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Abstract

Computer assisted visualizations suggest the existence of
strange attractors in dissipative complex dynamical system on
complex surfaces.
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1. Julia set



Fatou set

Let f : X → X be an automorphism of a compact complex
manifold X .

A point p ∈ X is a point of the forward Fatou set F+
f if there

exists an open neighborhood U of p on which the sequence
{f n}n∈N forms a normal family of holomorphic mappings from U
to X .

Define the backward Fatou set F−f and the Fatou set Ff by

F−f = F+
f −1 , Ff = F+

f ∩ F−f .



Julia set

Define the forward Julia set J+
f , the backward Julia set J−f ,

and the Julia set Jf as follows.

J+
f = X \ F+

f , J−f = X \ F−f , and Jf = J+
f ∩ J−f .

Let J†f denote the closure of the set of saddle periodic points.

Clearly, J†f ⊂ Jf .



Loxodromic automorphism

Let f be an automorphism of a compact Kähler surface X .
Let H1,1(X ,R) = H1,1(X ,C) ∩ H2(X ,R).
Then, f ∗ : H1,1(X ,R)→ H1,1(X ,R) is an automorphism

preserving the intersection pairing.
Define the dynamical degree λf by

λf = lim
n→∞

||f ∗n||
1
n .

Theorem. If λf > 1, then λf is an eigenvalue of f ∗ with
multiplicity 1, and it is the unique eigenvalue with modulus > 1.

If λf > 1, then λ−1
f is an eigenvalue, too. Other

eigenvalues are of modulus 1.

f is said to be loxodromic if λf > 1.



Characteristic polynomial of a loxodromic automorphism



Invariant currents and invariant measures
Let f be a loxodromic automorphism of a compact Kähler

surface X .

Theorem(Cantat 2001, Dinh-Sibony 2005). There exist
positive, closed currents T+

f and T−f with invariance property

f ∗T+
f = λf T

+
f and f ∗T−f = λ−1

f T−f .

We obtain an invariant measure µf = T+
f ∧ T−f .

Theorem(Bedford-Lyubich-Smilie 1993,Cantat 2003). Let
Λ(f , k) denote the set of saddle periodic points of f of period k .
Then

1

λkf

∑
p∈Λ(f ,k)

δp

converges to µf as k goes to ∞.



Julia set J∗

We denote supp(µf ) by J∗f .

If f is a loxodromic automorphism of a compact Kähler surface
X , then

J∗f ⊂ J†f ⊂ Jf .

Theorem(U., 2018). There exists a loxodromic
automorphism f of a compact Kähler surface X such that

J∗f 6= J†f 6= Jf .

Remark.
If f is a Hénon map, then J∗f = J†f ⊂ Jf .

If f is a hyperbolic Hénon map, then J∗f = J†f = Jf .



2. Attractor



Attracting fixed point



Pictures of F+ and J+



Pictures of attracting periodic point



Attracting Herman ring (numerically observed)



attracting Herman ring



attracting Herman ring



Numerically observed attractor

We have observed (dissipative case):
Attracting fixed point,
Attracting periodic cycle,
Attracting Herman ring (numerical observation only),
Attracting Riemann sphere.

Though we have not found parabolic basin and Siegel disk as
attractor, in these cases,

F+ 6= ∅.

In this note, we report examples of surface automorphisms
suggesting

F+ = ∅, and J+ = X ,

which are found numerically. (No mathematical proof.)



Chaotic slice



Plot of an orbit

This picture represents the forward orbit of a randomly chosen
initial point by an automorphism f : X → X of complex surface.



Our conjecture

Our conjecture is:

There exists a surface automorphism for which supp(µf ) is an
attractor.

In the following sections, we construct a surface automorphism
which seems to have a strange attractor.

As general construction of surface automorphisms is
complicated, we explain only concrete construction.



3. Surface automorphism



Quadratic birational transformation

Let λ = 0.580691832... be the smallest positive real root of
equation

z4 − z3 − z2 − z + 1 = 0.

Let a = 0.240694602... be given by

a =
λ3(λ− 1)

1− λ4
+

1

3
.



Explicit formula for invariant cuspidal cubic curve case

Define quadratic birational map f : C2 -→ C2,
(x , y) 7→ (X ,Y ) by

X = λ

(
x + a +

3a(y − x3)

3ax2 − 3a2x + a3 − y

)
,

Y = λ3

(
(x + a)3 + (y − x3)(1 +

9a2x

3ax2 − 3a2x + a3 − y
)

)
.

This map preserves cubic curve {y = x3}.
Point (a, a3) is a point of indeterminacy (degenerated).
f is symmetric with respect to the complex conjugacy.

f (x̄ , ȳ) = (X̄ , Ȳ ).

The real subspace is invariant under f .



Real slice (forward orbit)



Real slice (forward orbit)



Horizontal slice(forward orbit)



Real slice(backward orbit)



Real slice(backward orbit)



Real slice(backward orbit)



Plot of an orbit



Vertical slice(backward orbit)



Volume

The cubic curve C = {y = x3} is invariant under f .
Let

η =
1

y − x3
dx ∧ dy .

η defines a meromorphic (2,0)-form on the surface X , with a
simple pole along C and no other poles or zeros.

The form η determines a natural volume measure

vol(U) =

∫
U
η ∧ η̄,

locally finite on X \ C , but of infinite total mass.



Determinant

f ∗η is also a meromorphic (2,0)-form on X with a simple pole
along C and no other poles or zeros.

It is propotional to η :

f ∗η = δ(f ) · η.

δ(f ) is called the determinant of f .

Theorem. δ(f ) = λ.

Here λ is the multiplier D(f |C ).

When 0 < λ < 1, f is dissipative.∫
f (U)

η ∧ η̄ =

∫
U
f ∗η ∧ f ∗η̄ = λλ̄

∫
U
η ∧ η̄.



Fixed points in C

The point (0,∞) and ( 1
3 ,

1
27 ) are fixed points in C , with

eigenvalues
λ−2 and λ−3 at (0,∞),
λ and λ−9 at ( 1

3 ,
1

27 ) .

(0,∞) is a source (repeller), and P0 = ( 1
3 ,

1
27 ) is a saddle.

The stable manifold W s(P0) of this saddle coincides with the
invariant cubic curve C .

This saddle point does not have homoclinic points.
The unstable manifold W u(P0) of this saddle does not intersect

with supp(µf ),
but its closure contains supp(µf ).



expected picture

Let Q be a saddle periodic point in X \ C .

supp(µf ) = W u(Q) = W u(P0) \W u(P0).



Cuspidal cubic curve

4. Invariant cuspidal cubic
curve



Cubic curve

Let C denote the cubic curve {y = x3} in C2 ⊂ P2.

This curve has a parametrization

p : C→ C , p(t) = (t, t3).

We want to find birational map f : P2 -→ P2, which maps C
onto itself.

f (C ) = C .

f has indeterminate points I (f ). The equality should be
understood ”modulo exceptional points”.

f (C ) = f (C \ I (f )).



f induces an automorphism of the cubic curve C , which can be
described by an affine map t 7→ λ(t + µ) for some constants
λ ∈ C×, µ ∈ C.

Proposition. For λ ∈ C× and a1, a2, a3 ∈ C with
a1 + a2 + a3 6= 0, there exists a quadratic birational map
f : P2 -→ P2, such that

f (C ) = C , I (f ) = {p(a1), p(a2), p(a3)},

inducing t 7→ λ(t + ν1
3 ), with ν1 = a1 + a2 + a3.



In affine coordinates, we set f (x , y) = ( f1(x ,y)
f3(x ,y) ,

f2(x ,y)
f3(x ,y) )

Proof. Let ν2 = a1a2 + a2a3 + a3a1 and ν3 = a1a2a3.
The indeterminate points, p(ai ) = (ai , a

3
i ), i = 1, 2, 3, are common

zeros of the system of equations{
y − x3 = 0

x3 − ν1x
2 + ν2x − ν3 = 0

.

As quadratic polynomial f3(x , y) must vanish in these
indeterminacy points, we can choose

f3(x , y) = ν1x
2 − ν2x + ν3 − y .



Since f (p(t)) = p(λ(t + ν1
3 )) for t ∈ C, f : (x , y) 7→ (X ,Y )

can be written as

X = λ

(
x +

ν1

3
+

(y − x3)U(x , y)

f3(x , y)

)
,

Y = λ3

(
(x +

ν1

3
)3 +

(y − x3)V (x , y)

f3(x , y)

)
,

where polynomials U(x , y),V (x , y) are chosen so that f becomes
a quadratic rational map.



To determine polynomials U(x , y) and V (x , y) we require that

f1(x , y) = λ
(

(x +
ν1

3
)f3(x , y) + (y − x3)U(x , y)

)
,

f2(x , y) = λ3
(

(x +
ν1

3
)3f3(x , y) + (y − x3)V (x , y)

)
are quadratic polynomials. We get

U(x , y) = ν1,

V (x , y) = ν1x
2 + (ν2

1 − ν2)x − y +
ν3

1

3
− ν1ν2 + ν3.

This gives the explicit formula for the quadratic birational map f .



Explicit formula for invariant cuspidal cubic curve case

Proposition. The quadratic birational map f : P2 -→ P2 in
the previous proposition is given by

X = λ

(
x +

ν1

3
+

ν1(y − x3)

ν1x2 − ν2x + ν3 − y

)
,

Y = λ3

(
(x +

ν1

3
)3 + (y − x3)(1 +

ν2
1x +

ν3
1

3 − ν1ν2

ν1x2 − ν2x + ν3 − y
)

)
.



Exceptional lines

A quadratic birational map f : P2 -→ P2 always acts by
blowing up three indeterminacy points in P2 and blowing down the
three exceptional lines joining them.

The inverse map f −1 is also quadratic and the images of three
exceptional lines of f are the indeterminacy points of f −1.



Parametrization and lines

Our parametrization p : C→ C of the invariant cubic curve
has a nice property.

If three points p(t1), p(t2), p(t3) are on a line, say
{y = ax + b}, then

t3
i − ati − b = 0, i = 1, 2, 3,

which shows that t1, t2, t3 are three roots of cubic equation
t3 − at − b = 0, hence t1 + t2 + t3 = 0.

Conversely, if t1 + t2 + t3 = 0, then t1, t2, t3 are the three roots
of cubic equation in t :

t3 + (t1t2 + t2t3 + t3t1)t − t1t2t3 = 0,

which implies that p(t1), p(t2), p(t3) are on a line.



Inverse map

In order to compute the inverse map of f , we need to find the
indeterminacy points of f −1, which are the images of the
exceptional lines of f .

Suppose the exceptional line passing through indeterminacy
points p(aj) and p(ak) is mapped to p(bi ), for {i , j , k} = {1, 2, 3}.
This exceptional line intersects with C at p(−aj − ak), which is
mapped to p(bi ), with

bi = λ(−aj − ak +
ν1

3
) = λ(ai −

2ν1

3
).

The dynamics of f −1 in the invariant curve C is

t 7→ λ−1(t − λν1

3
).

Construction of the inverse map is similar.



Inner dynamics

Let τ : t 7→ λ(t + ν1/3) denote the dynamics in C .
τ has a unique fixed point t0 = 1

3
λν1
1−λ .

By linear change of variables t = r t ′, where r = λν1
1−λ , τ is

conjugate to

τ ′ : t ′ 7→ λ(t ′ +
1− λ

3λ
),

whose fixed point is 1
3 .

So, by linear change of coordinates x = rx ′, and y = r3y ′, with
ai = ra′i , i = 1, 2, 3, birational map f has fixed point ( 1

3 ,
1

27 ).

To construct surface automorphisms by blow-ups, we may
suppose that f fixes ( 1

3 ,
1

27 ).



Surface automorphism

We have
I (f ) = {p(a1), p(a2), p(a3)}

and
I (f −1) = {p(b1), p(b2), p(b3)}

If, for some positive integers n1, n2, n3, and permutation
σ : {1, 2, 3} → {1, 2, 3},

p(aσ(i)) = f ◦(ni−1)p(bi ), i = 1, 2, 3,

holds, then f lifts to a surface automorphism by blowing up
(n1 + n2 + n3) points (provided they are all distinct)

p(bi ), f (p(bi )), · · · , f ◦(ni−1)(p(bi )), i = 1, 2, 3.



Orbit data

Positive integers (n1, n2, n3) with permutation σ is said an
orbit data.

Following Diller, we look for determinant λ and a quadratic
birational transformation f , which maps C onto itself and realizes
the prescribed orbit data.



conditions

In terms of inner dynamics, the conditions are as follows.

aσ(i) = λni−1(bi −
1

3
) +

1

3
, i = 1, 2, 3,

bi = λai +
2

3
(λ− 1), i = 1, 2, 3,

a1 + a2 + a3 =
1

λ
− 1.

Eliminate ai , bi , i = 1, 2, 3, to obtain an equation in λ, which is
a necessary condition.



Polynomial equations for orbit data n1, n2, n3, σ

Necessary condition P(λ) = 0 is given by followings.

(case id) σ = id .

P(λ) = (λ− 2)λn1+n2+n3 + λn1+n2 + λn2+n3 + λn3+n1

− λn1+1 − λn2+1 − λn3+1 + 2λ− 1.

(case tr) σ is a transposition (σ(1) = 2, σ(2) = 1, σ(3) = 3).

P(λ) = (λ− 2)λn1+n2+n3 + λn1+n2 + (λ− 1)(λn1+n3 + λn2+n3 )

−(λ− 1)(λn1 + λn2 ) + λn3+1 − 2λ+ 1.

(case cy) σ is a cyclic permutation (σ(1) = 2, σ(2) = 3, σ(3) = 1).

P(λ) = (λ− 2)λn1+n2+n3 + (λ− 1)(λn1+n2 + λn2+n3 + λn3+n1 )

+(λ− 1)(λn1 + λn2 + λn3 ) + 2λ− 1.



Picard coordinate of indeterminate points

(case id) σ = id .

ai = −λ
ni−1(λ− 1)

λni − 1
+

1

3
(i = 1, 2, 3).

(case tr) σ = (1, 2)

ai = −λ
nj−1(λni + 1)(λ− 1)

λni+nj − 1
+

1

3
((i , j) = (1, 2), (2, 1)).

ak = −λ
nk−1(λ− 1)

λnk − 1
+

1

3
(k = 3).

(case cy) σ = (1, 2, 3)

ai = −λ
nk−1(λnj (λni + 1) + 1)(λ− 1)

λni+nj+nk − 1
+

1

3

((i , j , k) = (1, 2, 3), (2, 3, 1), (3, 1, 2)).



Characteristic polynomial

Orbit data determines the characteristic polynomial P(λ) of
f ∗ : H2(X ,Z)→ H2(X ,Z).

Bedford and Kim [BK1] have computed explicitly for any orbit
data n1, n2, n3, σ.

P(λ) = λ1+Σnjp(
1

λ
) + (−1)ordσp(λ),

where
p(λ) = 1− 2λ+

∑
j=σj

λ1+nj +
∑
j 6=σj

λnj (1− λ).

The polynomial P(λ) obtained as a necessary condition and the
characteristic polynomial P(λ) coincide (not by chance).



Examples

5. Examples



Pictures above are for orbit data (n1, n2, n3) = (4, 4, 4) with
σ = id .

(case id) σ = id .

P(λ) = (λ− 2)λn1+n2+n3 + λn1+n2 + λn2+n3 + λn3+n1

− λn1+1 − λn2+1 − λn3+1 + 2λ− 1.

(case id) σ = id .

ai = −λ
ni−1(λ− 1)

λni − 1
+

1

3
(i = 1, 2, 3).

The characteristic polynomial is as follows.

P(λ) = (λ− 1)(λ4 − 1)2(λ4 − λ3 − λ2 − λ+ 1).

The inner coordinates of indeterminate points are :

a = a1 = a2 = a3 =
λ3(λ− 1)

1− λ4
+

1

3
.



Real slice (forward orbit)



Horizontal slice(forward orbit)



Real slice(backward orbit)



Real slice(backwardorbit)



Plot of an orbit



Vertical slice(backward orbit)



Other example : (4,5,6),id .



(4,5,6),id ., real slice



(3,4,6),cyclic



(3,4,6),cyclic, real slice



(3,4,4), transposition (1,2)



(3,4,4), transposition (1,2), real slice



QLc355 case



QLc355 case, real slice



QLc355 case, real slice(backward)



ND2 case

6. ND2 case



case ND2

The case ND2 is treated as follows.

Take parametrization in curve {z(xy − z2) = 0} as follows
Let t ∈ C/Z.

pQ(t) = (e2πit , e−2πit) ∈ Q = {xy = 1}.

pL(t) = [1 : −e2πit : 0] ∈ L = line at infinity.

Let p+
j ∈ C/Z, and set Aj = e2πip+

j , j = 1, 2, 3.

For translation b in the hyperbola Q, set B = e2πib.
For translation c in the line at infinity L, set C = e2πic .



case ND2

We construct birational map f : (x , y) 7→ (X ,Y ), as follows.
As the line at infinity is mapped to itself, the denominator must be
of degree 1 defining the line passing through the indeterminacy
points pQ(p+

1 ) = (A1,A
−1
1 ) and pQ(p+

2 ) = (A2,A
−1
2 ), the

denominator can be set to

f3(x , y) = x − A1 − A2 + A1A2y .

The dynamics in the hyperbola {xy = 1} is (x , y) 7→ (Bx ,B−1y).
Let numerators be

f1(x , y) = B((x − A1)(x − A2) + P(xy − 1)),

f2(x , y) = B−1((1− A1y)(1− A2y) + Q(xy − 1)),

for some P,Q ∈ C. ( X = f1
f3
,Y = f2

f3
)



case ND2

As the dynamics in the line at infinity is z 7→ Cz , with z = y/x ,

Z = lim
x ,y→∞

Y /X = A1A2B
−2P−1z

z + QA−1
1 A−1

2

z + P−1
,

gives P = A−1
3 and Q = A1A2A3. (Used B2C = A1A2A3.)

The Cremona transformation F : (x , y) 7→ (X ,Y ) is given by

X = B
x2 − (A1 + A2)x + A1A2 + A−1

3 (xy − 1)

x − A1 − A2 + A1A2y
,

Y = B−1A1A2y
2 − (A1 + A2)y + 1 + A1A2A3(xy − 1)

x − A1 − A2 + A1A2y
.



Orbit data for ND2

Relation between parameters of indeterminate points and
translation b and c :

p+
1 + p+

2 + p+
3 ≡ 2b + c mod 1.

Relation between parameters of indeteminate points :

p−1 ≡ p+
1 − b − c , p−2 ≡ p+

2 − b − c, p−3 ≡ p+
3 − 2b mod 1.

For orbit data (n1, n2, n3), σ, parameters must satisfy
followings.

p+
σ(j) ≡ p−1 + (nj − 1)b mod 1, j = 1, 2,

p+
3 ≡ p−3 + (n3 − 1)c mod 1.

Here, σ is either id . or transposition (1, 2).



(ND2) transposition case
For integers m1,m2,m3, and a complex number s, we get

b ≡ (n3 − 1)(m1 + m2) + 2m3

(n1 + n2 − 4)(n3 − 1)− 4
mod 1,

c ≡ 2(m1 + m2) + (n1 + n2 − 4)m3

(n1 + n2 − 4)(n3 − 1)− 4
mod 1,

and

p+
1 ≡

n2 − 1

2
b + s − m1

2
mod 1,

p+
2 ≡

n1 − 1

2
b + s +

m2

2
mod 1,

p+
3 ≡ b − 2s mod 1.

Parameter s gives choice of coordinates. When s = 0, the map has
symmetries. It is reversible by the complex conjugation, and it is
symmetric with respect to the conjugate diagonal. It is also
reversible by swapping involution (x , y) 7→ (y , x).



(ND2) case σ = id .

In the case of σ = id ., we need n1 = n2.
For m1,m3 ∈ Z, ` ∈ Z and ζ1, ζ2 ∈ C , we get

b ≡ (n3 − 1)m1 + m3

(n1 − 2)(n3 − 1)− 2
mod 1,

c ≡ 2m1 + (n1 − 2)m3

(n1 − 2)(n3 − 1)− 2
mod 1,

and

p+
1 ≡

2b + c + `

3
+ ζ1 + ζ2 mod 1,

p+
2 ≡

2b + c + `

3
+ ζ1 − ζ2 mod 1,

p+
3 ≡

2b + c + `

3
− 2ζ1 mod 1.

Parameters ζ1, ζ2 gives choice of coordinates.



example

In the case of orbit data (n1, n2, n3) = (4, 3, 5), σ = (1, 2), and
(m1,m2,m3) = (1, 1, 1), with s = 0, we have

b ≡ 1

4
, c ≡ 7

8
,

p+
1 ≡

3

4
, p+

2 ≡
3

8
, p+

3 ≡
1

4
.

And

p−1 ≡
5

8
, p−2 ≡

1

4
, p−3 ≡

3

4
.

To observe the symmetries of the Cremona transformation, it can be
rewritten as follows.

X = B

(
x +

(A−1
3 − A1A2)(xy − 1)

x − (A1 + A2) + A1A2y

)
,

Y = B−1

(
y +

(A3 − A−1
1 A−1

2 )(xy − 1)

y − (A−1
1 + A−1

2 ) + A−1
1 A−1

2 x

)
.



When s = 0,

p−1 ≡ −p
+
2 , p−2 ≡ −p

+
1 , p−3 ≡ −p

+
3 ,

we see
f = f −1 = S ◦ f ◦ S , T ◦ f ◦ T = f ,

where S : (x , y) 7→ (y , x), T : (x , y) 7→ (ȳ , x̄), are involutions.
Therefore, f : (x , y) 7→ (X ,Y ) is reversible with respect to involution S ,
and involution by the complex conjugation. It is symmetric with respect
to involution T .



Real slice for ND2map (4,3,5),σ = (1, 2)



Conjugate diagonal slice for ND2map (4,3,5),σ = (1, 2)



Conjugate diagonal slice for ND2map (4,3,5),σ = (1, 2),
some part



Conjugate diagonal slice for ND2map (4,3,5),σ = (1, 2),
zoomed out



Diagonal slice for ND2map (4,3,5),σ = (1, 2)



Diagonal slice for ND2map (4,3,5),σ = (1, 2), zoomed in
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