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Abstract

The Hénon map can have three attracting cycles for certain values of
parameters. A rigorous proof is given for some parameter values having
attracting cycles of periods 1,3 and 4. The proof is given by elementary
calculations. Saddle-node locus curves in the parameter space for periodic
points of periods 3 and 4 are computed. Formula for periodic points of
period upto five are obtained.

0. Introduction

Classical Hénon map is given by the following formula. xn+1 = 1 + yn − ax2n
yn+1 = bxn

In this note, the Hénon map Hb,c : (x, y) 7→ (X, Y ) is defined by the
following formula.  X = x2 + c+ by

Y = x

These maps are conjugate by affine change of coordinates with parameter
correspondence c = −a. In this note, we try to compute periodic points of
period up to 5 explicitly. Parameter value is detected for which saddle node
bifurcation of period three periodic point and saddle node bifurcation of
period four occur simultaneously while one fixed point remains attracting.
Further calculation reveals the existence of attracting cycles of periods 1,3
and 4 for some nearby parameters.

A variable will be called a cycle variable, if a cycle can be computed
from the variable, and the value can be computed from a cycle. An equation
of cycle variable and parameters will be called a cycle equation.



The following picture shows an example of a part of unstable manifold
of a saddle point. Observe that there are three basins of attractions.

1. Attracting fixed point

Fixed points are of the form (x0, x0) with x0 given as a root of quadratic
equation

x20 − (1− b)x0 + c = 0,

i.e.,

x0 =
1

2
(1− b±

√
(1− b)2 − 4c),

and

c = −(x0 −
1

2
(1− b))2 +

1

4
(1− b)2.

The value x0 can be regarded as a cycle variable of 1-cycles. And the
cycle equation of 1-cycle is

(CE1) x20 − (1− b)x0 + c = 0.

The Jacobian matrix of Hb,c is given by

DHb,c,(x,y) =

 2x b
1 0

 .
And

detDHb,c,(x,y) = −b, trDHb,c,(x,y) = 2x.



The eigenvalues of the fixed points are given by

λ = x0 ±
√
x20 + b.

For given b and eigenvalue λ, the fixed point and parameter c are given by

x0 =
1

2

(
λ− b

λ

)
,

c = − 1

4λ2
(λ− 1)2(λ+ b)2 +

1

4
(1− b)2.

For fixed b, parameter c can be regarded as a rational function of λ. This
rational function has a pole at λ = 0, and non-degenerate critical points
at λ = 1, − b, and ±

√
−b, since

∂c

∂λ
= − 1

2λ3
(λ− 1)(λ+ b)(λ2 + b).

The critical value c = 1
4 (1− b)2 is the locus of saddle-node bifurcation.

By setting τ = tr DHb,c, we have

τ = λ− b

λ
= 2x0, c = − 1

4
(τ − (1− b))2 +

1

4
(1− b)2.

For fixed b with |b| < 1, the parameter region of c, having an attracting
fixed point, is the image of annulus {λ ∈ C | |b| < |λ| < 1} by the rational
map. This annulus is mapped onto an ellipse in τ space, followed by a
quadratic map with a critical point at τ = 1 − b on the boundary of the
ellipse, sending the ellipse onto an “elliptic cardioid” in c space with a cusp
point at critical value 1

4 (1− b)2.
Let D2 denote the quotient space of polydisc D2 by equivalence (λ1, λ2) ∼

(λ2, λ1). Canonical coordinate of D2 is (δ, τ) = (λ1λ2, λ1+λ2). The annulus
{(λ1, λ2) ∈ D2 | λ1λ2 = −b} is isomorphic to the annulus {λ ∈ D | |b| <
λ < 1} and mapped onto a vertical ellipse in D2. Let Ω1 denote the set
of parameters (b, c) ∈ C2 for which Hb,c has an attracting fixed point.
Coordinate x0 represents the fixed point (x0, x0). And let Ω̃1 denote the
set of points ((b, c), x0) ∈ Ω1 × C with (x0, x0) being the attracting fixed
point, i.e., x20− (1− b)x0 + c = 0. We call this equation the cycle equation
of period 1.

Proposition 1. Ω̃1 is isomorphic to D2.



Proof. For point ((b, c), x0) ∈ Ω̃1, the eigenvalues λ1, λ2 of the at-
tracting fixed point are of modulus smaller than 1. Hence, (λ1, λ2) ∈ D2.
The product δ = λ1λ2 = −b and the sum τ = λ1 + λ2 = 2x0 define a
holomorphic mapping from Ω̃1 to D2. The inverse holomorphic mapping is
given by b = −λ1λ2 = −δ, x0 = 1

2 (λ1 +λ2) = 1
2 τ , and c = (1− b)x0−x20.

The saddle-node locus, where the fixed point has an eigenvalue λ = 1,
is a quadratic curve {(b, c) ∈ C2 | c = 1

4 (1 − b)2}. These parameters are
located at the cusp points of “elliptic cardioid” ∂Ω1 ∩ {b = const.}.

2. Saddle fixed point and unstable manifold

When a fixed point P is a saddle, there exists an unstable manifold
W u(P ). Computations of saddle fixed point and eigenvalues are exactly
same as in the case of attracting fixed points. The coordinate x0 in the
previous section can be used as the coordinate of the space of cycle of period
1. Let C2 denote the quotient space of C2 by equivalence (λ1, λ2) ∼ (λ2, λ1).
This space is used as the space of eigenvalues and is isomorphic to C2 by
mapping [(λ1, λ2)] 7→ (δ, τ), defined by

δ = λ1λ2, τ = λ1 + λ2.

Let Γ̃1 = {((b, c), x0) ∈ C2 × C | x20 − (1− b)x0 + c = 0} denote the space
of cycles of period 1.

Proposition 2. Γ̃1 is isomorphic to C2.

Proof. For point ((b, c), x) ∈ Γ̃1, the determinant and the trace of the
Jacobian matrix DHb,c at fixed point (x0, x0) are given by

δ = −b, τ = 2x0.

And the inverse map is given by

b = −δ, c =
τ

2
((1 + δ)− τ

2
), x0 =

1

2
τ.

“How do you compute unstable manifolds numerically?” is a frequently
asked question. There are several methods. The author uses a classical
method found by Poincaré in the 19th century, and generalized to higher



dimensional saddle points by the author. Here, let us explain this method
using the power series expansion for the simplest case.

Let P = (x0, x0) be a saddle fixed point of Hénon mapHb,c, and let λ be an
eigenvalue of the Jacobian matrix DHb,c(P ) of modulus greater than 1. Let
Eu denote the eigenspace of λ. By Poincaré, there exists a transcendental
entire map Φ : C → C2, satisfying Φ(0) = P , Image(DΦ0) = Eu, and the
following function equation

(∗) Φ(λz) = Hb,c ◦ Φ(z).

His proof is quite simple. Compute the Taylor coefficients of Φ, and show
the convergence of the power series obtained from the Taylor coefficients.
Let

Φ(z) = (x0 + ϕ(z), x0 + ψ(z)), ϕ(z) =
∞∑
k=1

ϕkz
k.

By function equation (∗), we have the followings.

x0 + ϕ(λz) = (x0 + ϕ(z))2 + c+ b(x0 + ψ(z)),

x0 + ψ(λz) = x0 + ϕ(z).

As P is a fixed point of Hb,c, we can eliminate ψ to obtain

ϕ(λz) = 2x0ϕ(z) + (ϕ(z))2 + bϕ(
z

λ
).

Coefficients of the first order terms with respect to z must satisfy

λϕ1 = 2x0ϕ1 +
b

λ
ϕ1,

which is automatically satisfied for any ϕ1, since λ is an eigenvalue of the
saddle point. Note that we can choose ϕ1 to define a coordinate in the
unstable manifold. For k > 1, by comparing the k-th order terms, we have

λkϕk = 2x0ϕk +
k−1∑
l=1

ϕlϕk−l +
b

λk
ϕk

so that ϕk can be computed inductively by

ϕk =

∑k−1
l=1 ϕlϕk−l

λk − 2x0 − b
λk
.



Note that in our case 2x0 = λ − b
λ , we assume |b| < 1, |λ| > 1. The

denominators

λk − 2x0 −
b

λk
= λ(λk−1 − 1)(1 +

b

λk+1
)

do not vanish and the power series

ϕ(z) = x0 +
∞∑
k=1

ϕkz
k

converges. Finally set ψ(z) = ϕ( z
λ ) to obtain Φ(z).

3. Periodic points of period two

In this section, we consider attracting cycles of period two. Although
this case is easy to compute, we try to apply the discrete Fourier expan-
sion method. There is only one cycle of period two for each parameter
(b, c). The following construction of the space of cycles may appear to be
redundant.

Let {(xn, xn−1)} be the periodic orbit of period 2, and set

xn = α0 + (−1)nα1.

The difference equation for Hb,c:

xn+1 = x2n + c+ bxn−1

yields the following system of equations for Fourier coefficients.

(EF2)

 α0 = α2
0 + α2

1 + c + bα0

−α1 = 2α0α1 − bα1

By excluding the fixed point case, i.e., by assuming α1 6= 0, we have

α0 = − 1

2
(1− b), α2

1 = − 3

4
(1− b)2 − c.

The cycle of period two consists of two points (α0 +α1, α0−α1) and (α0−
α1, α0+α1). The value α0 represents the 2-cycle. Thus, α0 can be regarded
as a cycle variable of period 2, and the cycle equation is

(CE2) 2α0 + 1− b = 0.



Let Γ̃2 = {((b, c), α0) ∈ C2 × C | α0 = − 1
2 (1 − b)} denote the space of

2-cycles.

Proposition 3. Γ̃2 is a branched double-covering space over C2, with
critical locus {b = 0} ⊂ Γ̃2 and branching locus {δ = 0} ⊂ C2.

Proof. The determinant and the trace gives the branched covering
map

δ = (−b)2, τ = trDH2
b,c = 4(α2

0 − α2
1) + 2b = 4(1− b)2 + 4c+ 2b.

and the“inverse” map is given by

b = ±
√
δ, c =

1

4
τ − 1

2
b− (1− b)2, α0 = − 1

2
(1− b).

Let Ω2 denote the set of parameters (b, c) ∈ C2 for whichHb,c has an attract-
ing cycle of period two. And let Ω̃2 denote the set of points ((b, c), α0) ∈ Γ̃2

with corresponding cycle being attracting.

Proposition 4. Ω̃2 is a branched double-covering space over D2, with
critical locus {b = 0} ⊂ Ω̃2 and branching locus {δ = 0} ⊂ D2.

Proof. Same as the preceding proposition. Each slice of Ω2 by
{b = const.} is an ellipse.

4. Unstable manifold of periodic saddle

Unstable manifolds of periodic saddles can be expanded into power series.
Similarly as in the case of fixed saddle, the coefficients of the power series
can be computed inductively.

Let P0, · · · , Pp−1 be a cycle of period p, and let λ denote the eigenvalue
of the Jacobian matrix DHp

b,c at the periodic points. For i = 0, · · · , p− 1,
let

Pi = (xi, yi), Φi : C→ C2, Φi(z) = (xi + ϕi(z), yi + ψi(z))

and assume

Φi+1(z) = Hb,c ◦ Φi(z), for i = 0, · · · , p− 2,

and
Φ0(λz) = Hb,c ◦ Φp−1(z).



These function equations yield the following system of function equations. xi+1 + ϕi+1(z) = (xi + ϕi(z))2 + c+ b(yi + ψi(z))
yi+1 + ψi+1(z) = xi + ϕi(z)

(i = 0, · · · , p− 2),

and  x0 + ϕ0(λz) = (xp−1 + ϕp−1(z))2 + c+ b(yp−1 + ψp−1(z))
y0 + ψ0(λz) = xp−1 + ϕp−1(z)

.

As xi and yi are coordinates of periodic points, we have ϕi+1(z) = 2xiϕi(z) + (ϕi(z))2 + bψi(z)
ψi+1(z) = ϕi(z)

(i = 0, · · · , p− 2),

and  ϕ0(λz) = 2xp−1ϕp−1(z) + (ϕp−1(z))2 + bψp−1(z)
ψ0(λz) = ϕp−1(z)

.

Expand functions ϕi(z) and ψi(z) to power series

ϕi(z) =
∞∑
k=1

ϕi,kz
k, ψi(z) =

∞∑
k=1

ψi,kz
k.

Let DHi denote the Jacobian matrix DHb,c at Pi. The linear terms must
satisfy  ϕi+1,1

ψi+1,1

 = DHi

 ϕi,1
ψi,1

 , for i = 0, · · · , p− 2,

and  λϕ0,1

λψ0,1

 = DHp−1

 ϕp−1,1
ψp−1,1

 .
We can choose an eigenvector

 ϕ0,1

ψ0,1

 of DHp−1 · · ·DH0 to get values of

the linear terms. Higher order coefficients are computed inductively as
follows. Let

ϕ
[2]
i,k =

k−1∑
l=1

ϕi,lϕi,k−l

denote the term of degree k of power series (ϕi(z))2. Note that this term
is determined by terms of orders smaller than k.



The coefficients of degree k greater than 1 satisfy ϕi+1,k

ψi+1,k

 = DHi

 ϕi,k
ψi,k

 +

 ϕ
[2]
i,k

0

 , for i = 0, · · · , p− 2,

and

λk
 ϕ0,k

ψ0,k

 = DHp−1

 ϕp−1,k
ψp−1,k

 +

 ϕ
[2]
p−1,k
0

 .
These equations can be solved as follows ϕ0,k

ψ0,k

 = (λkE −DHp−1 · · ·DH0)
−1
p−1∑
j=0

DHp−1 · · ·DHj+1

 ϕ
[2]
j,k

0

 .
These formulas recursively determine all the coefficients of the convergent

power series Φ0(z), · · · ,Φp−1.

5. Cycles of period three

In this section, we compute the periodic points of period three using the

discrete Fourier expansion. Let ω =
1

2
(−1 +

√
3i) denote a cubic root of

unity. Periodic sequence {xn} of period three can be expressed as

xn = u0 + ωnu1 + ω2nu2.

To exclude fixed point cases, we assume (u1, u2) 6= (0, 0).
Sequence Pn = (xn, xn−1) is an orbit of Hb,c if and only if

xn+1 − bxn−1 = (xn)
2 + c

holds. We obtain the following system of equations for Fourier coefficients.

(EF3)


(1− b)u0 = u20 + 2u1u2 + c,

(ω − bω2)u1 = u22 + 2u0u1,
(ω2 − ωb)u2 = u21 + 2u0u2.

As we assumed u1u2 6= 0, the second and the third equations give

u22u
−1
1 = ω − bω2 − 2u0, u21u

−1
2 = ω2 − bω − 2u0.

The product and the sum of these yield

u1u2 = 4u20 + 2(1− b)u0 + b2 + b+ 1,



u31 + u32
u1u2

= −(1− b)− 4u0.

Note that u1 and u2 are determined from b and u0. The cycle does not de-
pend on the choice of u1 and u2 as solutions. Hence the value u0 represents
the cycle. We call u0 the cycle variable of 3-cycle. The condition for
this cycle to be a cycle of Hb,c reduces to equation

c = −9u20 − 3(1− b)u0 − 2(b2 + b+ 1),

or

(CE3) 9u20 + 3(1− b)u0 + 2(b2 + b+ 1) + c = 0,

which we call the cycle equation of period 3.
For each parameter (b, c), there are two cycles of period three. If the

above equation has two distinct solutions for u0, they correspond to the two
3-cycles. For each root u0 of the cycle equation, u1 and u2 are obtained from
the above equations. The choice of the cubic root corresponds to the choice
of the starting point of the cycle. Saddle-node cycle must correspond to
the double root case. The saddle-node parameters satisfy the discriminant
equation

9(1− b)2 − 36(c+ 2(b2 + b+ 1)) = 0,

or,

(SN3L) c = − 1

4
(7b2 + 10b+ 7),

which we call the saddle-node equation of period 3. The curve {(b, c) ∈
C2 | c = − 1

4 (7b2 + 10b+ 7)} in the parameter space is called the saddle-
node locus of period 3. The value of cycle variable for the saddle-node
cycle is given by the double root

(SN3C) u0 = − 1

6
(1− b)

of the cycle equation.
Note that this curve is invariant under change of parameters (b, c) 7→

(b−1, cb−2), since the condition for cycle to have eigenvalue 1 is invariant
under the involution Hb,c 7→ H−1b,c ∼ Hb−1,cb−2.

The cycle variable u0 of the saddle-node is the double root of the cycle
equation and is given by u0 = 1

6 (b− 1).



The trace of the Jacobian matrix D(H3
b,c) along the cycle is given by

τ = tr D(H3
b,c) = 8x0x1x2 + 2b(x0 + x1 + x2).

As
x0 + x1 + x2 = 3u0,

and
x0x1x2 = u30 + u31 + u32 − 3u0u1u2

= −27u30 − 18(1− b)u20 − 3(3b2 + b+ 3)u0 − (1− b3),
we have a formula for trace of 3-cycle

(TF3) τ = −8

(
27u30 + 18(1− b)u20 + 9(b2 +

b

4
+ 1)u0 + 1− b3

)
.

Let Γ̃3 = {((b, c), u0) ∈ C2 × C | c = −9u20 − 3(1− b)u0 − 2(b2 + b + 1)}
denote the cycle space of period 3. The trace τ : Γ̃3 → C, is called the
trace function.

Proposition 5. Holomorphic map χ : Γ̃3 → C2 , with χ((b, c), u0) =
(δ, τ), defined by

δ = det D(H3
b,c) = −b3, τ = tr D(H3

b,c)

is regular near the saddle-node locus {c = − 1
4 (7b2 + 10b+ 7)}, except at

(b, c) = − 1
14 (13± 3

√
3i)(1, 34) and {b = 0}.

Proof. Partial derivative ∂τ
∂u0

at saddle-node cycle ((b,− 1
4 (7b2+10b+

7)),− 1
6 (1− b)) ∈ Γ̃3 is given by

∂τ

∂u0

∣∣∣∣∣
u0=− (1−b)

6

= −6(7b2 + 13b+ 7).

Hence, χ is regular if b 6= 0 and 7b2 + 13b + 7 6= 0. Note that |b| = 1 if
7b2 + 13b+ 7 = 0.

Proposition 6. Cycle of period 3 has eigenvalue 1 on the sadlde-node
locus {c = − 1

4 (7b2 + 10b + 7)} with u0 = − 1
6 (1 − b). On the parabolic

bifurcation locus {u0 = 1
2 (ω − bω2)} ∪ {u0 = 1

2 (ω2 − bω)} of period
tripling, the cycle degenerates to a parabolic fixed point. Apart from these
cases, 3-cycle does not have eigenvalue 1.



Proof. When an eigenvalue λ of the cycle is 1, the other eigenvalue is
−b3. The trace τ computed above can be decomposed as

τ − (1− b3) = −216(u0 +
1

6
(1− b))(u20 +

1

2
(1− b)u0 +

1

4
(b2 + b+ 1)).

The first factor gives the saddle-node locus. The second factor can be
solved as

u0 =
1

2
(ω − bω2) or u0 =

1

2
(ω2 − bω).

In these cases, we have u1 = u2 = 0. Hence the cycle degenerates to a fixed
point. The parameter c is given by

c =
1

4
(2ω2 − ω)b2 + b+

1

4
(2ω − ω2)

or

c =
1

4
(2ω − ω2)b2 + b+

1

4
(2ω2 − ω).

These parameters correspond to the trifurcation locus.

Let Ω̃3 = χ−1(D2) ⊂ Γ̃3 denote the set of attracting cycles of period 3.
And let Ω3 ⊂ C2 denote its projected image in the parameter space.

Proposition 7. For each parameter b with |b| < 1, locus of attracting
cycles Ω3 ∩ ({b} × C) has a cusp point at c = − 1

4 (7b2 + 10b+ 7).

Proof. We fix the parameter b. Then the trace τ can be regarded
as a holomorphic function of the cycle variable u0. To the saddle-node
parameter value (b, c) corresponds a saddle-node cycle ((b, c),− 1

6 (1−b)) ∈
Γ̃3. As computed in proposition 5, ∂τ

∂u0
6= 0 there. At the saddle-node

cycle, one of the eigenvalues takes value 1, so that τ = 1 − b3. There
is a neighborhood of λ = 1, such that the local inverse map λ 7→ u0 is
holomorphic and regular. Projection from the cycle space to the parameter
space, for fixed b has a quadratic singularity at the saddle-node cycle point.
Hence, the locus of attracting cycles must include the image of a part
of the unit disk in the λ space by a holomorphic map with quadratic
singularity at λ = 1. More precisely, the “cardioid-like” set may intersect
with itself. In this case, instead of the usual saddle-node bifurcation, we
may see “collision” of two coexisting attracting cycles.

Proposition 8. Saddle-node locus of 3-cycle and period doubling locus
of fixed point intersect at two points (b, c) = (−2±

√
3, 9(1∓ 1

2

√
3)).



Proof. Saddle-node locus of period three cycle is given by c =
− 1

4 (7b2 + 10b + 7) and period doubling locus of period 1 to 2 is given
by c = − 3

4 (1− b)2. By eliminating c from these equations, we obtain

b2 + 4b+ 1 = 0,

from which we get

b = −2±
√

3, c = 9∓ 9

2

√
3.

Note that b+ 1
b = −4. This fact will be used in section 9.

6. Cycles of period four

In this section, we compute the periodic points of period four. Periodic
sequence {xn} of period four can be expressed as

xn = v0 + inv1 + (−1)nv2 + (−i)nv3.

As in the previous section, sequence {(xnxn−1)} is an orbit of Hb,c if and
only if

xn+1 − bxn−1 = (xn)
2 + c

holds. We obtain the following system of equations for Fourier coefficients.

(EF4)



(1− b)v0 = v20 + v22 + 2v1v3 + c
i(1 + b)v1 = 2(v0v1 + v2v3)
−(1− b)v2 = v21 + v23 + 2v0v2
−i(1 + b)v3 = 2(v1v2 + v0v3)

By setting b1 = 1 − b and b2 = i(1 + b)/2, we get the following system of
equations.

(∗)



b1v0 = v20 + v22 + 2v1v3 + c
b2v1 = v0v1 + v2v3
−b1v2 = v21 + v23 + 2v0v2
−b2v3 = v1v2 + v0v3

Let us eliminate v1, v2, v3 to obtain an equation of v0, which represents the
cycle. Second and fourth line of (∗) are equivalent to v0 v2

−v2 −v0

 v1
v3

 = b2

 v1
v3

 .



To exclude cycles of period 2 or 1, we assume (v1, v3) 6= (0, 0). We get

v22 = v20 − b22. (∗∗)

Making sums and differences of equations, system of equations (∗) is equiv-
alent to the following.

b1(v0 − v2) = (v0 + v2)
2 + (v1 + v3)

2 + c
b1(v0 + v2) = (v0 − v2)2 − (v1 − v3)2 + c
b2(v1 − v3) = (v0 + v2)(v1 + v3)
b2(v1 + v3) = (v0 − v2)(v1 − v3)

By setting

s0 = v0 + v2, s1 = v1 + v3, t0 = v0 − v2, t1 = v1 − v3,

it is rewritten as follows. 

b1t0 = s20 + s21 + c
b1s0 = t20 − t21 + c

b2t1 = s0s1
b2s1 = t0t1

Let us assume b2 6= 0,i.e.,b 6= −1. To suppress cycles of periods smaller
than 4, we can assume s1t1 6= 0. Then, we have s0t0 = b22 6= 0.
By using these, our system of equations can be rewritten as follows.

(∗ ∗ ∗)



t0 =
b22
s0

t1 =
s0s1
b2

s21 = b1
b22
s0
− s20 − c

b1s0 =
b42
s20
− s20

b22
(b1

b22
s0
− s20 − c) + c

Note that (∗ ∗ ∗) is equivalent to (∗), under the condition b2s1t1 6= 0. And
note that the last equation, divided by s0b2, gives

(
b2
s0

)3 + (
s0
b2

)3 − 2b1
b2

+
1

b22
(
s0
b2

+
b2
s0

)c = 0.



Now, as b22 = v20 − v22 = s0t0, we have

s0
b2

+
b2
s0

=
s20 + b22
b2s0

=
s0 + t0
b2

=
2v0
b2
.

When we need to solve back from v0 to s0, use quadratic equation

s20 − 2v0s0 + b22 = 0.

We obtain the cycle equation of period four, by eliminating s0,

v30 +
1

4
(c− 3b22)v0 −

1

4
b1b

2
2 = 0.

Or, in terms of parameters (b, c),

(CE4) v30 +
1

4
(c+

3

4
(b+ 1)2)v0 −

1

16
(b2 − 1)(b+ 1) = 0.

If v0 is a solution of this equation, by (∗∗) and (∗ ∗ ∗), other Fourier
coefficients are obtained and a cycle of period four is derived. Hence, each
solution v0 represents a 4-cycle, and is considered as a cycle variable.

Let

Γ̃4 = {((b, c), v0) ∈ C2×C | v30+
1

4
(c+

3

4
(b+1)2)v0−

1

16
(b2−1)(b+1) = 0}

denote the space of 4-cycles. It is a co-dimension one hyper-surface with
a singularity at ((−1, 0), 0). Let Ω̃4 denote the subset of Γ̃4 of attracting
cycles, and let Ω4 denote its projection into the parameter space.

Let τ = tr DH4
b,c denote the trace of the derivative along the cycle,

τ = 16x3x2x1x0 + 4b(x3x2 + x2x1 + x1x0 + x0x3) + 2b2

= 16(t20 + t21)(s
2
0 − s21) + 16bs0t0 + 2b2.

Here, we used, for example,

x3x1 = (v0−iv1−v2+iv3)(v0+iv1−v2−iv3) = (v0−v2)2+(v1−v3)2 = t20+t21,

x2x0 = (v0−v1+v2−v3)(v0+v1+v2+v3) = (v0+v2)
2−(v1+v3)

2 = s20−s21.
For fixed b, trace τ can be expressed as a rational function of cycle variable
v0. To see this, note that c can be expressed as

c = −4v20 +
1

4v0
(b2 − 1)(b+ 1)− 3

4
(b+ 1)2,



and, by eliminating s0, s1, t0, t1, we have

(TF4) τ = 16(−16b1v
3
0 +8cv20 +2b1(6b

2
2−2c)v0+4b42+b21b

2
2+c2−4b22c)

+ 16bb22 + 2b2.

This trace function will be decomposed in section 8.

7. Saddle-node locus of 4-cycle

Proposition 9. Saddle-node locus of 4-cycle is given by

c = − 3

4
(b+ 1)(b+ 1 + 3

√
4(b− 1)2(b+ 1)),

and the cycle variable of the saddle-node is given by

v0 =
1

4
3
√

2(b+ 1)2(1− b),

where choice of cubic root is specified by

c = − 3

4
(b+ 1)2 − 12v20.

Proof. The cycle equation

v30 +
1

4
(c− 3b22)v0 −

1

4
b1b

2
2 = 0

of 4-cycle has a double root at saddle-node locus. Hence, the discrimi-
nant of the cubic equation must vanish there. We have the saddle-node
equation,

4(
1

4
(c− 3b22))

3 + 27(− 1

4
b1b

2
2)

2 = 0,

or,

(SN4L) (c− 3b22)
3 = −27b21b

4
2.

Hence, we have a formula for the saddle-node locus,

c = 3b22 − 3 3
√
b21b

4
2

= 3

(b+ 1)i

2

2

− 3
3

√√√√√(1− b)2
(b+ 1)i

2

4



= − 3

4
(b+ 1)(b+ 1 + 3

√
4(b− 1)2(b+ 1)).

The cycle variable of the saddle-node v0 is the double root of the cycle
equation. From the derived function

3v20 +
1

4
(c− 3b22) = 0

of the cycle equation, we have

c = 3b22 − 12v20.

Use this formula to eliminate c in the cycle equation to get

(SN4C) v30 = − 1

8
b1b

2
2.

Note that for fixed b, there are three saddle-node loci of c, which form
the three vertices of a regular triangle.

8. Regularity of trace

In section 6, we computed the trace function τ of 4-cycles. As the
determinant of Jacobian matrix DH4

b,c is b4, the value of the trace for
saddle-node cycle is given by τ = 1 + b4. Eigenvalue of cycle can be 1 for
cycles bifurcating from period doubling from 2-cycle, or period quadrupling
from fixed point (satellite bifurcation).

First, let us verify that τ = 1+b4 for saddle-node cycles. Use saddle-node
condition c = 3b22 − 12v20 to eliminate c from the trace to get

τ = 16((8v30 + b1b
2
2)(6v0 + b1) + b42) + 16bb22 + 2b2.

Then use v30 = − 1
8 b1b

2
2 and b22 = − 1

4 (b+ 1)2 to get τ = 1 + b4 at saddle-
node cycles.

So τ − (1 + b4), as a function of v0 should be factorized. Set c =
∆− 12v20 + 3b22 and eliminate c in τ , to decompose it as

τ − (1 + b4) = 16∆(−10v20 − b1v0 + ∆ + 2b22).

Then set back ∆ = c− 3b22 + 12v20 and see

τ − (1 + b4) = 16(c− 3b22 + 12v20)(c+ 2v20 − b1v0 − b22).



The last factor of the above gives rise to equation

c = −2v20 + b1v0 + b22.

This equation, combined with the cycle equation

v30 +
1

4
(c− 3b22)v0 −

1

4
b1b

2
2 = 0,

gives the following equation, by eliminating c.

(v20 − b22)(v0 +
1

2
b1) = 0.

Solutions v0 = ±b2, with c = ±b1b2− b22, corresponds to the locus of period
quadrupling bifurcation from a fixed point. For, from (∗), v2 = 0 follows
and and from (∗∗), v1 = v3 = 0 follow. And solution v0 = − 1

2 b1, with
c = − 1

2 (b2 + 1) corresponds to the locus of period-doubling from 2-cycle.
In this case, as 2v0 = −b1, from the third equation of (∗) of section 6, we
have v21 + v23 = 0. And, from

s0
b2

+
b2
s0

=
2v0
b2

= −b1
b2
,

s0 = − 1

2
b1 ±

1

2

√
b21 − b22,

we have

v22 =
1

4
b21 − b22 =

1

2
(b2 + 1).

Use these and the first equation of (∗) to obtain v1v3 = 0, which shows
that our cycle degenerates to a cycle of period two.

Proposition 10. Holomorphic map χ : Γ̃4 → C2 , with χ(b, c, v0) =
(δ, τ), defined by

δ = det D(H4
b,c) = b4, τ = tr D(H4

b,c)

is regular on saddle-node locus {c = − 3
4 (b+1)(b+1+ 3

√
4(b− 1)2(b+ 1))},

for 0 < |b| < 1, saddle-node being specified in proposition 9.

Proof. Trace τ is a function of b and v0 computed at the end of section
6. And c in the formula of τ should be considered as a function of b and
v0. By differentiating the cycle equation with respect to v0, we have

3v20 +
1

4
(c− 3b22) +

1

4
v0
∂c

∂v0
= 0.



As c = 3b22 − 12v20 holds at the saddle-node cycle, we see ∂c
∂v0

= 0 if v0 6= 0.
For saddle-node cycle locus, we have

∂τ

∂v0
= 16(−48b1v

2
0 + 16cv0 + 2b1(6b

2
2 − 2c))

= 16(−48b1v
2
0 + 16(3b22 − 12v20)v0 + 2b1(6b

2
2 − 2(3b22 − 12v20)))

= 96(−8b1v
2
0 + 8b22v0 − 32v30 + b1(2b

2
2 − 2b22 + 8v20))

= 96(−32v30 + 8b22v0) = 96(4b1b
2
2 + 8b22v0) = 384b22(2v0 + b1).

As v0 corresponds to a saddle-node cycle, v30 = − 1
8 b1b

2
2, therefore the case

2v0 + b1 = 0 implies b = 1 or b = 1
5 (3 ± 4i), and the case b2 = 0 implies

b = −1. In all of these cases, |b| = 1. The case v0 = 0 can occur only when
b = ±1. Hence, we conclude that τ is regular with respect to v0 along the
saddle-node locus, if |b| < 1.

Proposition 11. For each parameter b with |b| < 1, locus of attracting
cycles Ω4 ∩ ({b} × C) has cusp points at saddle-node loci.

Proof. The proof is similar to that of proposition 7. We fix the
parameter b. Trace τ can be regarded as a holomorphic function of the
cycle variable v0. To the saddle-node parameter value (b, c) corresponds
a saddle-node cycle ((b, c), v0) ∈ Γ̃4, as specified in proposition 9. As
computed in proposition 10, ∂τ

∂u0
6= 0 there. At the saddle-node cycle, one

of the eigenvalues takes value 1, so that τ = 1+b4. There is a neighborhood
of λ = 1, such that the inverse map λ 7→ u0 is holomorphic and regular.
Projection from the cycle space to the parameter space, for fixed b has a
quadratic singularity at the saddle-node cycle point. The cycle equation
in the definition of Γ̃4,

v30 +
1

4
(c− 3b22)v0 −

1

4
b1b

2
2 = 0,

defines c as a rational function of v0 for fixed b. By derivations with respect
to v0, we have

3v20 +
1

4
(c− 3b22) +

1

4
v0
∂c

∂v0
= 0,

and

6v0 +
1

2

∂c

∂v0
+

1

4
v0
∂2c

∂v20
= 0.



At the saddle-node cycle, saddle-node condition

3v20 +
1

4
(c− 3b22) = 0

is satisfied. Hence we have ∂c
∂v0

= 0 and ∂2c
∂v20

= −24, since v0 6= 0. Hence, the
locus of attracting cycles must include the image of a part of the unit disk
in the λ space by a holomorphic map with quadratic singularity at λ = 1.
More precisely, the “cardioid-like” set may intersect with itself. The image
of the unit circle in the λ space forms a cusp in the c space.

9. Coexistence of attractive cycles

In this section, we prove the existence of an open set of parameters (b, c),
such that Hb,c has an attractive fixed point, an attractive 3-cycle, and an
attractive 4-cycle, at the same time.

Proposition 12. The intersection Ω1 ∩ Ω3 ∩ Ω4 is not empty.

Proof. First, let us examine the intersection of the saddle-node loci
of 3-cycles and the saddle-node loci of 4-cycles. The saddle-node locus of
3-cycles is given by

c = − 1

4
(7b2 + 10b+ 7),

and the saddle-node locus of 4-cycles is given by

(c+
3

4
(b+ 1)2)3 +

27

16
(b− 1)2(b+ 1)4 = 0

from proposition 9. Assume b 6= 0, and let w = b + 1
b . Eliminate c from

two equations above and obtain an equation of w,

11w3 + 6w2 − 156w − 232 = 0.

Let f(w) = 11w3 + 6w2 − 156w − 232. As f(−4) = −216, f(−2) = 16,
f(0) = −232, and f(2) = −432, there are three real solutions w1, w2, w3

with
−4 < w1 < −2 < w2 < 0, 2 < w3.

For each solution wk, we have solutions b of quadratic equation b2−wkb+
1 = 0. The six solutions give the intersection points of the saddle-node
curves, specified by c = − 1

4 (7b2 + 10b + 7). For w2, the solution b are



non-real and |b| = 1. For w3, the solutions are real and positive. For
w1, the solutions, say β1, β2, are real and negative, with −2 −

√
3 < β1 <

−1 < β2 < −2 +
√

3 < 0. As noted in proposition 8, the intersection point
(β2,− 1

4 (7β2+10β+7)) belongs to Ω1. By proposition 7, Ω3∩({β2}×C) has
a cusp point at this intersection point, and by proposition 11, Ω4∩({β2}×C)
has a cusp point there, too. These slices of cardioid-like shape intersect in
an open set. This shows the non-emptiness of Ω1 ∩ Ω3 ∩ Ω4.

Following picture shows the real section of the parameter space.

The left picture shows an enlargement of the preceding picture. Param-
eter region of attracting 3-cycles and attracting 4-cycles intersect in the



attracting fixed point region. The right picture shows a complex slice
near the intersection point of the saddle-node locus of periods 3 and 4.

The following picture shows a portion of unstable manifold of a saddle
fixed point. Three different basins of attractions are observed. Parameters
for this picture are b = −0.3946, c = −1.0362.

10. Cycles of period five

Let us compute the cycles of period five. Let κ = exp(2πi/5) denote a
quintic root of unity. We begin with the discrete Fourier expansion. Let

xn =
4∑

k=0

akκ
nk.

From our difference scheme

xn+1 − bxn−1 = x2n + c,



we have the following system of equations for Fourier coefficients.

(EF5)



(1− b)a0 = a20 + 2a1a4 + 2a2a3 + c
(κ− bκ4)a1 = 2a0a1 + 2a2a4 + a23
(κ2 − bκ3)a2 = 2a0a2 + 2a3a4 + a21
(κ3 − bκ2)a3 = 2a0a3 + 2a1a2 + a24
(κ4 − bκ)a4 = 2a0a4 + 2a1a3 + a22

Let b1 = 1− b, b3 = 1 + b, and set constants

λ1 = κ+ κ4 = − 1

2
(1−

√
5), λ2 = κ− κ4 =

√√√√ 1

2
(5 +

√
5)i,

γ1 = κ2 + κ3 = − 1

2
(1 +

√
5), γ2 = κ2 − κ3 =

√√√√ 1

2
(5−

√
5)i.

Let
p1 = a1a

2
2, p2 = a2a

2
4, p3 = a3a

2
1, p4 = a4a

2
3,

and
r = a1a4, q = a2a3.

The “center” of cycle a0 and these variables do not depend on the choice
of initial point of the periodic orbit. The system of equations is converted
to the following system.

b1a0 = a20 + 2(r + q) + c
(λ1b1 − 4a0)r = p1 + 2p2 + 2p3 + p4
(γ1b1 − 4a0)q = 2p1 + p2 + p3 + 2p4

λ2b3r = −p1 + 2p2 − 2p3 + p4
γ2b3q = −2p1 − p2 + p3 + 2p4

Set g1 = γ1b1 − 4a0, g2 = γ2b3, l1 = λ1b1 − 4a0, and l2 = λ2b3, to simplify
the system and get

l1r
g1q
l2r
g2q

 =


1 2 2 1
2 1 1 2
−1 2 −2 1
−2 −1 1 2




p1
p2
p3
p4

 .

We have

a1a
2
2 = p1 = (− 1

6
l1 −

1

10
l2)r + (

1

3
g1 −

1

5
g2)q,



a2a
2
4 = p2 = (

1

3
l1 +

1

5
l2)r + (− 1

6
g1 −

1

10
g2)q,

a3a
2
1 = p3 = (

1

3
l1 −

1

5
l2)r + (− 1

6
g1 +

1

10
g2)q,

a4a
2
3 = p4 = (− 1

6
l1 +

1

10
l2)r + (

1

3
g1 +

1

5
g2)q.

If rq = 0 and |b| < 1, then from the equations above, we see that the
cycle degenerates to a fixed point. In the following, we assume rq 6= 0.

Now, we introduce a new variable ρ by

ρ =
r

q
.

Then, as
rq2 = a1a

2
2a

2
3a4 = p1p4, r2q = a21a3a2a

2
4 = p2p3,

and the right-hand sides of these equations are homogeneous functions of
r and q of degree 2, r and rρ are expressed as a quadratic function of ρ.

r =
p1p4
q2

=
1

4
(

1

9
l21 −

1

25
l22)ρ

2 − (
1

9
l1g1 +

1

25
l2g2)ρ+

1

9
g21 −

1

25
g22,

rρ =
p2p3
q2

= (
1

9
l21 −

1

25
l22)ρ

2 − (
1

9
l1g1 −

1

25
l2g2)ρ+

1

4
(

1

9
g21 −

1

25
g22).

By eliminating r from these equations, we get a following cubic equation
of ρ, with coefficients being functions of b and a0.

e3ρ
3 + e2ρ

2 + e1ρ+ e0 = 0,

where,
e3 = 25l21 − 9l22,
e2 = −100l1(g1 + l1)− 36l2(g2 − l2),
e1 = 100g1(g1 + l1)− 36g2(g2 + l2),
e0 = −25g21 + 9g22.

For fixed parameter value b, this equation is of degree 3 in ρ and of
degree 2 in a0. This equation, expressed as a quadratic equation in a0, is
as follows.

f2a
2
0 + f1a0 + f0 = 0,

with
f2 = 400(ρ3 − 8ρ2 + 8ρ− 1),



f1 = 200b1(−λ1ρ3 − 2(1− 2λ1)ρ
2 + 2(1− 2γ1)ρ+ γ1),

f0 = (25(2 + γ1)b
2
1 + 9(2− γ1)b23)ρ3 − (100(1 + γ1)b

2
1 + 36(2− λ1)b23)ρ2

+ (100(1 + λ1)b
2
1 + 36(2− γ1)b23)ρ− 25(2 + λ1)b

2
1 − 9(2− λ1)b23.

Unfortunately, in the case of cycles of period five, we do not have a single
“cycle equation” to find a cycle variable, from given parameters (b, c). Our
“cycle equation” is given by a system of equations.

(CE5)

 f2a
2
0 + f1a0 + f0 = 0,

c = b1a0 − a20 − 2(r + q).

One equation to determine the cycle variable, and the other to describe
the relation to parameter c.

However, if we are given a parameter value of b and a value ρ, we can
solve the above equation to find a0(two solutions). Or alternately, if we are
given parameter value of b and a value of the “center” a0, we can solve the
above equation to find ρ(three solutions). And r, q and c are computed by

r =
1

4
(

1

9
l21 −

1

25
l22)ρ

2 + (
1

9
l1g1 −

1

25
l2g2)ρ+

1

9
g21 −

1

25
g22,

q = r/ρ,

c = b1a0 − a20 − 2(r + q).

Finally, with these data, we can compute a1,a2,a3, and a4 as follows.
Take a quintic root of

a51 = p1p
2
3/q

2.

Then
a3 = p3/a

2
1, a2 = q/a3, a4 = r/a1,

which gives the periodic points.
Some complex slices {b = −0.3847 + 0.0854i}, and {b = 0.15} are shown

in the following picture. Hyperbolic components, so to say, of periods up to
5 are seen. The three-petals region in the enlargement picture represents
a region of attracting 5-cycles. It is a slice of the swallow’s tail region for
period 5 attractor.





THe following picture shows the real axis slice of the parameter space. For
parameters in the swallow’s tail region, there is/are attracting 5-cycle(s).

Next picture is an enlargement of the swallow’s tail region.



Next picture shows a system with attracting cycles of periods 1, 3, and
5.

Next picture is a system with attracting cycles of periods 1, 4, and 5.
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