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Abstract

Automorphisms of complex surfaces can have various invariant
curves. We consider rational surface automorphisms with
invariant cubic curve, which have, at the same time, an invariant
line, or an invariant quadratic curve, disjoint from the invariant
cubic curve.

Some of them appear to have rotation domains of rank two,
with two fixed points. We prove that these fixed points are
linearizable to irrational rotations.
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0. Rotation domain



Fatou set

Let f : X → X be an automorphism of a complex manifold X .

A point p ∈ X is a point of the forward Fatou set F+
f if there

exists an open neighborhood U of p on which the sequence
{f n}n∈N forms a normal family of holomorphic mappings from U
to X .

Define the backward Fatou set F−f and the Fatou set Ff by

F−f = F+
f −1 , Ff = F+

f ∩ F−f .



Volume preserving automorphism

Suppose Ω is a Fatou component of a volume preserving
automorphism f with f (Ω) = Ω. Define the set of all limits of
convergent subsequences G by

G =

{
g = lim

nj→∞
f nj : Ω→ Ω

}
.

If g = limnj→∞ f nj is such a limit, then g must preserve volume,
and thus it is locally invertible. It follows that g : Ω→ Ω.

It is known that G is a compact Lie group, by a theorem of H.
Cartan. The connected component G0 of the identity must be a
(real) torus.



Rank of a rotation domain

In the volume preserving Hénon map case, known result is as
follows.

Theorem (Bedford-Smilie 1991).
G0 is isomorphic to Tρ with ρ = 1 or 2.

Such a domain is called a rotation domain, and we refer to ρ
as the rank of the rotation domain.



Reinhardt domain

Let D ⊂ C2 be a connected open set. We say that D is a
Reinhardt domain if (e iθz , e iφw) ∈ D for all (z ,w) ∈ D and all
θ, φ ∈ R.

If Ω is a rank 2 rotation domain, then the G-action on Ω may
be conjugated to the standard linear action on C2.

Theorem. (Barrett-Bedford-Dadok 1989) There are a
Reinhardt domain D ⊂ C2, a linear map L : (x , y) 7→ (αx , βy),
|α| = |β| = 1, and a biholomorphic map Φ : Ω→ D such that
Φ ◦ f = L ◦ Φ.



Volume preserving surface automorphism

Volume preserving surface automorphisms can have various
kinds of rotation domains.

1. Rotation domain of rank 1.
2. Siegel disk ∼= Reinhardt domain ⊃ D× D.
3. Exotic rotation domain ∼= ”A× D ”. (?)
4. Super-exotic rotation domain ∼= ”P× D ”. (??)
5. Ultra-exotic rotation domain ∼= ”A× A ”. (???)

Rem. In case 1, there are various types, not well understood.
Rem. Case 3 is numerically found without proof.
Rem. Case 4 is numerically observed.
Rem. Case 5 is not found yet.

Rem. ”P× D ” is the normal disk bundle.



Linear model

Let (x , y) and (u, v) denote two charts of a complex manifold
defined by coordinate transformation as follows.{

u = x−1

v = −x2y

{
x = u−1

y = −u2v

For µ, δ ∈ C×, linear maps

(x , y) 7→ (µx , δµ−1y) and (u, v) 7→ (µ−1u, δµv)

are compatible and defines an automorphism of the complex
manifold.

If |µ| = |δ| = 1 and they are multiplicatively independent, this
”linear map” defines an irrational rotation of rank 2.

Extended Reinhardt domain can be defined for this linear
model.

”Linearization” will be discussed later.



1. Cremona transformation



Cremona involution

A birational transformation f : P2 → P2 is called a Cremona
transformation.

Cremona involution J : P2 → P2 is defined by

J[x : y : z ] = [x−1 : y−1 : z−1] = [yz : zx : xy ].

For linear transformations L1, L2 ∈ PGL(P2),

f = L1 ◦ J ◦ L2

is a quadratic birational transformation.



Cremona transformations with invariant cubic curve

A quadratic transformation f : P2 → P2 always acts by blowing
up three (indeterminacy) points I (f ) = {p+

1 , p
+
2 , p

+
3 } in P2 and

blowing down the (exceptional) lines joining them. The inverse
map f −1 is also a quadratic transformation and
I (f −1) = {p−1 , p

−
2 , p

−
3 } consists of the images of the three

exceptional lines.

p−i = f (`(p+
j , p

+
k )) for {i , j , k} = {1, 2, 3}.

Here, `(p, q) denotes the line passing through p and q.



Orbit data

Suppose that for natural numbers n1, n2, n3, and a permutation
σ : {1, 2, 3} → {1, 2, 3}, f satisfies

f ni−1(p−i ) = p+
σ(i), i = 1, 2, 3.

`(p+
j , p

+
k )→ p−i → f (p−i )→ · · · → p+

σ(i) → `(p−σ(j), p
−
σ(k)).

By blowing up in n1 + n2 + n3 points

p−1 , f (p−1 ), · · · , f n1−1(p−1 ) = p+
σ(1),

p−2 , f (p−2 ), · · · , f n2−1(p−2 ) = p+
σ(2),

p−3 , f (p−3 ), · · · , f n3−1(p−3 ) = p+
σ(3),

f lifts to a surface automorphism.



2. Surface automorphism



Quadratic Cremona transformation

Let C be a cubic curve of one of the following :

(case C) a cuspidal cubic curve
(case L) three lines passing through a point,
(case Q) a conic and a tangent line.

Theorem. (Diller 2011) Let orbit data n1, n2, n3, σ ∈ Σ3

be given. Except for some specific cases, there exists an
automorphism f for each root of P(λ) that is not a root of unity,
which realize the orbit data, with determinant λ.

Such f is unique up to conjugacy of linear transformation
preserving C .



Uehara’s formula of birational transformation

Uehara(2016) obtained an explicit formula for Cremona
transformations with an invariant cuspidal cubic curve.

For λ ∈ C× and a1, a2, a3 ∈ C with a1 + a2 + a3 6= 0, XC = λ
(
x + ν1

3 + ν1(y−x3)
ν1x2−ν2x+ν3−y

)
YC = λ3

(
(x + ν1

3 )3 + y − x3 + ν1(y−x3)
ν1x2−ν2x+ν3−y (ν1(x + ν1

3 )− ν2)
)

where ν1 = a1 + a2 + a3, ν2 = a1a2 + a2a3 + a3a1, and ν3 = a1a2a3.

He obtained formulas also for other cases.



Characteristic polynomial

Orbit data determines the characteristic polynomial P(λ) of
f ∗ : H2(X ,Z)→ H2(X ,Z).

Bedford and Kim (2006, [BK1]) have computed explicitly for
any orbit data n1, n2, n3, σ.

P(λ) = λ1+Σnjp(
1

λ
) + (−1)ordσp(λ),

where
p(λ) = 1− 2λ+

∑
j=σj

λ1+nj +
∑
j 6=σj

λnj (1− λ).



In the following, we describe only for our cases with invariant
cuspidal cubic curve {y = x3} and orbit data

(3, 4, 3), σ = (1, 2), and (4, 2, 4), σ = (1, 2).
We consider only volume-preserving case.

There are countably many similar cases.



For orbit data n1, n2, n3, σ = tr(1, 2).
Characteristic polynomial
(case tr) σ is a transposition (σ(1) = 2, σ(2) = 1, σ(3) = 3).

P(λ) = (λ− 2)λn1+n2+n3 + λn1+n2 + (λ− 1)(λn1+n3 + λn2+n3)

−(λ− 1)(λn1 + λn2) + λn3+1 − 2λ+ 1.

Picard coordinate of indeterminate points
(case tr) σ = (1, 2)

ai = −λ
nj−1(λni + 1)(λ− 1)

λni+nj − 1
+

1

3
((i , j) = (1, 2), (2, 1)).

ak = −λ
nk−1(λ− 1)

λnk − 1
+

1

3
(k = 3).

Indeterminate points
(case C) cuspidal cubic curve {y = x3} :

p+
i = (ai , a

3
i ), i = 1, 2, 3,

p−i = (bi , b
3
i ), i = 1, 2, 3.



Determinant and meromorphic eigen-form

In our cases of cubic curve, each component of regular part is
isomorphic to C. Automorphism f : S → S restricted to the
invariant cubic curve is an ”affine” map. The ”derivative” D(f |C )
is called the determinant of f .

Meromorphic (2, 0)-form η with pole along the invariant curve
C is mapped to a scaler multiple of η.

f ∗η = λ(f )η.

Theorem
D(f |C ) = λ(f ).

λ(f ) is also called the determinant of f . If p ∈ S \ C is a
periodic point of period k , then

detDf kp = λ(f )k .



3. Invariant curve



Invariant curve

Theorem. (Diller-Jackson-Sommese 2007)
Let f : S → S be an algebraically stable map with λf > 1, and

suppose that C = f (C ) is a connected curve with g(C ) = 1.
Then by contracting finitely many curves, one may further arrange
the following.

(1) C ∼ −KS is an anticanonical divisor.
(2) I (f n) ⊂ C for every n ∈ Z.
(3) Any connected curve strictly contained in C has genus zero.
(4) If W is a connected f -invariant curve not completely

contained in C , then W has genus zero, is disjoint
from C , and is equal to a tree of smooth rational curves,
each with self-intersection −2.

Rem. Here λf means the first dynamical degree of f .



Nodality

With our choice of Picard coordinates, we have the following
fact.

Theorem. 3d (not necessarily distinct) points
p1, · · · , p3d ∈ Xreg comprise the intersection of X with a curve of
degree d if and only if

each irreducible V ⊂ X contains d · degV of the points; and∑
pj ∼ 0.



4. Invariant line



Invariant line (necessary condition)

If there exists an invariant line disjoint from the anticanonical
cubic curve, it passes through three points to be blown up, one of
which is an indeterminate point of the base birational map.

The sum of the Picard coordinates of the three blowup points
vanishes.

The intersection of the invariant line and a component of the
anticanonical curve, counted as points in P2, must be equal to the
degree of the component.

This line necessarily contains two fixed points.
( Our automorphism has four fixed points.)



Invariant line (sufficient condition)

In our case, the anticanonical cubic curve of our surface
automorphism is a cuspidal cubic curve.

Theorem. In the case of orbit data (n1, n2, 3) with
σ(3) = 3, the surface automorphism has an invariant line passing
through three blowup points p−3 , f (p−3 ), and p+

3 .

Rem. In this case, the self-intersection of the strict transform
of this invariant line is −2.



Proof. Let p+
3 = (a3, a

3
3), p−3 = (b3, b

3
3), and f (p−3 ) = (c3, c

3
3 ).

Then,

a3 = −d2(d − 1)

d3 − 1
+

1

3
, b3 = − d − 1

d3 − 1
+

1

3
, c3 = −d(d − 1)

d3 − 1
+

1

3
.

Immediately we see that a3 + b3 + c3 = 0. Hence three points
p−3 , f (p−3 ), p+

3 are on a line. Let L denote this line. As L passes through
the indeterminate point p+

3 , its image f (L) is a line. Since f (L) passes
through p+

3 = f 2(p−3 ) and f (p−3 ), it coincides with L.

In our case, L is disjoint from the invariant cubic curve.



Real slice (CSPt343t1)



Lefschetz formula and Atyah-Bott formula

Suppose F : S → S satisfy det(DF − I ) 6= 0 at all fixed points.

Lefschetz formula :

∑
F (p)=p

sign(det(DFp − I )) =
4∑

k=0

(−1)kTr(F∗|Hk (S ,R)).

Atyah-Bott formula : for r = 0, 1, 2,

∑
F (z)=z

Tr ∧r DFz
det(I − DFz)

=
4∑

s=0

(−1)sTr(F ∗|Hr,s(S)).



Fixed points

In our case of orbit data (3, 4, 3), σ = (1, 2), the characteristic
polynomial of F∗|H2(S ,R) is

P(λ) = λ11 − 2λ10 + λ8 + λ7 − λ6 − λ5 + λ4 + λ3 − 2λ+ 1,

which shows
Tr(F∗|H2(S,R)) = 2.

By Lefschetz formula, our map has 4 fixed points.
In the anticanonical cubic curve, points [ 1

3 : 1
27 : 1] and

[0 : 1 : 0] are fixed points. Other two fixed points must be on the
invariant line.



Eigen values

Eigenvalues at fixed points can be directly computed from our
explicit formula.

Let δ denote a root of characteristic polynomial P(λ).
Suppose δ is non-real. δ is the determinant λ(f ) of our surface

automorphism f .

At cuspidal point [0 : 1 : 0], eigenvalues are δ−2 and δ−3.
At fixed point [ 1

3 : 1
27 : 1], eigenvalues are δ and δ−7.

In the invariant line L, f |L : L→ L has two fixed points.
Consider a parametrization of L with fixed points 0 and ∞. Let µ
denote the multiplier of f |L at fixed point 0 ∈ L, the multiplier at
∞ ∈ L is µ−1.



Since the determinant of f at fixed points is δ, we see that the
other eigenvalues of these fixed points are δµ−1 and δµ,
respectively.

By Atyah-Bott formula for r = 0 :

∑
F (z)=z

Tr ∧r DFz
det(I − DFz)

=
4∑

s=0

(−1)sTr(F ∗|Hr,s(S)),

we have
1

(1− δ−2)(1− δ−3)
+

1

(1− δ)(1− δ−7)

+
1

(1− µ)(1− δµ−1)
+

1

(1− µ−1)(1− δµ)
= 1.

And

µ+ µ−1 = ∆1 +
(∆2 − 2)(∆5 −∆2)

∆6 −∆5 −∆4 + ∆2
,

where ∆k = δk + δ−k ∈ R.



Super-exotic rotation domain (CSPt343t1SL)

In our case, δ1 = 0.598563149 · · ·+ 0.801075625 · · · i ,
µ1 + µ−1

1 = 1.599348676 · · · .



Super-exotic rotation domain (CSPt343t1SL)



Super-exotic rotation domain (CSPt343t1SL)



Super-exotic rotation domain (CSPt343t1SL)



Super-exotic rotation domain (CSPt343t1SL)



Linearizability

Definition Let (λ1, · · · , λn) be nonzero complex numbers. We
say (λi ) are multiplicatively independent if the only solution to

λk1
1 . . . λknn = 1

with k = (k1, · · · , kn) ∈ Zn is k = 0. The numbers (λi ) are jointly
Diophantine if there exist C ,M > 0 such that for all integral
exponents (k1, · · · , kn) ∈ Zn, not all zero, we have

|λk1
1 . . . λknn − 1| > C (max |ki |)−M > 0.

Theorem(McMullen, 2002) Let X be a complex n-manifold,
and let f : X → X be a holomorphic map fixing p ∈ X . If the
eigenvalues (λi ) of Dfp are algebraic, multipicatively independent
and satisfy |λi | = 1, then f has a Siegel disk at p.

Rem. Here, Siegel disk means a neighborhood of the fixed point
that is isomorphic to a polydisk with irrational rotation.



Fel’dman’s ineqality to Diophantian condition

For algebraic numbers (λi ), (ki ), not all zero,

|k02πi + k1 log λ1 + · · ·+ kn log λn| > exp(−M(d + logH)),

where d is the degree of the field Q[k1, · · · , kn, λ1, · · · , λn],
M = M(λi , d) is a constant depending only on (λi ) and d ,
H = maxH(ki ), and the height H(k) =

∑
|aj | if p(k) = 0 where

p(x) =
∑s

0 ajx
j is an irreducible polynomial with relatively prime

coefficients aj ∈ Z.

For ki ∈ Z, we have H = max |ki |, and M depends only on (λi ),
therefore

exp(−M(d + logH)) = C (max |ki |)−M

for C > 0.

[Fe] H.I. Fel’dman, An improvement of the estimate of a linear form in
the logarithms of algebraic numbers, Math. USSR Sb. 6 (1968), 393-406.



Roots of characteristic polynomial (CSPt343)

In our case, δ1 = 0.598563149 · · ·+ 0.801075625 · · · i ,
µ1 + µ−1

1 = 1.599348676 · · · .
Real dissipative case, δ0 = 0.701751792 · · · ,

µ0 + µ−1
0 = −0.926139081 · · · .



Other roots

δ2 = −0.373734227 · · ·+ 0.927535836 · · · i ,
µ2 + µ−1

2 = −1.64026646 · · · .
δ3 = −0.788207452 · · ·+ 0.615409630 · · · i ,

µ3 + µ−1
3 = −3.695849616 · · · .

Note that in the δ3 case, |µ3 + µ−1
3 | > 2, so,

|δ3| = 1 and |µ3| 6= 1.

Hence, µ3 is not a root of unity, and so is its Galois conjugates
µ0, µ1, µ2.



Multiplicative independence

Proposition In our case, µ1 and ν1 = δ1µ
−1
1 are algebraic

and multiplicatively independent.

Proof δ1 is a root of a Salem polynomial. It is algebraic and
not a root of unity. µ1 is algebraic and not a root of unity.

δ0 is a Galois-conjugate of δ1. And µ0, ν0 = δ0µ
−1
0 corresponds

to µ1, ν1 by the conjugacy.
Suppose µj1ν

k
1 = 1. Then µj0ν

k
0 = 1 holds, too.

Since |µ0| = 1 and |ν0| = |δ0| < 1, we see that k = 0. And as
µ0 is not a root of unity, we conclude j = 0.

Proposition Our surface automorphism has Siegel disks (in
the sense of McMullen) at two fixed points in the invariant line L.



Super-exotic rotation domain (CSPt343t2SL)



Remark

Observe the proof above for the dissipative case of δ0. The
corresponding surface automorphism is dissipative. We proved
the existence of an attracting Riemann sphere with irrational
rotation. This cannot exist for automorphisms of C2.

For dissipative Hénon map case:

Proposition(Bedford and Smilie, 1991) Let Ω be a connected
component of int K+ that is recurrent and has period m. Then
one of the following occurs:

(i) There is an attracting fixed point p ∈ Ω for f m, and Ω is
the basin of p under f m.

(ii) There is a retraction ρ : Ω→ Ω onto a smooth subvariety
D = ρ(Ω) that is invariant under f m. Further, D is either a
Siegel disk or a Herman ring.



Theorem(Fornæss-Sibony, 1995). Let f : C2 → C2 be a
Hénon mapping.. Let Ω be a recurrent Fatou component in the
interior of K+. Assume f (Ω) = Ω. Then Ω is one of the following
types.

(i) There is a fixed attracting point p ∈ Ω and Ω is
biholomorphic to C2.

(ii) There exists a Riemann surface Σ̃ which is a closed
complex submanifold in Ω such that d(f n(X ), Σ̃)→ 0 for any
compact X in Ω. The Riemann surface Σ̃ is biholomorphic to
either a disk, a punctured disk or an annulus, and f |Σ̃ is conjugate
to an irrational rotation.

(iii) The domain Ω is a Siegel domain and all convergent
subsequence of (f n) converge to an automophism of Ω.



Extended Reinhardt domain ?

We proved the existence of a rotation set (domain?) containing
a Riemann sphere and Siegel disks.

In C2 or in P2, following theory can be applied, but it is not
applicable for surface automorphisms.

If Ω is a rank 2 rotation domain, then the G-action on Ω may
be conjugated to the standard linear action on C2.
Theorem. (Barrettt-Bedford-Dadok 1989) There are a

Reinhardt domain D ⊂ C2, a linear map L : (x , y) 7→ (αx , βy),
|α| = |β| = 1, and a biholomorphic map Φ : Ω→ D such that
Φ ◦ f = L ◦ Φ.

[BBD] D. Barrett, E. Bedford and J. Dadok, Tn-actions on
holomorphically separable complex manifolds. Math. Z. 202(1989),
no. 1, 65-82.



Other cases

There are countably many cases with such rotation behavior of
rank 2.

Surface automorphisms with invariant quadric curves can have
such rotation domains, too. The proof is almost same as for the
invariant line case.

There are countably many surface automorphisms for this case,
too.

Typical case is :
Invariant cuspidal curve,
Orbit data (2, 4, 4), σ = (1, 2).
Eigenvalues t2, t3.



Super-exotic rotation domain (CSPt244t2SQ0)



Super-exotic rotation domain (CSPt244t3Q)



Super-exotic rotation domain (CSPt244t3R)



5. Invariant conic



Invariant conic (necessary condition)

If there is an invariant quadratic curve, disjoint from the
anticanonical cubic curve, it must pass trough 6 points to be blown
up, two of which are indeterminate points of the base birational
map.

The sum of the Picard coordinates of these 6 blowup points
vanish.

The number of blowup points in each component of the
anticanonical curve must be 2 times the degree of the component.

The invariant quadratic curve contains two fixed points.



Invariant quadratic curve

Suppose the anticanonical curbic curve of surface automorphism
is a cuspidal cubic curve.

Theorem. In the case of orbit data (2, 4, n) with
transposition (1,2), the surface automorphism has an invariant
quadratic curve passing through six blowup points
p+

1 , p
−
1 , p

+
2 , p

−
2 , f (p−2 ), f 2(p−2 ).



Proof. Quadratic curve is mapped to a quadratic curve by
Cremona transformation if the quadratic curve passes through exactly
two indeterminate points. If there exists a quadratic curve passing
through these 6 points, its image by f is a quadratic curve, since p+

1 and
p+

2 are indeterminate points. Points p+
2 = f (p−1 ), p+

1 = f 3(p−2 ), f (p−2 ),
f 2(p−2 ) are in the image quadratic curve. The line passing through p+

1

and p+
3 , which contains another point in the quadratic curve, is mapped

to p−1 . Hence p−1 is in the image of the quadratic curve. Similarly, p−2 is
in the image, too. The image quadratic curve must be the same
quadratic curve, since 6 points determine the quadratic curve.

So, we only need to prove the existence of a quadratic curve passing
through the 6 points.



Let

a1 = −d(d4 + 1)(d − 1)

d6 − 1
+

1

3
, a2 = −d3(d2 + 1)(d − 1)

d6 − 1
+

1

3
,

b1 = − (d2 + 1)(d − 1)

d6 − 1
+

1

3
, b2 = − (d4 + 1)(d − 1)

d6 − 1
+

1

3
,

c1 = −d(d2 + 1)(d − 1)

d6 − 1
+

1

3
, c2 = −d2(d2 + 1)(d − 1)

d6 − 1
+

1

3
.

These are the x-coordinates of the blowup points.

p+
1 = (a1, a

3
1), p−1 = (b1, b

3
1),

p+
2 = (a2, a

3
2), p−2 = (b2, b

3
2),

f (p−2 ) = (c1, c
3
1 ), f 2(p−2 ) = (c2, c

3
2 ).

Immediately, we see that

a1 + a2 + b1 + b2 + c1 + c2 = 0.



Consider polynomial of degree 6 :

P(z) = (z − a1)(z − a2)(z − b1)(z − b2)(z − c1)(z − c2)

= z6 + A4z
4 + A3z

3 + A2z
2 + A1z + A0.

Let Q(x , y) be a quadratic polynomial defined by

Q(x , y) = y2 + A4xy + A3y + A2x
2 + A1x + A0.

The 6 points p+
1 , p

−
1 , p

+
2 , p

−
2 , f (p−2 ), f 2(p−2 ) satisfy Q(x , y) = 0.

Hence the quadratic curve Q(x , y) = 0 passes through these 6 points.

We conclude that quadratic curve {Q(x , y) = 0} is invariant under f .

Rem. The strict transform of this quadratic curve has
self-intersection −2.



Super-exotic rotation domain (QLt155t1)
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