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Julia sets with polyhedral symmetries are constructed from equivariant rational
mappings of the Riemann sphere.

0. Introduction

Let C̄ = C∪{∞} denote the Riemann sphere. Let us identify the Riemann sphere with
the unit sphere S2 = {(x1, x2, x3) ∈ R3 | x2

1 + x2
2 + x2

3 = 1} by the stereographic projection
z = (x1 + ix2)/(1− x3). Regular polyhedral groups act on the unit sphere and they induce
groups of Möbius transformations of the Riemann sphere.

Let Γ be a group of such Möbius transformations. Rational function f : C̄→ C̄ is said
to be Γ-equivariant if for all γ ∈ Γ,

γ ◦ f = f ◦ γ

holds. If f is Γ-equivariant, then its Julia set Jf is invariant for all γ ∈ Γ, i.e.,

γ(Jf ) = Jf .

In this note, we consider Γ-equivariant rational functions with super-attractive cycles.
In the simplest case, the obtained function has a Julia set which is locally homeomorphic to
the Sierpinskii’s gasket. Other functions have generalized Sierpinskii’s gaskets as their Julia
sets. The construction of Γ-equivariant mappings is classical and some of them were known
to Klein[?]. P.Doyle and C.McMullen[?] has produced a picture of one of these functions.

1. Invariant Functions and Equivariant Mappings

P.Doyle and C.McMullen[?] gave a method to produce all rational maps with given
symmetries. In this section we reproduce their method. Let E = C2 be a 2-dimensional
complex vector space. A point z ∈ C̄ corresponds to a complex line l = {(x, y) ∈ E | z =
x/y}. Let E∗ denote the vector space of linear functionals of E. E∗ is isomorphic to E and
we use coordinates (ξ, η) on E∗ such that if v = (ξ, η) and p = (x, y) then

v(p) = ξx+ ηy.

Line l = {(x, y) ∈ E | z = x/y} corresponds to a line in the dual space E∗ given by

l∗ = {(ξ, η) ∈ E∗ | z = −η
ξ
}.
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Let f : C̄→ C̄ be a rational function of degree d defined by

f(z) =
P (z)

Q(z)
,

where P (z) and Q(z) are polynomials without common factor. It defines, up to a scale

factor, a homogeneous polynomial map X : E → E by

X(x, y) = (P̃ (x, y), Q̃(x, y)),

where

P̃ (x, y) = ydP (
x

y
) and Q̃(x, y) = ydQ(

x

y
).

As E is a vector space, X can also be regarded as a homogeneous vectorfield on E.
Let Γ ⊂ Aut(C̄) be a finite group of Möbius transformations. Let Γ̃ ⊂ SL(E) denote its
pre-image in the group of linear transformations of determinant 1.

A vector field X on E is said to be invariant if there exists a character χ : Γ̃→ U(1), a
group homomorphism of Γ̃ into the group of complex numbers with modulus 1, such that

X ◦ γ̃−1 = χ(γ̃)X

for all γ̃ ∈ Γ̃. If the character χ is trivial, then X is said to be absolutely Γ̃-invariant.

Proposition 1.1. Homogeneous vector field X on E is Γ̃-invariant if and only if its
corresponding rational function f : C̄→ C̄ satisfies

f ◦ γ = f for all γ ∈ Γ.

By an isomorphism between E and E∗ :

E 3 (ξ, η) ←→ − ηdx+ ξdy ∈ E∗,

the vectorfield X = (P̃ (x, y), Q̃(x, y)) corresponds to a 1-form

θ = − Q̃(x, y)dx+ P̃ (x, y)dy.

Hence, rational function f(z) corresponds to a homogeneous 1-form θ : E → E∗ up to a

scale factor. To the identity map z 7→ z of the Riemann sphere corresponds the “identity”
vectorfield E → E

(x, y) 7−→ (x, y),

more precisely,

(x, y) 7−→ x
∂

∂x
+ y

∂

∂y
.

And the 1-form λ : E → E∗ corresponding to this vector field is given by

λ = − ydx+ xdy.

A vector field X on E is said to be Γ̃-equivariant if there exists a character

χ : Γ̃ → U(1)
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such that

γ̃ ◦X ◦ γ̃−1 = χ(γ̃)X

holds for all γ̃ ∈ Γ̃. If the character χ is trivial, X is said to be absolutely Γ̃-equivariant.

Proposition 1.2. Vector field X is Γ̃-equivariant if and only if its crresponding rational
function f : C̄→ C̄ is Γ-equivariant,i.e.,

γ ◦ f = f ◦ γ for all γ ∈ Γ.

A homogeneous 1-form θ is said to be Γ̃-equivariant if there exists a character χ : Γ̃→
U(1) such that

θ ◦ γ̃−1 = χ(γ̃)γ̃∗θ for all γ̃ ∈ Γ̃,

where γ̃∗θ is a 1-form E → E∗ defined by

(γ̃∗θ(x, y))(ξ, η) = θ(x, y)(γ̃(ξ, η)).

Homogeneous 1-form θ is said to be absolutely Γ̃-equivariant if the character χ : Γ̃ →
U(1) is trivial.

Proposition 1.3. Vectorfield X = E → E is Γ̃-equivariant if and only if its correspond-
ing 1-form θ : E → E∗ is equivariant.

Proof. Let γ̃ ∈ SL(E). Then

γ̃

(
P̃ (γ̃−1(x, y))

Q̃(γ̃−1(x, y))

)
= χ(γ̃)

(
P̃ (x, y)

Q̃(x, y)

)

implies
(−Q̃(γ̃−1(x, y)), P̃ (γ̃−1(x, y))) = χ(γ̃)(−Q̃(x, y), P̃ (x, y))γ̃.

Note that 1-form λ = −ydx + xdy is absolutely SL(E)-equivariant. Let ω = dx ∧ dy be

the volume form. Then dλ = 2ω. Obviously, ω is also absolutely SL(E)-equivariant.

Theorem 1.4. (P.Doyle and C.McMullen)
A homogeneous 1-form θ is Γ̃-equivariant if and only if

θ = f(x, y)λ+ dg(x, y)

where f and g are Γ̃-invariant homogeneous polynomials with the same character χ : Γ̃→
U(1) and deg(g) = deg(f) + 2.

Proof. Suppose θ is Γ̃-equivariant. Then dθ = h(x, y)ω is a Γ̃-equivariant 2-form.
Since ω is absolutely equivariant, h(x, y) is a homogeneous polynomial which is Γ̃-invariant
with the same character as θ. Let f(x, y) = h(x, y)/(deg(h) + 2). Then d(fλ) = h(x, y)ω
holds and θ− f(x, y)λ is a closed 1-form. Integrating this closed form along lines from the
origin, we get a unique homogeneous primitive function g(x, y). By uniqueness, g(x, y) is
Γ̃-invariant with the same character as θ. The converse is clear. The condition on degrees
assures that the sum is homogeneous.

2. Rational Functions with Tetrahedral Symmetry
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In this section, we consider the tetrahedral group acting on the Riemann sphere. We
identify the unit sphere S2 ⊂ R3 and the Riemann sphere C̄ by the stereographic projection.
The Riemann sphere and the complex projective space PE are identified by z = x/y.

Consider a regular tetrahedron with their vetices at

V4 = {0,
√

2,
√

2ω,
√

2ω2},

where ω = (−1 +
√

3i)/2 is a cubic root of 1. Homogeneous function

h4(x, y) = x4 − 2
√

2xy3

vanishes at these vertices. The centers of the faces of the tetrahedron

V ′
4 = {∞,− 1√

2
,− ω

2

√
2
,− ω√

2
}

defines

h′4(x, y) = 2
√

2x3y + y4.

The midpoints of the edges of the tetrahedron are given by

V6 = {−1±√3√
2

ωk | k = 0, 1, 2}

and they define

h6(x, y) = x6 + 5
√

2x3y3 − y6.

Let

h8(x, y) = h4h
′
4 = 2

√
2x7y − 7x4y4 − 2

√
2xy7.

The tetrahedral group is isomorphic to the alternative group A4. Let Ã4 denote its
pre-image in SL(E). Define g̃1, g̃2 ∈ Ã4 by

g̃1 =

(
ω 0
0 ω2

)
, g̃2 =

i√
3

(
−1

√
2√

2 1

)
.

These elements and −I : (x, y) 7→ (−x,−y) generate the group Ã4.

Homogeneous function h4 is Ã4-invariant with character satisfying

χ(g̃1) = ω

and h′4 has character satisfying

χ(g̃1) = ω2.

Homogeneous functions h6, h8, h
3
4 and (h′4)

3 are absolutely Ã4-invariant. They have a

relation
h2

6 = h3
4 + (h′4)

3.

Let

h12 = h3
4 − (h′4)

3 = x12 − 22
√

2x9y3 − 22
√

2x3y9 − y12.
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Let RA4 denote the ring of absolutely Ã4-invariant polynomials. This ring is generated
by h6, h8 and h12. There is a relation between these generators :

h4
6 = h2

12 + 4h3
8.

Since all the orbits of the A4-action on the Riemann sphere consist of even number of
points, RA4 is a graded ring and can be decomposed as

RA4 =
∞⊕

k=0

RA4
2k ,

where RA4
2k denotes the vector space of absolutely Ã4-invariant homogeneous polynomials

of degree 2k.

Proposition 2.1.

dimRA4
2k =

1

12
{2k + 1 + 3(−1)k + 8(1− (k mod 3))}.

Proof. This formula can be obtained by directly computing

dimRA4
2k =

1

| A4 |
∑

g∈A4

traceρ2k(g),

where ρ2k : A4 → GL(R2k) is the representation of the tetrahedral group on the linear

space of homogeneous polynomials of degree 2k.

As a corollary, we have :

Proposition 2.2.
RA4

0 = C, RA4
2 = 0, RA4

4 = 0,

RA4
6 = Ch6 = RA4

0 h6, RA4
8 = Ch8 = RA4

0 h8,

RA4
10 = 0, R12 = Ch12 + Ch2

6 = RA4
0 h12 +RA4

6 h6

RA4
14 = Ch6h8 = RA4

8 h6 = RA4
6 h8, RA4

16 = Ch2
8 = RA4

8 h8.

RA4
18 = Ch6h12 + Ch3

6 = RA4
12 h6,

RA4
20 = Ch8h12 + Ch8h

2
6 = RA4

12 h8, RA4
22 = Ch6h

2
8 = RA4

16 h6 = RA4
14 h8,

RA4
24 = Ch2

12 + Ch12h
2
6 + Ch4

6.

In general, RA4
2k+12 = RA4

2k h12 + Chα
6h

β
8 holds for some α and β with 6α + 8β = 2k + 12,

hα
6h

β
8 ∈/ RA4

2k h12.

Equivariant mappings are constructed by Theorem 1.4. If f(x, y) and g(x, y) are Γ̃-
invariant homogeneous polynomials with the same character and if deg(g) = deg(f) + 2,
then

θ = f(x, y)λ+ dg(x, y)

defines a Γ̃-equivariant 1-form. We denote the Γ-equivariant rational mapping correspond-

ing to θ by
ψ(f, g) : C̄ → C̄.

ψ(f, g)(z) is obtained by setting z = x/y in
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xf(x, y) + ∂g
∂y

(x, y)

yf(x, y)− ∂g
∂x

(x, y)
.

Note that the numerator and the denominator may have a common factor and the degree

of the obtained mapping ψ(f, g) may be smaller than deg(g)− 1.
A4-equivariant maps are computed as follows. Ã4-invariant homogeneous functions with

character χ(g̃1) = ω are the functions h4, (h
′
4)

2 and absolutely Ã4-invariant homegeneous
functions multiplied by one of these two functions. For Ã4-invariant homogeneous func-
tions with character χ(g̃1) = ω2, we have absolutely Ã4-invariant homogeneous functions
multiplied by h′4 or h2

4. Hence, for these functions we obtain, for example,

ψ(0, hk
4) =

3z√
2z3 − 1

, k = 1, 2, . . .

and

ψ(0, (h′4)
k) = − z3 +

√
2

3z2
, k = 1, 2, . . .

From absolutely Ã4-invariant homogeneous functions, we obtain, for example, the following

A4-equivariant mappings :

ψ(0, hk
6) = − 5z3 −√2

z2(
√

2z3 + 5)
, k = 1, 2, . . .

ψ(0, hk
8) = − z(z6 − 7

√
2z3 − 7)

7z6 − 7
√

2z3 − 1
, k = 1, 2, . . .

ψ(0, hk
12) =

11z9 + 33z3 +
√

2

z2(
√

2z9 − 33z6 − 11)
, k = 1, 2, . . .

If a rational function ϕ : C̄ → C̄ is A4-equivariant, then orbits of the A4-action on
the Riemann sphere are mapped onto some A4-orbits. The vertices V4 of the tetrahedron
are mapped either onto themselves or onto the centers of the faces V ′

4 . The midpoints of
the edges of the tetrahedron V6 are mapped onto midpoints of edges, since they are the
only points whose orbits consist of six points. The intersection of the tetrahedron and its
dual tetrahedron is a regular octahedron. Homogeneous equation h12 = 0 defines the set of
midpoints of the edges of this octahedron

V12 = {±i,±
√

3± i
2

, (
√

2±
√

3)ωk},

where k = 0, 1, 2. Centers of the faces of the octahedron

V8 = {0,∞,
√

2ωk,− ω
k

√
2
}

are defined by h8 = 0, and the vertices are given by h6 = 0. The homogeneous equation

h8 = 0 defines also the vetices of the cube which is the dual of the regular octahedron.
Similarly, h6 = 0 defines the centers of the faces of this regular cube.

By looking at the equivariance, we see that the mapping ϕ restricted to the set of
vertices or the set of the centers of the faces is either the identity map or the antipodal
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map z 7→ −1/z̄. If ϕ has critical points at these special points whose orbits consist of
numbers smaller than the order of the polyhedral group, they are : super-attractive fixed
points, super-attractive cycles of period two, or mapped into the antipodal unstable fixed
points. The last of these cases occur when ϕ is A4-equivariant with critical points at V4 or
V ′

4 , mapping these points into their antipodal point and these antipodal points are unstable
fixed points. In this case,

ϕ̃ = − 1

ϕ(z)

gives a rational function which has super-attractive fixed points on the real line and super-

attractive cycles of period two. The restriction of ϕ̃ to these critical points is the conjugation
z 7→ z̄. ϕ̃ is not A4-equivariant ( −1/ϕ̄(z) is A4-equivariant but not complex analytic).

Now, let us consider A4-equivariant maps which have super-attractive basins. We can
verify the following facts.

A4-equivariant critical critical restriction to the
function points type critical points
ψ(0, h4) V ′

4 h′4 = 0 antipodal map
ψ(0, h′4) V4 h4 = 0 antipodal map
ψ(0, h6) V8 h8 = 0 antipodal map
ψ(0, h8) V6 h2

6 = 0 antipodal map
ψ(0, h12) V6 ∪ V8 h2

6h8 = 0 antipodal map

ψ(−14
√

2h6, h8) V4 h3
4 = 0 identity map

ψ(14
√

2h6, h8) V ′
4 (h′4)

3 = 0 identity map

ψ(2
√

14h6, h8) V12 h12 = 0 neither antipodal
nor identity

ψ(2
√

2h6, h8) = ψ(0, h′4)

ψ(−2
√

2h6, h8) = ψ(0, h4)

Formulas of these functions are as follows.

ψ(2
√

14h6, h8) =
z((1 +

√
7)z6 + (5

√
14− 7

√
2)z3 − 7−√7)

(
√

7− 7)z6 + (5
√

14 + 7
√

2)z3 + 1−√7

ψ(−14
√

2h6, h8) =
3z4(z3 + 7

√
2)

7z6 + 14
√

2z3 − 4

ψ(14
√

2h6, h8) = − z(
√

2z6 + 14
√

2z3 − 7)

3(1− 7
√

2z3)

Function ψ(0, h4) is conjugate to ψ(0, h′4) and function ψ(−14
√

2h6, h8) is conjugate to

ψ(14
√

2h6, h8).

3. Rational functions with octahedral symmetry

Six points V6 of the Riemann sphere defines a regular octahedron. Points of V6 are its
vertices. The centers of the faces correspond to the points of V8 = V4∪V ′

4 defined by h8 = 0.
The midpoints of the edges V12 are given by h12 = 0. The polyhedral group acting on the
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regular octahedron is isomorphic to the symmetric group S4. Let S̃4 ⊂ SL(E) denote its
pre-image.

Homogeneous functions h6 and h12 are S̃4-invariant with character

χ(g̃3) = − 1,

where

g̃3 =

(
0 −1
1 0

)
.

g̃3 is the generator of S̃4/Ã4 ' Z2. Homogeneous functions h4 and h′4 are not S̃4-invariant.

Homogeneous function h8 is absolutely S̃4-invariant.
The ring of absolutely S̃4-invariant polynomials have only terms of even degree. The

octahedral group S4 can be considered to act on the polynomials with even degree terms.
We denote this ring by RS4 and decompose it into homogeneous parts :

RS4 =
∞⊕

k=0

RS4
2k .

RS4 is generated by h8, h
2
6, and h6h12. They have a relation

h4
6 = h2

12 + 4h3
8.

Proposition 3.1.

dimRS4
2k =

1

24
(2k + 1 + 9(−1)k + 8(1− (k mod 3)) + 6(−1)[k/2])

Proposition 3.2. S̃4-invariant functions with character χ(g̃3) = −1 form a vector space

RS4h6 +RS4h12.

Since A4 ⊂ S4, S̃4-invariant homogeneous polynomials are also Ã4-invariant. And S4-
equivariant mappings are also A4-equivariant mappings. Among S4-equivari-ant mappings,
we have, for example,

ψ(0, h6), ψ(0, h8), ψ(0, h12), etc.

As h6 and h12 have the same character and h8 is absolutely S̃4-invariant, h12 and h6h8

have the same character. Therefore, one-parameter family

ψ(ph12, h6h8), p ∈ C

gives S4-invariant rational mappings. In this family, we find the following rational functions.

ψ(−13
√

2

24
h12, h6h8) = − z(5z12 + 130

√
2z9 − 936z6 − 182

√
2z3 + 91)

91z12 + 182
√

2z9 − 936z6 − 130
√

2z3 + 5

has critical points at V12 (given by h2
12 = 0) and these critical points are mapped into their

antipodal points.

ψ(26
√

2h12, h6h8) =
z4(4z9 − 78

√
2z6 − 39z3 − 91

√
2)

−91
√

2z9 + 39z6 − 78
√

2z3 − 4
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has fixed critical points at V8 (given by h3
8 = 0).

ψ(− 39√
2
h12, h6h8) =

z(−5z12 + 130
√

2z9 − 78z6 + 104
√

2z3 + 13)

−13z12 + 104
√

2z9 + 78z6 + 130
√

2z3 + 5

has fixed critical points at V6 (h4
6 = 0). In this family, ψ(−2

√
2h12, h6h8) = ψ(0, h6) and

ψ( 3√
2
h12, h6h8) = ψ(0, h8) are found.

4. Rational mappings with dodecahedral symmetry

In this section, we calculate some rational mappings with the symmetry of a regular
dodecahedron. Homogeneous function

f12 = x11y + 11x6y6 − xy12

defines the 12 centers of the faces of a regular dodecahedron

W12 = {0,∞, 5

√
5
√

5− 11

2
Ωk,− 5

√
5
√

5 + 11

2
Ωk}, k = 0, 1, 2, 3, 4,

where Ω =
√

5−1
4

+
√

5+
√

5
8
i is a quintic root of 1. The 20 vertices of the dodecahedron

W20 = { 5

√
57 + 25

√
5 + 5

√
255 + 114

√
5Ωk,

5

√
57− 25

√
5 + 5

√
255− 114

√
5Ωk,

− 5

√
−57 + 25

√
5 + 5

√
255 + 114

√
5Ωk,− 5

√
−57− 25

√
5 + 5

√
255− 114

√
5Ωk}

are given by

H20 = x20 − 228x15y5 + 494x10y10 + 228x5y15 + y20

The midpoints of the edges

W30 = {iΩk,−iΩk,
5

√√√√±15
√

650− 290
√

5 + 125
√

5− 261

2
Ωk,

5

√√√√±15
√

650 + 290
√

5− 125
√

5− 261

2
Ωk}

are given by

T30 = x30 + y30 + 522(x25y5 − x5y25)− 10005(x20y10 + x10y20).

Since the group of the symmetries of the regular dodecahedron is isomorphic to the al-

ternative group A5, and A5 is a simple group, Ã5-invariant homogeneous polynomials are
always absolutely Ã5-invariant.

As described in P.Doyle and C.McMullen[?],
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ψ(0, f12) = − z(z10 + 66z5 − 11)

11z10 + 66z5 − 1
,

ψ(0, H20) =
57z15 − 247z10 − 171z5 − 1

z4(z15 − 171z10 + 247z5 + 57)
,

ψ(0, T30) = − 87z25 − 3335z20 − 6670z10 − 435z5 + 1

z4(z25 + 435z20 − 6670z15 − 3335z5 − 87)

are the only A5-equivariant rational functions with degrees smaller than 31.

A5-equivariant critical critical restriction to the
mapping points type critical points
ψ(0, f12) W20 H20 = 0 antipodal map
ψ(0, H20) W12 f 3

12 = 0 antipodal map
ψ(0, T30) W12 ∪W20 f 3

12H20 = 0 antipodal map

There is a family of A5-equivariant rational functions of degree 31 since f12H20 is of
degree 32 and T30 is of degree 30. One parameter family

ψ(pT30, f12H20), p ∈ C

gives A5-equivariant rational mappings. Among these mappings, we find, for example,

ψ(−31

45
T30, f12H20) =

−z(19z30 − 10602z25 − 326895z20 + 1060200z15 + 398505z10 − 67518z5 − 341)

341z30 − 67518z25 − 398505z20 + 1060200z15 + 326895z10 − 10602z5 − 19

which has degenerate critical points at W30 ( given by T 2
30 = 0) and these critical points

are mapped into their antipodal points. In the same family we find

ψ(−31T30, f12H20) =
z6(z25 + 465z20 − 10385z15 + 2945z10 − 8370z5 − 682)

682z25 − 8370z20 − 2945z15 − 10385z10 − 465z5 + 1

which has critical points at W12 (f 5
12 = 0) and these degenerate critical points are fixed

points. Another one found in this family is

ψ(
155

3
T30, f12H20) =

z(19z30 + 10602z25 − 185535z20 − 35340z15 − 209715z10 − 7998z5 + 31)

31z30 + 7998z25 − 209715z20 + 35340z15 − 185535z10 − 10602z5 + 19

which has degenerate critical points at W20 (H3
20 = 0) and these critical points are fixed

points.
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