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Abstract

Real one parameter family of volume preserving complex Hénon maps
is studied. Cycle of neutral periodic points bifurcates from a parabolic
fixed point. Cases of periods 3 and 4 are computed directly. In the area
preserving real Hénon maps, pair of a cycle of saddle type and a cycle of
center type appears from a parabolic fixed point. Neutral periodic cycles
are observed as so-called ”islands” between KAM circles around a neutral
fixed points. In this note, the appearance of pair of periodic orbits of center
type and saddle type is proved for period 5 cases.

1. Area-preserving complex Hénon map

In this section, we consider a complex one-parameter family Hα : C2 →
C2 defined by

Hα(x, y) = (y, y2 + α− x),

parametrized by a complex parameter α. The determinant of the Jacobian
matrix is always equal to 1. If α is real, then Hα maps the real axis R2

into itself and defines an area-preserving real diffeomorphism.
The fixed point P∗ = (y∗, y∗) of our Hénon map is given by quadratic

equation y2
∗ − 2y∗ + α = 0. The Jacobian matrix at the fixed point is as

follows.

DHα P∗ =

 0 1
−1 2y∗

 , trace DHα = 2y∗, det DHα = 1.



2. Parabolic bifurcation of order 3

Let us consider the case where ω = −1+
√

3i
2 and ω̄ = −1−

√
3i

2 are the
eigenvalues of DHα at the fixed point P∗. Then,

y∗ =
1

2
(ω + ω̄) = − 1

2
and α∗ = 2y∗ − y2

∗ = − 5

4
.

Compute periodic points of period 3 as follows. Let yn = u0 + ωnu1 +
ω̄nu2, and suppose yn+1 = y2

n + α − yn−1 holds. We have a system of
equations for cycles of period 3.

(F )


2u0 = u2

0 + 2u1u2 + α

(ω + ω̄)u1 = 2u0u1 + u2
2

(ω̄ + ω)u2 = 2u0u2 + u2
1

When α = α∗, then we have a solution u0 = y∗, u1 = u2 = 0. We fix
constants α∗ = − 4

5 , y∗ = − 1
2 and set u0 = u0(ε) = y∗ − ε

2 . The second
and third equations of (F ) are rewritten as follows. εu1 = u2

2

εu2 = u2
1

We obtain u1 = εωk, u2 = εω̄k, (k = 0, 1, 2). The choice of k corresponds
to the choice of initial point in the periodic orbit. We choose k = 0 and
obtain the solution

u0 = y∗ −
ε

2
, u1 = ε, u2 = ε.

It follows that

α = α∗ −
3

2
ε− 9

4
ε2 = − 9

4
(ε+

1

3
)2 − 1,

y0 = − 1

2
+

3

2
ε, y1 = − 1

2
− 3

2
ε, y2 = − 1

2
− 3

2
ε.

The trace of the Jacobian matrix of the 3-cycle is given by the following.

τ(ε) = trace(DHP2
DHP1

DHP0
) = 8y2y1y0−2(y2 +y1 +y0) = 2+9ε2 +27ε3.

And

τ(0) = 2,
dτ

dε
= 9ε(9ε+ 2), τ(− 1

3
) = 2, τ(

2

3
) = −2.
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Fig.1 {ε | τ(ε) ∈ [−2, 2]} is drawn in red.
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Fig.2 {α(ε) | τ(ε) ∈ [−2, 2]} is drawn in red.
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Fig.3. graph of τ(ε) for −1 ≤ ε ≤ 1.
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Fig.4. Bifurcation diagram of cycles of period 3.



As for the real cycles for real parameter α, we pick up the cycles corre-
sponding to real values of ε, as shown in Fig.3. The bifurcation diagram of
3-cycles is plotted in Fig.4. Cycle of saddle type with negative eigenvalues
are plotted as flip saddle.

3. Parabolic bifurcation of order 4

Let us consider the case where ±i are the eigenvalues of DHα at the
fixed point P∗. Then y∗ = 0 and α∗ = 0.

Recall the equation of 4-periodic point. (yn+4 = yn)

yn+1 = y2
n + α− yn−1, n = 0, · · · , 3.

Discrete Fourier expansion

yn = u0 + inu1 + (−1)nu2 + (−i)nu3

gives rise to the following system of equations.

(F0) 2u0 = u2
0 + u2

2 + 2u1u3 + α,

(F1) 0 = 2u0u1 + 2u2u3,

(F2) − 2u2 = 2u0u2 + u2
1 + u2

3,

(F3) 0 = 2u0u3 + 2u1u2.

From (F1) and (F3), we have u0 u2

u2 u0

 u1

u3

 = 0.

To have a non-trivial 4-cycle, it is necessary to have u2
0 = u2

2.

Case I u0 = u2 = 0.
In this case, from (F2) and (F0), we have two sub-cases

u3 = iu1, α = 2iu2
1, y0 = y1 = (1 + i)u1, y2 = y3 = −(1 + i)u1,

and

u3 = −iu1, α = −2iu2
1, y0 = y1 = (1− i)u1, y2 = y3 = −(1− i)u1.



They give the same 4-cycle. And the trace of the 4-cycle is given by
τ = 2− 64u4

1.
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Fig.5. {u1 | τ(u1) ∈ [−2, 2]} is drawn Fig.6. α space for case I.
in red in u1 space.

In this case, real cycles for real α are all saddles.

Case II u2 = −u0 and u3 = u1.
From (F2), u1 = ±

√
u2

0 + u0.

y0 = 2u1, y1 = 2u0, y2 = −2u1, y3 = 2u0.

Case III u0 = u2 and u3 = −u1.
From (F2), u1 = ±

√
−u2

0 − u0.

y0 = 2u0, y1 = 2iu1, y2 = 2u0, y3 = −2iu1.

This gives the same orbit as in Case II.

In these cases the trace of the 4-cycle is given by τ = 2−256u3
0(1 +u0).

And α = −4u2
0. For real u0, the trace τ is real and plotted in Fig.7.

Location of the u0 values with τ(u0) ∈ [−2, 2] is plotted in Fig.8.
And the corresponding values of α are plotted in Fig.9 and Fig.10.
In Figs 9 and 10, segment [−i2 ,

i
2 ] of Case I is plotted,too.
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Fig.7. Graph of τ(u0) for real u0.
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Fig.8. {u0 | τ(u0) ∈ [−2, 2]} is drawn in red.
Observe that a short interval near −1 is in red.
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Fig.9. {α(ε) | τ(ε) ∈ [−2, 2]} is drawn in red.
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Fig.10. Enlargement of fig.6.

The bifurcation diagram for real parameter α and real 4-cycles is plotted
in Fig.11.
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Fig.11. Bifurcation diagram of real 4-cycles for real α.

4. Parabolic bifurcation of order 5

In this section, we consider the case where the eigenvalue of the fixed
point is a primary fifth root of unity. Let Ω = e

2πi
5 or Ω = e

4πi
5 denote a

primary fifth root of unity. And suppose eigenvalues at the fixed point P∗
are Ω and Ω̄. In the following, we treat two cases with same notations.

We set ω1 = Ω + Ω̄ = ±
√

5−1
2 , ω2 = Ω2 + Ω̄2 = ∓

√
5−1
2 , with ω1ω2 < 0.

then,

y∗ =
Ω + Ω̄

2
, α0 = 2y∗ − y2

∗ =
−7±

√
5

8
.

Theorem A A pair of cycles of period 5 bifurcates from the fixed point
P∗ for α < α0 near α0. One of the cycles is saddle type and the other is
center type.



Let γ = ω2 − ω1 = ∓
√

5 and

ρ1(n) =


2 (n ≡ 0, mod 5)
ω1 (n ≡ 1 or 4)
ω2 (n ≡ 2 or 3)

, ρ2(n) =


2 (n ≡ 0, mod 5)
ω2 (n ≡ 1 or 4)
ω1 (n ≡ 2 or 3)

.

Theorem B There exists a function

α(ε) = α0 + γω1ε
2 + γε3 + · · ·

and a family of periodic sequences

yn = y∗ −
γ

5
ε2 + ρ1(n)(ε− γ

4
ε2 + · · ·) + ρ2(n)(

γ

5
ε2 − 1

10
ε3 + · · ·)

holomorphic in ε near 0 ∈ C, such that for each ε, Hα(ε) has a cycle
{Pn = (yn, yn+1)} of period 5.

Theorem C The trace function of the cycle

τ(ε) = trace DH◦5α(ε)(y0,y1)

is real analytic in ε and not constant near ε = 0, with τ(0) = 2.

5. Discrete Fourier expansion and the principal part of the solu-
tion

Apply the discrete Fourier expansion method

yn = u0 + Ωnu1 + Ω2nu2 + Ω̄2nu3 + Ω̄nu4,

to the periodic sequence {yn} satisfying yn+1 + yn−1 = y2
n + α. We get a

system of equations:

(F0) 2u0 = u2
0 + 2u1u4 + 2u2u3 + α,

(F1) ω1u1 = 2u0u1 + u2
3 + 2u2u4,

(F2) ω2u2 = 2u0u2 + u2
1 + 2u3u4,

(F3) ω2u3 = 2u0u3 + u2
4 + 2u1u2,

(F4) ω1u4 = 2u0u4 + u2
2 + 2u1u3.



Here, α appears only in the first equation (F0). Let δ denote a constant,
which will be determined as δ = 2

γ later, and let

u0 = y∗ −
δ

2
ε2 =

ω1

2
− δ

2
ε2.

Replace u0 in equations (F1), · · · , (F4) to obtain a system of algebraic
equations parametrized by ε:

(Fε,1) δε2u1 = u2
3 + 2u2u4,

(Fε,2) (γ + δε2)u2 = u2
1 + 2u3u4,

(Fε,3) (γ + δε2)u3 = u2
4 + 2u1u2,

(Fε,4) δε2u4 = u2
2 + 2u1u3.

The difference of the both sides defines a polynomial mapping:

Fε : C4 → C4, Fε(u) = 0, u = (u1, u2, u3, u4).

Clearly, u = 0 is always a solution. The solutions of our system of
algebraic equations Fε(u) = 0 are defined as an algebraic set. So, the
solving process is essentially a resolution of singularities.

By weighted scaling of variables:

u1 = εv1, u2 = ε2v2, u3 = ε2v3, u4 = εv4,

and weighted scaling of equations, assuming ε 6= 0, we obtain:

(Gε,1) δv1 = 2v2v4 + εv2
3,

(Gε,2) (γ + δε2)v2 = v2
1 + 2εv3v4,

(Gε,3) (γ + δε2)v3 = v2
4 + 2εv1v2,

(Gε,4) δv4 = 2v1v3 + εv2
2.

These define an equation Gε(v) = 0, with v = v(ε) = (v1, v2, v3, v4).
Let a = v(0). Then a = (a1, a2, a3, a4) is a solution of (G0):

δa1 = 2a2a4, γa2 = a2
1, γa3 = a2

4, δa4 = 2a1a3.

Now, determine the constant δ = 2
γ , as noticed above, to obtain

non-trivial solutions in a simple form. Suppose a1 6= 0. then we have

a2 =
a2

1

γ
, a3 =

a−2
1

γ
, a4 = a−1

1 .



Here, a is not uniquely determined. In the next section, we see a1 must
satisfy another condition to have a nontrivial family of solutions v(ε).

6. Second jet

In the previous section, a was not uniquely determined. Let a1 = σ,
and a = a(σ) = (σ, σ

2

γ ,
σ−2

γ , σ
−1). Then G0(a(σ)) = 0 holds for σ ∈ C \ {0}.

Let v = a + εw, v = (v1, v2, v3, v4),w = (w1, w2, w3, w4), vi = ai + εwi,
and rewrite the equation (Gε).

(Mε,1)
2

γ
w1 =

σ−4

γ2
+

2σ2

γ
w4 + 2σ−1w2 + ε(

2σ−2

γ
w3 + 2w2w4) + ε2w2

3,

(Mε,2) γw2 + ε(
2σ2

γ2
+

2ε

γ
w2) = 2σw1 +

2σ−3

γ

+ ε(w2
1 +

2σ−2

γ
w4 + 2σ−1w3) + 2ε2w3w4,

(Mε,3) γw3 + ε(
2σ−2

γ2
+

2ε

γ
w3) = 2σ−1w4 +

2σ3

γ

+ ε(w2
4 +

2σ2

γ
w1 + 2σw2) + 2ε2w1w2,

(Mε,4)
2

γ
w4 =

σ4

γ2
+

2σ−2

γ
w1 + 2σw3 + ε(

2σ2

γ
w2 + 2w1w3) + ε2w2

2.

Here, w is supposed to be an analytic function of ε, and let w = b+O(ε),
b = (b1, b2, b3, b4), with wi = bi + O(ε). The principal part of (Mε) is
obtained by letting ε→ 0.

(M0,1)
2

γ
b1 =

σ−4

γ2
+

2σ2

γ
b4 + 2σ−1b2,

(M0,2) γb2 = 2σb1 +
2σ−3

γ
,

(M0,3) γb3 = 2σ−1b4 +
2σ3

γ
,

(M0,4)
2

γ
b4 =

σ4

γ2
+

2σ−2

γ
b1 + 2σb3.



Rewrite this system of equations as follows.
− 2
γ 2σ−1 0 2σ2

γ

2σ −γ 0 0
0 0 −γ 2σ−1

2σ−2

γ 0 2σ − 2
γ




b1

b2

b3

b4

 =



−σ−4

γ2

−2σ−3

γ

−2σ3

γ

−σ4

γ2

 .

Here, the rank the coefficient matrix is 3. So, to have a non-trivial
solution of b, it is necessary that the rank of the extended matrix is 3, too.
This condition gives σ5−σ−5 = 0. Note that b is not uniquely determined
here.

Proposition. Without loss of generalities, we can choose σ = 1. Other
choices of σ give the same family of cycles.

Proof. As replacing a1 by Ωka1 changes the initial point of the periodic
orbit, we only need to examine the cases σ = ±1. Observe the equation
(Mε) carefully. The equation has a kind of symmetry.

Let σ′ = −σ, ε′ = −ε, and

w′1(ε
′) = w1(−ε′), w′2(ε

′) = −w2(−ε′),

w′3(ε
′) = −w3(−ε′), w′4(ε

′) = w4(−ε′).
Then if

u0 = y∗ −
1

γ
ε2, u1 = εσ + ε2w1(ε), u2 =

1

γ
ε2 + ε3w2(ε),

u3 =
1

γ
ε2 + ε3w3(ε), u4 = εσ + ε2w4(ε)

is a solution of (Mσ
ε ), then

u0 = y∗ −
1

γ
(ε′)2, u1 = ε′σ′ + (ε′)2w′1(ε

′), u2 =
1

γ
(ε′)2 + (ε′)3w′2(ε

′),

u3 =
1

γ
(ε′)2 + (ε′)3w′3(ε

′), u4 = ε′σ′ + (ε′)2w′4(ε
′)

is a solution of (Mσ′
ε′ ). Equations (Mσ

ε ) and (Mσ′
ε′ ) are equivalent.

In the following, we treat only the case of σ = 1.



7. Further change of variables and rescaling of equations

From equations (Mε,1), · · · , (Mε,4), we obtain, by setting σ = 1, and
putting all terms on the righthand side,

(M ′
1) 0 =

1

γ2
− 2

γ
w1 + 2w2 +

2

γ
w4 + ε(

2

γ
w3 + 2w2w4) + ε2w2

3,

(M ′
2) 0 =

2

γ
+ 2w1 − γw2 + ε(− 2

γ2
+ w2

1 + 2w3 +
2

γ
w4)

+ ε2(− 2

γ
w2 + 2w3w4),

(M ′
3) 0 =

2

γ
− γw3 + 2w4 + ε(− 2

γ2
+

2

γ
w1 + 2w2 + w2

4)

+ ε2(− 2

γ
w3 + 2w1w2),

(M ′
4) 0 =

1

γ2
+

2

γ
w1 + 2w3 −

2

γ
w4 + ε(

2

γ
w2 + 2w1w3) + ε2w2

2.

Observe the symmetry of the equations with respect to the variables.
By change of variables:

p = w1 + w4, q = w2 + w3, r = w2 − w3, s = w1 − w4,

and change of equations:

(P ) = (M ′
1) + (M ′

4), (Q) = (M ′
2) + (M ′

3),

(R) = (M ′
2)− (M ′

3), (S) = (M ′
1)− (M ′

4),

we obtain the following system of equations. (Terms as O(ε) will be com-
puted later.)

(P )
2

γ2
+ 2q +O(ε) = 0,

(Q)
4

γ
+ 2p− γq +O(ε) = 0,

(R) 2s− γr + ε(ps− 2r − 2

γ
s) +O(ε2) = 0,



(S) − 4

γ
s+ 2r + ε(− 2

γ
r + pr − qs) +O(ε2) = 0.

Now, let ε→ 0, to have:

2

γ2
+ 2q0 = 0,

4

γ
+ 2p0 − γq0 = 0, 2s0 − γr0 = 0, − 4

γ
s0 + 2r0 = 0.

The last two equations are equivalent. We have:

q0 = − 1

γ2
, p0 = − 5

2γ
, and 2s0 − γr0 = 0.

Here, s0 and r0 are not uniquely determined. Remember that b1, · · · , b4

were not uniquely determined.

p0 = b1 + b4, q0 = b2 + b3, r0 = b2 − b3, s0 = b1 − b4.

In order to extract further information from the equation, eliminate the
constant terms from (R) and (S), by a new equation (U) = (2(R)+γ(S))/ε,
to get:

(U) (γp− 6)r + (2p− γq − 4

γ
)s+O(ε) = 0.

We supposed that our equations holds for all ε near 0. So we assume,
by letting ε→ 0,

(γp0 − 6)r0 + (2p0 − γq0 −
4

γ
)s0 = 0

holds. This turns out to:

−17

2
r0 −

8

γ
s0 = 0.

Hence together with 2s0 − γr0 = 0, we determine r0 = s0 = 0.

8. Analytic family of cycles of period 5

Now, we have a system of algebraic equations {(P ), (Q), (R), (U)}, in
variables (p, q, r, s), analytically parametrized by ε. This system of alge-
braic equations has a solution (p0, q0, r0, s0) = (− 5

2γ ,−
1
γ , 0, 0) for ε = 0.



In order to apply the implicit function theorem to have solutions for small
ε, we compute the Jacobian at the solution.

det


0 2 0 0
2 −γ 0 0
0 0 −γ 2
0 0 −17

2 − 8
γ

 = −100 6= 0.

By the implicit function theorem, our system has a family of solutions. We
have the following proposition.

Proposition System of equations {(P ), (Q), (R), (S)} has a family of
solutions (p(ε), q(ε), r(ε), s(ε)), analytic near ε = 0, satisfying p(0) = p0,
q(0) = q0, and r(ε) ≡ 0, s(ε) ≡ 0.

Proof System of equations {(P ), (Q), (R), (S)} is equivalent to the
system of equations {(P ), (Q), (R), (U)}, which has the solution. System
of equations {(P ), (Q), (R), (U)} has a solution (p(ε), q(ε), r(ε), s(ε)), ana-
lytic near ε = 0, satisfying p(0) = p0, q(0) = q0, r(0) = 0, s(0) = 0. The
terms O(ε2) in equations (R) and (S) are computed as follows.

−ε2(pr + qs+
1

γ
r), − ε2(qr).

Hence, (R) and (S) always hold if r = s = 0.
By assuming r = s = 0, we see our system of equations reduces to the

following system of equation in p and q only.

(P0)
2

γ2
+ 2q + ε(

2

γ
q + pq) + ε2 q

2

2
= 0,

(Q0)
4

γ
+ 2p− γq + ε(

1

2
p2 +

2

γ
p+ 2q − 4

γ2
) + ε2(pq − 1

γ
q) = 0,

which has a family of solutions p(ε) and q(ε), near ε = 0, satisfying p(0) =
p0 and q(0) = q0.

By the uniqueness of the solutions given by the implicit function theorem,
these solutions are the same.



9. Proof of theorem B

As stated in the above, our system of equations has a family of solutions
parametrized by ε. Obviously, our solutions give the followings.

a1 = a4 = 1, a2 = a3 =
1

γ
, b1 = b4 = − 5

4γ
, b2 = b3 = − 1

2γ2
.

u0 = y∗ −
ε2

γ
,

u1 = u4 = ε− 5

4γ
ε2 + · · · ,

u2 = u3 =
1

γ
ε2 − 1

2γ2
ε3 + · · · .

Hence, we have

yn = y∗ −
1

γ
ε2 + ρ1(n)(ε− 5

4γ
ε2 + · · ·) + ρ2(n)(

1

γ
ε2 − 1

2γ2
ε3 + · · ·).

Furthermore, from (F0),

α(ε)− α0 = (
ω1

γ
− 2

γ
− 2)ε2 +

5

γ
ε3 + · · · ,

with ω1 − 2− 2γ = ω1 − 2− 2ω2 + 2ω1 = 5ω1, we get

α(ε) = α0 +
5

γ
ω1ε

2 +
5

γ
ε3 + · · · .

Note that if ω1 = Ω + Ω̄ > 0, then γ = Ω2 + Ω̄2 − (Ω + Ω̄) < 0. And if
Ω + Ω̄ < 0, then γ > 0. So, 5

γ ω1 < 0. These prove Theorem B.

10. Proof of Theorem C

The system of equations {(P0), (Q0)}, with conditions p(0) = p0 and
q(0) = q0, can be regarded as a real analytic family of systems of real
analytic equations. So, for sufficiently small real values of ε, p(ε) and q(ε)
are real. With real values of a and b, the corresponding parameter α(ε)
and periodic points are real and real analytic with respect to ε, near ε = 0.

The trace of the Jacobian matrix along the cycle is also real analytic
in ε and takes real values. It is also holomorphic in ε, considered as a



complex variable, near ε = 0. As α(0) = α0, and the eigenvalues of the
fixed point P∗ are Ω and Ω̄, we see that τ(0) = 2. On the other hand,
the coordinates of the periodic cycle is algebraic with respect to complex
parameter α. For sufficiently large value of α, the periodic cycle become
hyperbolic, i.e., the absolute value of the analytic continuation of the trace
function is larger than 2. Therefore, the trace function is not constant as
an algebraic function of α. Hence τ(ε) is not constant near ε = 0.

11. Proof of Theorem A

As is shown in the proof of Theorem B, ω1

γ < 0 holds in both cases of
Ω. Parameter α is related to ε by a real analytic function

α(ε) = α0 +
5

γ
ω1ε

2 +
5

γ
ε3 + · · · .

If α < α0 and α is sufficiently near α0, there exist real values ε− and
ε+ near ε = 0, such that

α = α(ε−) = α(ε+), ε− < 0 < ε+,

with
τ(ε−) 6= 2, τ(ε+) 6= 2.

If α > α0 and sufficiently near α0, then α = α(ε) has no solutions near
ε = 0.

Index of a fixed point P ∈ R2 of mapping f : R2 → R2 is defined
as follows. Let U denote a small neighborhood of the fixed point. Define
a mapping ϕ : U \ {P} → R2 \ {O} by ϕ(X) = f(X) − X. By an
appropriate choice of the neighborhood U , the induced homomorphism,
ϕ∗ : π1(U \ {P}) → π1(R

2 \ {O}), of the fundamental groups defines an
integer. This integer is called the local index of fixed point P .

By Poincaré’s index theorem, the sum of the local indices of the fixed
points is invariant under continuous perturbations of the mapping f . In
the case of area preserving diffeomorphism, the local index of a saddle is
−1, and the local index of a center is +1. So, the created two cycles cannot
be the same type. This proves Theorem A.


