the multiplier for f |Creg is

a root of the corresponding characteristic polynomial P(λ).
Conversely, there exists a tentative realization f for each root
λ = a of P(λ) that is not a root of unity, and f is unique up to
conjugacy of linear transformation preserving C .



Uehara’s formula of birational transformation

Uehara(2016) obtained an explicit formula for Cremona
transformations with an invariant cuspidal cubic curve.



Uehara’s formula in non-homogeneous coordinates

For d ∈ C× and a1, a2, a3 ∈ C with a1 + a2 + a3 6= 0,

X = d ·
{
x +

ν1
3

+
ν1(y − x3)

ν1x2 − ν2x + ν3 − y

}
,

Y = d3·
{

(x +
ν1
3

)3 + y − x3 +
ν1(y − x3)

ν1x2 − ν2x + ν3 − y
(ν1(x +

ν1
3

)− ν2)

}
,

where ν1 = a1 + a2 + a3, ν2 = a1a2 + a2a3 + a3a1, and ν3 = a1a2a3.

If y = x3 then Y = X 3.



Orbit data

Parameters d , a1, a2, a3 are determined from the orbit data
(n1, n2, n3) with permutation σ ∈ Σ3.

Orbit data specifies the behavior of the indeterminate points
and the exceptional lines.

The value d is chosen among the eigenvalues of the
cohomology homomorphism f ∗ : H2(S,Z)→ H2(S,Z).

Parameters a1, a2, a3 are computed from d .

Differential form η = dx∧dy
y−x3 is an eigenform.

f ∗η = d · η.

This defines a meromorphic volume form η ∧ η̄.



Characteristic polynomial

For surface automorphism f : S → S satisfying orbit data
(n1, n2, n3) with permutation σ ∈ Σ3, the characteristic polynomial
of the homomorphism f ∗ : H2(S,Z)→ H2(S,Z) is as follows. (see
[BK1])

In the case of invariant cubic curve y = x3, the indeterminacy
points p+i = (ai , a

3
i ), i = 1, 2, 3, of f and the indeterminacy points

p−i = (bi , b
3
i ), i = 1, 2, 3, of f −1 are computed as follows.



σ is the identity

(case 1) σ = id .

χ(d) = dn1+n2+n3+1 − 2dn1+n2+n3 + dn1+n2 + dn2+n3 + dn3+n1

− dn1+1 − dn2+1 − dn3+1 + 2d − 1.

ai = −dni−1(d − 1)

dni − 1
+

1

3
(i = 1, 2, 3).

bi = − d − 1

dni − 1
+

1

3
(i = 1, 2, 3).



σ is a transposition

(case 2) σ is a transposition (σ(1) = 2, σ(2) = 1, σ(3) = 3).

χ(d) = dn1+n2+n3+1 − 2dn1+n2+n3 + dn1+n2 + (d − 1)(dn1+n3 + dn2+n3)

−(d − 1)(dn1 + dn2) + dn3+1 − 2d + 1.

ai = −dnj−1(dni + 1)(d − 1)

dni+nj − 1
+

1

3
((i , j) = (1, 2), (2, 1)).

ak = −dnk−1(d − 1)

dnk − 1
+

1

3
(k = 3).

bi = − (dnj + 1)(d − 1)

dni+nj − 1
+

1

3
((i , j) = (1, 2), (2, 1)).

bk = − d − 1

dnk − 1
+

1

3
(k = 3).



σ is a cyclic permutation

(case 3) σ is a cyclic permutation (σ(1) = 2, σ(2) = 3, σ(3) = 1).

χ(d) = dn1+n2+n3+1 − 2dn1+n2+n3 + (d − 1)(dn1+n2 + dn2+n3 + dn3+n1)

+(d − 1)(dn1 + dn2 + dn3) + 2d − 1.

ai = −dnk−1(dnj (dni + 1) + 1)(d − 1)

dni+nj+nk − 1
+

1

3

((i , j , k) = (1, 2, 3), (2, 3, 1), (3, 1, 2)).

bi = − (dnk (dnj + 1) + 1)(d − 1)

dni+nj+nk − 1
+

1

3

((i , j , k) = (1, 2, 3), (2, 3, 1), (3, 1, 2)).



Orbit data to parameters

From orbit data (n1, n2, n3),σ, parameters are determined by
the followings. To simplify the computations, fixed point is fixed to
( 1
3 ,

1
27).

a1 + a2 + a3 =
1

d
− 1.

aσ(i) −
1

3
= dni−1(bi −

1

3
),

bi −
1

3
= d · (ai −

1

3
) + d − 1,

for i = 1, 2, 3.

These equations have a solution iff χ(d) = 0 (assuming d is not
a root of unity).



Eigen meromorphic form

J.Diller et al. [DJS] proved the existence of eigen meromorphic
form.

Theorem. (Diller-Jackson-Sommese 2007)
Let f : S → S be an algebraically stable birational map of a

complex projective surface with λ(f ) > 1. Let C be a connected
f -invariant curve of genus one. By contracting curves in S, one
can arrange additionally that −C is the divisor of a meromorphic
two-form η satisfying f ∗η = cη. The constant c is determined
solely by the curve C and the induced automorphism f : C → C .



Meromorphic form η

For our map, equality

Y − X 3 =
1

d
(y − x3) detDf(x ,y).

can be verified by a direct computation.

Proposition η = dx∧dy
y−x3 is an eigen two-form for f ∗.

f ∗η = d · η.



Rotating attractor

3. Rotating attractor



Attracting annulus(?)

Attracting annuli are observed numerically for dissipative cases
with orbit data

(3, 3, 4), cyclic permutation,
(2, 3, 5), cyclic permutation,
(3, 2, 5), cyclic permutation,
(2, 3, 6), cyclic permutation.

In these cases, numerical observation tells us that the basin of
attraction is open and dense in the surface.



Attracting annulus(?)

Existence of attracting annulus is a challenging problem.

Diagonal slice {x = y}, or horizontal slice {Y = 0} is shown
colored according to the norm of the derivative along each orbit.

As, it seems, the Lypunov exponent = 0, norm of the derivative
is estimated for some finite number of iterations, which suggests
the transient behavior of the orbit before being attracted to the
attractor.

Projection of an orbit to the slice is shown in the pictures.



Orbit data (3,3,4), cyclic permutation, diagonal slice
{y = x}



Attracting Hermann ring(?)



Attracting Hermann ring(?), enlarged



Orbit data (3,3,4), cyclic permutation, horizontal slice
{y = 0}



Orbit data (3,2,5), cyclic permutation, horizontal slice
{y = 0}



Attracting Hermann ring(?)



Attracting invariant line

In the dissipative case, (0 < d < 1), the determinant with
respect to the two-form η is equal to d .

If there is an invariant curve, disjoint from the cubic curve
{y = x3}, and the intrinsic dynamics is neutral, then this curve
must be an attractor.

According to [DJS], invariant curve must be a tree of genus 0,
if it is not contained in the cubic curve.



Invariant curve

Theorem. (Diller-Jackson-Sommese 2007)
Let f : X → X be an algebraically stable map with λ(f ) > 1,

and suppose that V = f (V ) is a connected curve with g(V ) = 1.
Then by contracting finitely many curves, one may further arrange
the following.

(1) V ∼ −KX is an anticanonical divisor.
(2) I (f n) ⊂ V for every n ∈ Z.
(3) Any connected curve strictly contained in V has genus zero.
(4) If W is a connected f -invariant curve not completely

contained in V , then W has genus zero, is disjoint
from V , and is equal to a tree of smooth rational curves,
each with self-intersection −2.



Orbit data (3,4,5), id, diagonal slice



Attracting invariant line with irrational(?) rotation, real
slice



Attracting invariant line with irrational(?) rotation



Invariant line

Theorem. In the case of orbit data (3, n2, n3) with
σ(1) = 1, the surface automorphism has an invariant line passing
through three blowup points p+1 , p

−
1 , and f (p−1 ).

Rem. In this case, the self-intersection of the strict transform
of this invariant line is −2.



Proof. Let p+1 = (a1, a
3
1), p−1 = (b1, b

3
1), and f (p−1 ) = (c1, c

3
1 ).

Then,

a1 = −d2(d − 1)

d3 − 1
+

1

3
, b1 = − d − 1

d3 − 1
+

1

3
, c1 = −d(d − 1)

d3 − 1
+

1

3
.

Immediately we see that a1 + b1 + c1 = 0. Hence three points
p+1 , p

−
1 , f (p−1 ) are on a line. Let L denote this line. As L passes through

the indeterminate point p+1 , its image f (L) is a line. Since f (L) passes
through p+1 = f 2(p−1 ) and f (p−1 ), it coincides with L.



Attracting quadratic curve

There are cases where the attractor is an invariant quadratic
curve, disjoint from the cubic curve.



Orbit data (2,4,4), transposition (1,2), diagonal slice



Attracting quadratic curve with irrational(?) rotation, real
slice



Invariant quadratic curve

Theorem. In the case of orbit data (2, 4, n) with
transposition (1,2), the surface automorphism has an invariant
quadratic curve passing through six blowup points
p+1 , p

−
1 , p

+
2 , p

−
2 , f (p−2 ), f 2(p−2 ).



Proof. Quadratic curve is mapped to a quadratic curve by
Cremona transformation if the quadratic curve passes through exactly
two indeterminate points. If there exists a quadratic curve passing
through these 6 points, its image by f is a quadratic curve, since p+1 and
p+2 are indeterminate points. Points p+1 = f (p−1 ), p+2 = f 3(p−2 ), f (p−2 ),
f 2(p−2 ) are in the image quadratic curve, which must be the same
quadratic curve, since 4 points determines the quadratic curve.

So, we only need to prove the existence of a quadratic curve passing
through the 6 points.



Let

a1 = −d(d4 + 1)(d − 1)

d6 − 1
+

1

3
, a2 = −d3(d2 + 1)(d − 1)

d6 − 1
+

1

3
,

b1 = − (d2 + 1)(d − 1)

d6 − 1
+

1

3
, b2 = − (d4 + 1)(d − 1)

d6 − 1
+

1

3
,

c1 = −d(d2 + 1)(d − 1)

d6 − 1
+

1

3
, c2 = −d2(d2 + 1)(d − 1)

d6 − 1
+

1

3
.

These are the x-coordinates of the blowup points.

p+1 = (a1, a
3
1), p−1 = (b1, b

3
1),

p+2 = (a2, a
3
2), p−2 = (b2, b

3
2),

f (p−2 ) = (c1, c
3
1 ), f 2(p−2 ) = (c2, c

3
2 ).

Immediately, we see that

a1 + a2 + b1 + b2 + c1 + c2 = 0.



Consider polynomial of degree 6 :

P(z) = (z − a1)(z − a2)(z − b1)(z − b2)(z − c1)(z − c2)

= z6 + A4z
4 + A3z

3 + A2z
2 + A1z + A0.

Let Q(x , y) be a quadratic polynomial defined by

Q(x , y) = y2 + A4xy + A3y + A2x
2 + A1x + A0.

The 6 points p+1 , p
−
1 , p

+
2 , p

−
2 , f (p−2 ), f 2(p−2 ) satisfy Q(x , y) = 0.

Hence the quadratic curve Q(x , y) = 0 passes through these 6 points.

We conclude that quadratic curve {Q(x , y) = 0} is invariant under f .

Rem. The strict transform of this quadratic curve has
self-intersection −2.



Rotation domain

4. Rotation domain



Rotation domain

Suppose Ω is a Fatou component of a volume preserving
automorphism f with f (Ω) = Ω. Define the set of all limits of
convergent subsequences G by

G =

{
g = lim

nj→∞
f nj : Ω→ Ω

}
.

If g = limnj→∞ f nj is such a limit, then g must preserve volume,
and thus it is locally invertible. It follows that g : Ω→ Ω.

It is known that G is a compact Lie group, by a theorem of H.
Cartan. The connected component G0 of the identity must be a
(real) torus.



Rank of a rotation domain

In the volume preserving Hénon map case, known result is as
follows.

Theorem (Bedford-Smilie 1991).
G0 is isomorphic to Tρ with ρ = 1 or 2.

Same result should hold for surface automorphism case.

Such a domain is called a rotation domain, and we refer to ρ
as the rank of the rotation domain.



Reinhardt domain

Let D ⊂ C2 be a connected open set. We say that D is a
Reinhardt domain if (e iθz , e iφw) ∈ D for all (z ,w) ∈ D and all
θ, φ ∈ R.

If Ω is a rank 2 rotation domain, then the G-action on Ω may
be conjugated to the standard linear action on C2.

Theorem. (Barrettt-Bedford-Dadok 1989) There are a
Reinhardt domain D ⊂ C2, a linear map L : (x , y) 7→ (αx , βy),
|α| = |β| = 1, and a biholomorphic map Φ : Ω→ D such that
Φ ◦ f = L ◦ Φ.



Exotic rotation domain

5. Exotic rotation domain



Exotic rotation domains are observed numerically by examining
the slice comprising the fixed points of the involution related to
reversibility.

Existence of exotic rotation domains is a challenging problem.



Reversible dynamics

We say that a map f is reversible by an involution τ if
τ ◦ f ◦ τ = f −1.

Theorem. A Hénon map is reversible by the
(anti-holomorphic) involution τ(x , y) = (ȳ , x̄) if and only if it has
the form

f (x , y) = (y , βp(y)− β2x)

where p(y) is a real polynomial and |β| = 1.

Conjugate diagonal ∆′ = {(x , x̄)|x ∈ C} is the set of fixed
points of involution τ .



Conjugate diagonal slice for Hénon map



Tori(?) in an exotic rotation domain(?)



Conjugate diagonal slice for Hénon map



Conjugate reversible surface automorphisms

Let T : S → S be the involution of rational surface S, defined
by extending the complex conjugation T (x , y) = (x̄ , ȳ).

In the case of surface automorphism with invariant caspidal
cubic curve, derived from a non-real eigenvalue d , some of them
are reversible.

Theorem. For orbit data (n1, n2, n3), with permutation
σ : {1, 2, 3} → {1, 2, 3}, the surface automorphism is reversible by
T if σ−1 = σ, or ni = nj for some i 6= j .



Reversibility, case 1

Proof. There are three cases. In the followings, d is the
determinant of the specified automorphism fd . We assume d is a root of
the characteristic polynomial for the orbit data, with is not a root of
unity and |d | = 1.

(case 1) σ = id . In this case, as

ai = −dni−1(d − 1)

dni − 1
+

1

3
, and bi = − d − 1

dni − 1
+

1

3
,

for i = 1, 2, 3, we have

āi = −d1−ni (d−1 − 1)

d−ni − 1
+

1

3
= bi .

Hence fd is reversible by involution T , i .e.

f −1d = T ◦ fd ◦ T .



Reversibility, case 2

(case 2) σ is a transposition. (σ(1) = 2, σ(2) = 1, σ(3) = 3)
As in the preceding case, ā3 = b3. For {i , j} = {1, 2},

ai = −dnj−1(dni + 1)(d − 1)

dni+nj − 1
+

1

3
, and bi = − (dnj + 1)(d − 1)

dni+nj − 1
+

1

3
.

We have, for i = 1, 2,

āi = −d1−nj (d−ni + 1)(d−1 − 1)

d−ni−nj − 1
+

1

3
= bj .

Hence fd is reversible by involution T , i .e.

f −1d = T ◦ fd ◦ T .



Reversibility, case 3
(case 3) σ is a cyclic permutation. (σ(1) = 2, σ(2) = 3, σ(3) = 1)

For (i , j , k) = (1, 2, 3), (2, 3, 1), (3, 1, 2),

ai = −dnk−1(dni+nj + dnj + 1)(d − 1)

dni+nj+nk − 1
+

1

3
,

bi = − (dni+nj + dnj + 1)(d − 1)

dni+nj+nk − 1
+

1

3
.

And

āi = −d1−nk (d−ni−nj + d−nj + 1)(d−1 − 1)

d−ni−nj−nk − 1
+

1

3

= − (dni+nj + dni + 1)(d − 1)

dni+nj+nk − 1
+

1

3
.

If ni = nj 6= nk , then

bi = āi , bj = āk , bk = āj ,

which imply the reversibility

f −1d = T ◦ fd ◦ T .



Orbit data (1,1,8), cyclic, A× D(?), t3, rank 2(?).



6. Invariant lines



In the volume preserving case, there exist surface
automorphisms with invariant line or invariant quadratic curve.

The dynamics in the invariant line (or in the invariant
quadratic curve) is conjugate to a Möbius transformation of a
Riemann sphere.



Orbit data (3,4,6), id, P× D(?), t1, rank 2(?).



Theorem. In the case of orbit data (3, n2, n3) with σ(1) = 1,
the surface automorphism has an invariant line passing through
three blowup points p+1 , p

−
1 , and f (p−1 ). The strict transform of

this line is a curve of genus 0 with self-intersection −2.

Proof. The proof is same as the theorem for dissipative case.



Orbit data (2,4,4), transposition (1,2), Q × D(?), t3, rank
2(?).



Theorem. In the case of orbit data (2, 4, n) with
transposition (1,2), the surface automorphism has an invariant
quadratic curve passing through six blowup points
p+1 , p

−
1 , p

+
2 , p

−
2 , f (p−2 ), f 2(p−2 ). The strict transform of this

quadratic curve is a curve of genus 0 with self-intersection −2.

Proof. The proof is same as the theorem for dissipative case.



Orbit data (2,8,2), transposition (2,3), (C ∪ P)× D(?), t3,
rank 1.



Invariant line of self-intersection −1

Theorem. In the case of orbit data (2, n2, n3) with
σ(1) = 1, the surface automorphism has an invariant line passing
through two blowup points p+1 , p

−
1 , and the fixed point

p0 = ( 1
3 ,

1
27 ). The strict transform of this line is a curve of genus

0 with self-intersection −1.



Proof. In this case,

a1 = −d(d − 1)

d2 − 1
+

1

3
, b1 = − d − 1

d2 − 1
+

1

3
.

So, a1 + b1 + 1
3 = 0 holds. Hence, p+1 , p−1 , and p0 are on a line, say L.

As p+1 ∈ L, f (L) is a line. And f (L) passes through p+1 = f (p−1 ) and
p0 = f (p0). Therefore, f (L) = L.

Rem. In this case, the fixed point p0 of surface automorphism f is a
fixed point of Möbius transformation f |L : L→ L. The eigenvalue at p0
of f |L is d3−n1−n2−n3 . The eigenvalues of the other fixed point of f
contained in L are dn1+n2+n3−3 and d4−n1−n2−n3 .



Orbit data (2,3,7), id, (C ∪ P1 ∪ P2)× D(?), t3, rank 1.



Special case

Theorem. In the case of orbit data (3, 3, n), σ = id . or
σ = (1, 2), with n ≥ 4, the surface automorphism f has an
invariant line of period-three periodic points.

Proof. Similarly as in the case of (3, n2, n3), σ(1) = 1, f has an
invariant line, say L, passing through points p+1 , p−1 , and f (p−1 ). In this
case we have p+2 = p+1 and p−2 = p−1 . The image f (p+1 ) is the line
passing through p−2 and p−3 . The point in the strict transform of L must
be mapped to a point in the same line. So p+1 is mapped to p−2 . This
shows that the Möbius transformation f |L has a periodic point of period
3. Consequently, all the points of L, except for two fixed points, are
periodic points of period 3.



Orbit data (3,3,4), id, P× D(?), t3, rank 1.



Orbit data (3,3,4), id, P, tr , attractor, diagonal slice



Special case

Theorem. In the case of orbit data (2, 2, n), cyclic
permutation, with n ≥ 6, the surface automorphism f has an
invariant quadratic curve consisting of two lines intersecting at a
point. The two lines are mapped to each other and the fixed point
is linearizable.



Orbit data (2,2,6), cyclic, (P ∪ P)× D(?), t2, rank 1.



Proof

Proof. As stated in the reversibility case 3, we have

b1 = ā3, b2 = ā2, b3 = ā1.

Moreover, in this case, we have

a3 = b1.

For, as

a3 = − (d − 1)d

dn+4 − 1
(dn+2 + d2 + 1) +

1

3
,

b1 = − d − 1

dn+4 − 1
(dn+2 + dn + 1) +

1

3
,

we have

a3 − b1 = − d − 1

dn+4 − 1
(dn+3 − dn+2 − dn + d3 + d − 1).



Proof (a3 = b1)

On the other hand, in this case, d is a zero of characteristic polynomial

χ(d) = (d2 − d + 1)((d3 − d2 − 1)dn + d3 + d − 1),

which is not a root of unity, we conclude

a3 = b1.

Next, we show that three points, p+3 = p−1 = (a3, a
3
3), p−2 = (b2, b

3
2), and

p+2 = (a2, a
3
2), are on a line.

Instead of showing a3 + b2 + a2 = 0, we show

2(a2 + b2) + (a3 + b1) = 0.



Proof (L)

As

a2 = − (d − 1)d

dn+4 − 1
(dn+2 + dn + 1) +

1

3
,

b2 = − d − 1

dn+4 − 1
(dn+2 + d2 + 1) +

1

3
,

we have

2(a2 + b2) + (a3 + b1) = − d + 1

dn+4 − 1
((d3 − d2 − 1)dn + (d3 + d − 1)).

Again, this value vanishes as d is not a root of unity and satisfies
χ(d) = 0. Hence, three points p+3 , p+2 , and p−2 are on a line.



Proof (L̃ ∩ E )

Let L denote the line passing through p+3 , p+2 , and p−2 . The image of L
is a blowdown point p−1 .

Let E denote the exceptional fiber obtained by blowing up at p−1 .
E is also the exceptional fiber blown up at p+3 . Points p+3 and p−1 should
be considered as a point on the invariant cubic curve C . So, we blow up
at C̃ ∩ E to have the surface automorphism, where C̃ denotes the strict
transform of C . Hence, E is mapped to a line passing through p−1 and
p−2 , which is L.

L̃ and E are mapped to each other. The intersection point L̃ ∩ E is a
fixed point.

Since the two-form η = dx∧dy
y−x3 induces a two-form on the surface.

The determinant of Df at the fixed point L̃ ∩ E is d .

As L̃→ E , and E → L̃, trace of Df at the fixed point is 0.
The eigenvalues at the fixed point are ±

√
−d .



Proof (linearization)

Now, let us prove the linearizability of the fixed point.

Let λ =
√
−d and µ = −λ be the eigenvalues of the fixed point. If

there exist positive numbers c and M, such that for all integers m ≥ 0,
n ≥ 0 with m + n ≥ 2,

|λmµn − λ| > c

|m + n|M
, |λmµn − µ| > c

|m + n|M

holds.

Clearly, λ is an algebraic number. It is not a root of unity.
So, λk − 1 = 0 holds if and only if k = 0. And by Fel’dman’s result using
the Gel’fond-Baker method, applied to this case, we have

|k02πi + k1 log λ| > exp(−M(δ + log k1)),

where δ is the degree of the algebraic number λ, M is a constant
depending only on λ and δ.



Proof (Diophantine condition)

From this we can find a positive constant c such that for all k 6= 0,

| ± λk − 1| > c

|k |M

holds.

Now,

|λmµn − λ| = |λm−1µn − 1| = |(−1)nλm+n−1 − 1| > c

|m + n − 1|M
,

|λmµn − µ| = |λmµn−1 − 1| = |(−1)mλm+n−1 − 1| > c

|m + n − 1|M
.

These indicate that the Diophantine condition at the fixed point is
satisfied and the surface automorphism is linearlizable in a neighborhood
of the fixed point.



7. Dynamics in L



Invariant line

In the case of orbit data (3,m, n) with σ(1) = 1, there is an
invariant line L.

The invariant line L passes through three points

p+1 = (a1, a
3
1), p−1 = (b1, b

3
1), f (p−1 ) = (c1, c

3
1 ),

with a1 + b1 + c1 = 0.

The invariant line L is given by equation

y = (a21 + a1b1 + b21)x + a1b1c1.

Let z be the coordinate of L defined by

x = z , y = (a21 + a1b1 + b21)z + a1b1c1.



Dynamics in L

As, along L,

y − x3 = −(x − a1)(x − b1)(x − c1),

ν1x
2 − ν2x + ν3 − y = (x − a1)(ν1x + b1c1 − a2a3),

the dynamics z 7→ Z is given by

Z = d

(
z +

ν1
3
− ν1(z − b1)(z − c1)

ν1z + b1c1 − a2a3

)
.

This is in fact a Möbius transformation

Z =
d(

ν21
3 − ν1a1 − a2a3 + b1c1)z − d

3 ν1(a2a3 + 2b1c1)

ν1x + b1c1 − a2a3
.



Fixed point in L

The fixed points of this Möbius transformation are given by
quadratic equation

z2 + τz + δ = 0,

where

τ = d(a1 −
ν1
3

+ b1c1 − a2a3), δ =
d

3
(a2a3 + 2b1c1).

(We used ν1 = 1−d
d .)



Fixed points

Proposition. τ , δ ∈ R.

Proof. If d is real, then all constants are real.
If d is not real, then the inverse map is the automorphism for

d̄ . Hence all corresponding constants are complex conjugates. This
means that the equation for the fixed points in L is given by

z2 + τ̄z + δ̄ = 0.

But the invariant line L and the fixed points are same. It follows
that τ, δ ∈ R.



Multipliers

Let ∆ = τ2 − 4δ.
If ∆ > 0, then fixed points are on the real axis of L.
If ∆ < 0, then fixed points are not real and complex conjugate

to each other.

Let λ denote the multiplier at a fixed point. (The multiplier at
the other fixed point is λ−1.)

Proposition.
If d ∈ R and ∆ > 0, then λ ∈ R.
If d ∈ R and ∆ < 0, then |λ| = 1.
If |d | = 1 and ∆ > 0, then |λ| = 1.
If |d | = 1 and ∆ < 0, then λ ∈ R.



Proof (multiplier)

Proof. Let the Möbius transformation be written as

Z =
Az + B

Cz + D
.

(case 1) If d ∈ R, then we can suppose A,B,C ,D ∈ R.
The quadratic equation of the fixed points is given by

Cz2 + (D − A)z − B = 0.

And we have τ = D−A
C , δ = −B

C , and ∆ = (D−A)2+4BC
C 2 .

Let

Λ =

(
A B
C D

)
.

The discriminant of the characteristic polynomial of this matrix is given
by

(A + D)2 − 4(AD − BC ) = C 2∆.



Let t1, t2 be the eigenvalues of Λ. Then the multiplier at a fixed
point of the Möbius transformation is given by λ = t1

t2
.

Hence,
∆ > 0⇒ C 2∆ > 0⇒ t1, t2 ∈ R⇒ λ ∈ R.

And
∆ < 0⇒ C 2∆ < 0⇒ t2 = t̄1 ⇒ |λ| = 1.

(case 2) If |d | = 1, then by the reversibility of the automorphism, the
inverse Möbius transformation is given by

z =
ĀZ + B̄

C̄Z + D̄
.

Necessarily, we have

ĀB + B̄D = 0, C̄A + D̄C = 0, AĀ + B̄C = BC̄ + DD̄.



From the third equation,

iR 3 B̄C − BC̄ = DD̄ − AĀ ∈ R.

So, we have
BC̄ = B̄C , AĀ = DD̄.

We can assume A + D 6= 0, since the Möbius transformation becomes a
real map if A + D = 0. Let

A′ =
A

A + D
, B ′ =

B

A + D
, C ′ =

C

A + D
, D ′ =

D

A + D
.

Then, by |A′| = |D ′|, A′ + D ′ = 1, we have D ′ = Ā′. And from

Z =
A′z + B ′

C ′z + Ā′
, z =

Ā′Z + B̄ ′

C̄ ′Z + A′
,

We get B ′,C ′ ∈ iR.



Now, we set B ′ = iβ, C ′ = iγ, A′ = r + iα (α, β, γ ∈ R).
The Möbius transformation is rewritten as

Z =
(r + iα)z + iβ

iγz + r − iα
.

The equation of fixed points is given by

γz2 − 2αz − β = 0.

And we have

τ = −2α

γ
, δ = −β

γ
.

So,

Z =
( r
γ −

τ
2 i)z − iδ

iz + r
γ + τ

2 i
.



Let

Λ =

( r
γ −

τ
2 i −δi

i r
γ + τ

2 i

)
.

The discriminant of the characteristic polynomial is

(
2r

γ
)2 − 4((

r

γ
)2 +

τ 2

4
− δ) = −(τ 2 − 4δ) = −∆.

Hence,
∆ > 0⇒ −∆ < 0⇒ t2 = t̄1 ⇒ |λ| = 1.

And
∆ < 0⇒ −∆ > 0⇒ t1, t2 ∈ R⇒ λ ∈ R.



8. f ◦ f = g



f ,g

Surface automorphisms for orbit data
(1, 1, 8), cyclic permutation, and orbit data
(2, 4, 4), cyclic permutation are related.

Let d , which is not a root of unity, denote an eigenvalue for
orbit data (1, 1, 8), cyclic permutation.

Let f : S → S be the surface automorphism in our family for
this orbit data and determinant d .

Let g : S ′ → S ′ be the surface automorphism for orbit data
(2, 4, 4), cyclic permutation, with determinant t = d2,

Theorem. S = S ′ and g = f ◦ f .



Orbit data (1,1,8), cyclic, t3, (2,4,4), cyclic, t2.



ψ(d2) = −χ(d)χ(−d)

Let χ(z) denote the characteristic polynomial of
f ∗ : H2(S)→ H2(S).

Let ψ(z) denote the characteristic polynomial of
g∗ : H2(S ′)→ H2(S ′).

Proposition. ψ(d2) = −χ(d)χ(−d).

Proof. By direct computations.

χ(d) = d11 − d9 − d8 + d3 + d2 − 1.

ψ(t) = (t − 1)(t10 − t9 − t7 + t6 − t5 + t4 − t3 − t + 1).

−χ(d)χ(−d) = (d11 − d9 + d3)2 − (−d8 + d2 − 1)2

= (d2 − 1)(d20 − d18 − d14 + d12 − d10 + d8 − d6 − d2 + 1).



f ∗ ◦ f ∗ : H2(S)→ H2(S)

Proposition. f ∗ ◦ f ∗ ' g∗.

Proof. The pullback cohomology homomorphism
f ∗ : H2(S)→ H2(S) is represented as follows.

f ∗


H 7→ 2H − e3,1 − e2,1 − e1,8,
e3,1 7→ H − e3,1 − e2,1,
e2,1 7→ H − e2,1 − e1,8,
e1,8 7→ e1,7 7→ e1,6 7→ · · · 7→ e1,1 7→ H − e3,1 − e1,8.

f ∗ ◦ f ∗


H 7→ 2H − e3,1 − e1,7 − e1,8,
e3,1 7→ e2,1 7→ H − e3,1 − e1,7,
e1,7 7→ e1,5 7→ e1,3 7→ e1,1 7→ H − e1,8 − e1,7,
e1,8 7→ e1,6 7→ e1,4 7→ e1,2 7→ H − e3,1 − e1,8.

This shows that f ◦ f is a quadratic Cremona transformation with
indeterminate points at the base of e3,1,e1,7,e1,8.



f ∗ ◦ f ∗ ' g ∗

g∗


H 7→ 2H − E2,2 − E3,4 − E1,4,
E2,2 7→ E2,1 7→ H − E2,2 − E3,4,
E3,4 7→ E3,3 7→ E3,2 7→ E3,1 7→ H − E3,4 − E1,4,
E1,4 7→ E1,3 7→ E1,2 7→ E1,1 7→ H − E1,4 − E2,2.

The indeterminate points of g are the base points of E2,2,E3,4,E1,4.

Comparing these formulas, we see that f ∗ ◦ f ∗ ' g∗.

Quadratic Cremona transformation, preserving cuspidal cubic curve
{y = x3} and fixing ( 1

3 ,
1
27 ), is uniquely determined by orbit data

(n1, n2, n3), σ, and the determinant d , which is an eigenvalue, not a root
of unity, of the cohomology homomorphism.



S = S ′

As f ∗ ◦ f ∗ ' g∗, f ◦ f and g has the same orbit data (2, 4, 4),
cyclic permutation.

The determinant of f ◦ f is d2, and the determinant of g is
t = d2.

By the uniqueness of quadratic Cremona transformation in our
family, we conclude

f ◦ f = g , and S = S ′.
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