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Abstract

Diller gave a method for constructing many examples of
surface automorphisms of positive entropy.

Uehara gave explicit formulas for Cremona transformations
with invariant cubic curves.

In this note, following their methods, we construct rational
surface automorphisms with invariant cubic curves.

Explicit formulas of quadratic Cremona transformations are
obtained by elementary calculations.



Contents

1. Birational map

2. Cuspidal cubic curve

3. Three lines through a point

4. Conic and a tangent line

5. Nodal cubic

6. Elliptic curve



Birational map

1. Birational map



Birational map

Let f1(x , y , z), f2(x , y , z), f3(x , y , z) be homogeneous
polynomials of same degree. In this note, we consider only the
case of degree 2.

Let f : P2 → P2 be a map defined by

f ([x : y : z ]) = [f1(x , y , z) : f2(x , y , z) : f3(x , y , z)],

except for the set of indeterminacy points

I (f ) = {[x : y : z ] | f1(x , y , z) = f2(x , y , z) = f3(x , y , z) = 0}.

Such mapping is said to be a rational map.

Rational map f is said to be birational if its inverse map f −1 is
also a rational map defined by homogeneous polynomials, except
for the set I (f −1) of its indeterminacy points.



Affine coordinates

Although considerations in P2 is preferable, mostly in the
followings, we discuss in the affine coordinates.

C2 can be considered as an open and dense subset of P2 by

(x , y)↔ [x : y : 1].

Let fi (x , y) = fi (x , y , 1), i = 1, 2, 3.
Define rational map f : P2 -→ P2 by

f (x , y) = (
f1(x , y)

f3(x , y)
,
f2(x , y)

f3(x , y)
).

I (f ) = {[x , y , z ] | f1(x , y , z) = f2(x , y , z) = f3(x , y , z) = 0}.



Cuspidal cubic curve

2. Cuspidal cubic curve



Cubic curve

Let C denote the cubic curve {y = x3} in P2.

This curve has a parametrization

p : C→ C , p(t) = (t, t3).

We want to find birational maps f : P2 -→ P2, which maps C
onto itself.

f (C ) = C .

f has indeterminate points I (f ). The equality should be
understood ”modulo exceptional points”.

f (C ) = f (C \ I (f )).



f induces an automorphism of the cubic curve C , which can be
described by an affine map t 7→ λ(t + µ) for some constants
λ ∈ C×, µ ∈ C.

Proposition. For λ ∈ C× and a1, a2, a3 ∈ C with
a1 + a2 + a3 6= 0, there exists a quadratic birational map
f : P2 -→ P2, such that

f (C ) = C , I (f ) = {p(a1), p(a2), p(a3)},

inducing t 7→ λ(t + ν1
3 ), with ν1 = a1 + a2 + a3.



Proof. Let ν2 = a1a2 + a2a3 + a3a1 and ν3 = a1a2a3.
The indeterminate points, p(ai ) = (ai , a

3
i ), i = 1, 2, 3, are common

zeros of the system of equations{
y − x3 = 0

x3 − ν1x
2 + ν2x − ν3 = 0

.

As quadratic polynomial f3(x , y) must vanish in these
indeterminacy points, we can choose

f3(x , y) = ν1x
2 − ν2x + ν3 − y .



Since f (p(t)) = p(λ(t + ν1
3 )) for t ∈ C, f : (x , y) 7→ (X ,Y )

can be written as

X = λ

(
x +

ν1

3
+

(y − x3)U(x , y)

f3(x , y)

)
,

Y = λ3

(
(x +

ν1

3
)3 +

(y − x3)V (x , y)

f3(x , y)

)
,

where polynomials U(x , y),V (x , y) are chosen so that f becomes
a quadratic rational map.



To determine polynomials U(x , y) and V (x , y) we require that

f1(x , y) = λ
(

(x +
ν1

3
)f3(x , y) + (y − x3)U(x , y)

)
,

f2(x , y) = λ3
(

(x +
ν1

3
)3f3(x , y) + (y − x3)V (x , y)

)
are quadratic polynomials. We get

U(x , y) = ν1,

V (x , y) = ν1x
2 + (ν2

1 − ν2)x − y +
ν3

1

3
− ν1ν2 + ν3.

This gives the explicit formula for the quadratic birational map f .



Explicit formula for invariant cuspidal cubic curve case

Proposition. The quadratic birational map f : P2 -→ P2 in
the previous proposition is given by

X = λ

(
x +

ν1

3
+

ν1(y − x3)

ν1x2 − ν2x + ν3 − y

)
,

Y = λ3

(
(x +

ν1

3
)3 + (y − x3)(1 +

ν2
1x +

ν3
1

3 − ν1ν2

ν1x2 − ν2x + ν3 − y
)

)
.



Exceptional lines

A quadratic birational map f : P2 -→ P2 always acts by
blowing up three indeterminacy points in P2 and blowing down the
three exceptional lines joining them.

The inverse map f −1 is also quadratic and the images of three
exceptional lines of f are the indeterminacy points of f −1.



Parametrization and lines

Our parametrization p : C→ C of the invariant cubic curve
has a nice property.

If three points p(t1), p(t2), p(t3) are on a line, say
{y = ax + b}, then

t3
i − ati − b = 0, i = 1, 2, 3,

which shows that t1, t2, t3 are three roots of cubic equation
t3 − at + b = 0, hence t1 + t2 + t3 = 0.

Conversely, if t1 + t2 + t3 = 0, then t1, t2, t3 are the three roots
of cubic equation in t :

t3 + (t1t2 + t2t3 + t3t1)t − t1t2t3 = 0,

which implies that p(t1), p(t2), p(t3) are on a line.



Inverse map

In order to compute the inverse map of f , we need to find the
indeterminacy points of f −1, which are the images of the
exceptional lines of f .

Suppose the exceptional line passing through indeterminacy
points p(aj) and p(ak) is mapped to p(bi ), for {i , j , k} = {1, 2, 3}.
This exceptional line intersects with C at p(−aj − ak), which is
mapped to p(bi ), with

bi = λ(−aj − ak +
ν1

3
) = λ(ai −

2ν1

3
).

The dynamics of f −1 in the invariant curve C is

t 7→ λ−1(t − λν1

3
).

Construction of the inverse map is similar.



Inner dynamics

Let τ : t 7→ λ(t + ν1/3) denote the dynamics in C .
τ has a unique fixed point t0 = 1

3
λν1
1−λ .

By linear change of variables t = r t ′, where r = λν1
1−λ , τ is

conjugate to

τ ′ : t ′ 7→ λ(t ′ +
1− λ

3λ
),

whose fixed point is 1
3 .

So, by linear change of coordinates x = rx ′, and y = r3y ′, with
ai = ra′i , i = 1, 2, 3, birational map f has fixed point ( 1

3 ,
1

27 ).

To construct surface automorphisms by blow-ups, we may
suppose that f fixes ( 1

3 ,
1

27 ).



Surface automorphism

We have
I (f ) = {p(a1), p(a2), p(a3)}

and
I (f −1) = {p(b1), p(b2), p(b3)}

If, for some positive integers n1, n2, n3, and permutation
σ : {1, 2, 3} → {1, 2, 3},

p(aσ(i)) = f ◦(ni−1)p(bi ), i = 1, 2, 3,

holds, then f lifts to a surface automorphism by blowing up
(n1 + n2 + n3) points (provided they are all distinct)

p(bi ), f (p(bi )), · · · , f ◦(ni−1)(p(bi )), i = 1, 2, 3.



Orbit data

Positive integers (n1, n2, n3) with permutation σ is said an
orbit data.

Following Diller, we look for determinant λ and a quadratic
birational transformation f , which maps C onto itself and realizes
the prescribed orbit data.



conditions

In terms of inner dynamics, the conditions are as follows.

aσ(i) = λni−1(bi −
1

3
) +

1

3
, i = 1, 2, 3,

bi = λai +
2

3
(λ− 1), i = 1, 2, 3,

a1 + a2 + a3 =
1

λ
− 1.

Eliminate ai , bi , i = 1, 2, 3, to obtain an equation in λ, which is
a necessary condition.



Polynomial equations for orbit data n1, n2, n3, σ

Necessary condition P(λ) = 0 is given by followings.

(case id) σ = id .

P(λ) = (λ− 2)λn1+n2+n3 + λn1+n2 + λn2+n3 + λn3+n1

− λn1+1 − λn2+1 − λn3+1 + 2λ− 1.

(case tr) σ is a transposition (σ(1) = 2, σ(2) = 1, σ(3) = 3).

P(λ) = (λ− 2)λn1+n2+n3 + λn1+n2 + (λ− 1)(λn1+n3 + λn2+n3 )

−(λ− 1)(λn1 + λn2 ) + λn3+1 − 2λ+ 1.

(case cy) σ is a cyclic permutation (σ(1) = 2, σ(2) = 3, σ(3) = 1).

P(λ) = (λ− 2)λn1+n2+n3 + (λ− 1)(λn1+n2 + λn2+n3 + λn3+n1 )

+(λ− 1)(λn1 + λn2 + λn3 ) + 2λ− 1.



Picard coordinate of indeterminate points

(case id) σ = id .

ai = −λ
ni−1(λ− 1)

λni − 1
+

1

3
(i = 1, 2, 3).

(case tr) σ = (1, 2)

ai = −λ
nj−1(λni + 1)(λ− 1)

λni+nj − 1
+

1

3
((i , j) = (1, 2), (2, 1)).

ak = −λ
nk−1(λ− 1)

λnk − 1
+

1

3
(k = 3).

(case cy) σ = (1, 2, 3)

ai = −λ
nk−1(λnj (λni + 1) + 1)(λ− 1)

λni+nj+nk − 1
+

1

3

((i , j , k) = (1, 2, 3), (2, 3, 1), (3, 1, 2)).



Characteristic polynomial

Orbit data determines the characteristic polynomial P(λ) of
f ∗ : H2(X ,Z)→ H2(X ,Z).

Bedford and Kim [BK1] have computed explicitly for any orbit
data n1, n2, n3, σ.

P(λ) = λ1+Σnjp(
1

λ
) + (−1)ordσp(λ),

where
p(λ) = 1− 2λ+

∑
j=σj

λ1+nj +
∑
j 6=σj

λnj (1− λ).

The polynomial P(λ) obtained as a necessary condition and the
characteristic polynomial P(λ) coincide (not by chance).



CSPmap (CSPt182st2)



CSPmap (CSPi244t2)



CSPmap (CSPc334)



CSPmap (CSPIc543r)



Three lines through a point

3. Three lines through a
point



Three lines

In this section, we consider the case where the invariant cubic
curve is three lines passing through a point (in P2).

Let CL = {(x , y) ∈ C2 | x(x2 − 1) = 0}.
Cubic curve CL has three components.
We consider three cases.

(case L3I) f maps each line to itself.
(case L3T) f transposes lines {x = 1} and {x = −1},

while line {x = 0} is mapped to itself.
(case L3C) f permutes three lines cyclically.



Parametrization

Let

p1 : C→ P2, p1(t) = (0,
t

2
),

p2 : C→ P2, p2(t) = (1,−t),

p3 : C→ P2, p3(t) = (−1,−t),

be parametrizations of the lines.

Three points p1(t1), p2(t2), p3(t3) are on a line if and only if
t1 + t2 + t3 = 0.



Proposition. For λ ∈ C× and a1, a2, a3 ∈ C with
a1 + a2 + a3 6= 0, there exists a quadratic birational map
f : P2 -→ P2, such that

f (CL) = CL, I (f ) = {p1(a1), p2(a2), p3(a3)},

inducing ti 7→ λ(tη(i) + ν1
3 ), i = 1, 2, 3, with ν1 = a1 + a2 + a3.

Here η : {1, 2, 3} → {1, 2, 3} indicates the permutation of three
lines.



case L3I

Proof. In the case of L3I , the denominator f3(x , y) is a
quadratic polynomial representing a parabolic curve passing
through the three indeterminacy points

(0,
1

2
a1), (1,−a2), (−1,−a3),

given by
f3(x , y) = ν1x

2 + (a2 − a3)x + 2y − a1.

f1(x , y) is a quadratic polynomial given by

XI =
f1(x , y)

f3(x , y)
= x − ν1x(x2 − 1)

f3(x , y)
,

which preserves three lines. (coefficient ν1 is chosen so that
f1(x , y) is quadratic.)



case L3I

Dynamics in invariant lines are as follows.

(0, y) 7→ (0, λ(y +
ν1

6
)),

(1, y) 7→ (1, λ(y − ν1

3
)),

(−1, y) 7→ (−1, λ(y − ν1

3
)).

So, we can arrange as follows.

YI =
f2(x , y)

f3(x , y)
= λ

{
(y − ν1

3
)−

(x2 − 1)ν1(y − a1
2 )

ν1x2 + (a2 − a3)x + 2y − a1

}
.



cases L3I

We obtained in the case of η = id .,

XI = x − ν1x(x2 − 1)

ν1x2 + (a2 − a3)x + 2y − a1
,

YI = λ

{
(y − ν1

3
)−

(x2 − 1)ν1(y − a1
2 )

ν1x2 + (a2 − a3)x + 2y − a1

}
.



case L3T

In the case of transposition η = (2, 3), we have

XT = −x +
ν1x(x2 − 1)

ν1x2 + (a2 − a3)x + 2y − a1
,

YT = λ

{
(y − ν1

3
)−

(x2 − 1)ν1(y − a1
2 )

ν1x2 + (a2 − a3)x + 2y − a1

}
.



case L3C

In the case of L3C, the indeterminacy points are same as in the
case L3I.

The dynamics in the invariant lines ti 7→ λ(tη(i) + ν1
3 ),

i = 1, 2, 3, give

(0, y) 7→ (1,−2λ(y +
ν1

6
)),

(1, y) 7→ (−1, λ(y − ν1

3
)),

(−1, y) 7→ (0,−λ
2

(y − ν1

3
)).



case L3C

Denominator f3(x , y) vanishes at the indeterminate points, we set

f3(x , y) = k(x2 +x)(y +a2) + `(x2−x)(y +a3)− (k + `)(x2−1)(y − a1

2
),

for some constants k and `, so that f3(x , y) is a quadratic polynomial.
Then the numerator f2(x , y) must be as

f2(x , y) = k(x2 + x)(y + a2)λ(y − ν1

3
)

+ `(x2 − x)(y + a3)(−λ
2

)(y − ν1

3
)

− (k + `)(x2 − 1)(y − a1

2
)(−2λ)(y +

ν1

6
).

And we get ` = −2k , for f2(x , y) to be quadratic.



case L3C

We set k = 1, ` = −2.
Now, f1 takes the form

f1(x , y) = − x + 1

3x − 1
f3(x , y)− x(x2 − 1)

Q

P
,

for some polynomials P,Q. As f1 has no poles, P is a multiple of 3x − 1.
We can set

f1(x , y)

f3(x , y)
= − x + 1

3x − 1

(
1 +

x(x − 1)Q

f3(x , y)

)
.

By posing this to be a quadratic rational function, we require that

f3(x , y) + x(x − 1)Q

has factor 3x − 1. And we conclude Q = 2ν1.



case L3C

In the case of L3C,

XC = − x + 1

3x − 1

(
1 +

2ν1x(x − 1)

f3(x , y)

)
,

YC =
λ
(
(y − ν1

3 )(2y + ν1x
2 + (a2 − a3)x − a1)− ν1(x2 − 1)(y − a1

2 )
)

f3(x , y)
,

where

f3(x , y) = (3x − 1)y + (−a1

2
+ a2 − 2a3)x2 + (a2 + 2a3)x +

a1

2
.



Orbit data for three lines

Orbit data (n1, n2, n3), σ must be compatible with the
permutation η of the three lines L1, L2, L3.

If
pi (ai ) ∈ Li , i = 1, 2, 3,

then
pη(i)(bi ) ∈ Lη(i), i = 1, 2, 3.

And
ηni−1(i) = σ(i).



Orbit data (n1, n2, n3), σ

(case L3I) η = id .
σ = id .

(case L3T) η = (i , j) (transposition),
σ = id , and ni , nj are even.
σ = η, and ni , nj are odd.

(case L3C) η = (i , j , k) (cyclic), {i , j , k} = {1, 2, 3}.
σ = id , and ni ≡ nj ≡ nk ≡ 0 ( mod 3).
σ = (i , j), and ni , nj , nk are distinct ( mod 3)

with nk ≡ 0 ( mod 3).
σ = η and ni ≡ nj ≡ nk ≡ 1 ( mod 3).
σ = η−1 and ni ≡ nj ≡ nk ≡ 2 ( mod 3).



L3Cmap (L3Cc174r)



L3Imap (L3Ii344r)



L3Tmap (L3Tt372r)



L3Tmap (L3Tt372r)



Conic and a tangent line

4. Conic and a tangent line



Conic and a tangent line

In this section, we consider the case where the invariant cubic
curve is a conic with a tangent line.

Let CQ = {(x , y) ∈ C2 | x(xy − 1) = 0}.
And let Q = {(x , y) ∈ C2 | xy = 1}, L = {(x , y) ∈ C2 | x = 0}.
We consider two cases.

(case QQ) f (Q) = Q, and f (L) = L.

(case QL) f (Q) = L and f (L) = Q.



Parametrization

Let
pQ : C→ P2, pQ(t) = (t−1, t),

pL : C→ P2, pL(t) = (0,−t),

be parametrisations.

Three points pQ(t1), pQ(t2) and pL(t3) are on a line if and only
if t1 + t2 + t3 = 0.



case QQ

Proposition. For λ ∈ C× and a1, a2, a3 ∈ C with
a1 + a2 + a3 6= 0, there exists a quadratic birational map
f : P2 -→ P2, such that

f (Q) = Q, f (L) = L I (f ) = {pQ(a1), pQ(a2), pL(a3)},

inducing t 7→ λ(t + ν1
3 ), with ν1 = a1 + a2 + a3.



Proof

Proof. Dynamics in Q and L are as follows.

(y−1, y) 7→ (λ−1(y +
ν1

3
)−1, λ(y +

ν1

3
)), in Q,

(0, y) 7→ (0, λ(y − ν1

3
)), in L.

From the dynamics in L, we can assume

f1(0, y) = 0,

f2(0, y) = λ(y − ν1

3
)(y + a3),

f3(0, y) = y + a3.



Then set
f1(x , y) = λ−1(Ax + By + C )x ,

for some A,B,C .
Along Q, by setting x = y−1, we must have

f1(y−1, y) = λ−1y−2(By2 + Cy + A) = λ−1y−2(y − a1)(y − a2).

which gives A = a1a2,B = 1,C = −(a1 + a2).
Hence we find

f1(x , y) = λ−1(a1a2x
2 + xy − (a1 + a2)x).



Next, set

f3(x , y) = (Px + Qy + R)x + y + a3.

Along Q, by setting x = y−1, we require

f1(y−1, y)

f3(y−1, y)
= λ−1(y +

ν1

3
)−1.

This gives

P =
ν1

3
a1a2, Q = −2

3
ν1, R = a1a2 −

ν1

3
(a1 + a2).

We get

f3(x , y) =
ν1

3
a1a2x

2 − 2

3
ν1xy + (a1a2 −

ν1

3
(a1 + a2))x + y + a3.



Similarly, we find

f2(x , y) = λ
(
Sx2 + Txy + Ux + (y + a3)(y − ν1

3
)
)
,

where

S =
ν2

1

9
a1a2,

T =
4

9
ν2

1 + a1a2 − ν1(a1 + a2),

U =
2

3
ν1a1a2 −

1

9
ν2

1 (a1 + a2).



case QQ

Summing up.

XQQ =
λ−1(a1a2x

2 + xy − (a1 + a2)x)
ν1
3 a1a2x2 − 2

3ν1xy + (a1a2 − ν1
3 (a1 + a2))x + y + a3

,

YQQ =
λ
(
Sx2 + Txy + Ux + (y + a3)(y − ν1

3 )
)

ν1
3 a1a2x2 − 2

3ν1xy + (a1a2 − ν1
3 (a1 + a2))x + y + a3

.

where

S =
ν2

1

9
a1a2,

T =
4

9
ν2

1 + a1a2 − ν1(a1 + a2),

U =
2

3
ν1a1a2 −

1

9
ν2

1 (a1 + a2).



case QL

Proposition. For λ ∈ C× and a1, a2, a3 ∈ C with
a1 + a2 + a3 6= 0, there exists a quadratic birational map
f : P2 -→ P2, such that

f (Q) = L, f (L) = Q, I (f ) = {pQ(a1), pQ(a2), pQ(a3)},

inducing t 7→ λ(t + ν1
3 ), with ν1 = a1 + a2 + a3.



Proof

Proof. Dynamics in Q and L are as follows.

(y−1, y) 7→ (0,−λ(y +
ν1

3
)), in Q,

(0, y) 7→ (−λ−1(y − ν1

3
)−1,−λ(y − ν1

3
)), in L.

From the dynamics in Q, we assume

f1(x , y) = xy − 1,

From the dynamics in L we can assume

f3(0, y) = λ(y − ν1

3
),

f2(0, y) = −λ2(y − ν1

3
)2.



Set
f3(x , y) = λ((Ax + By + C )x + y − ν1

3
).

Then along Q, we have

f3(y−1, y) =
λ

y2
(A + By2 + Cy + y3 − ν1

3
y2),

which must be factorized by

y3 − ν1y
2 + ν2y − ν3 = (y − a1)(y − a2)(y − a3).

Hence

A = −ν3, B = − 2

3
ν1, C = ν2,

which gives

f3(x , y) = λ(−ν3x
2 − 2

3
ν1xy + ν2x + y − ν1

3
).



Next, set

f2(x , y) = −λ2((Dx + Ey + F )x + (y − ν1

3
)2).

Then along Q we must have

f2(y−1, y)

f3(y−1, y)
= − λ(y +

ν1

3
),

which gives

D = − 1

3
ν1ν3, E = ν2 −

4

9
ν2

1 , F =
1

3
ν1ν2 − ν3,

f2(x , y) = −λ2(−ν1ν3

3
x2+(ν2−

4ν2
1

9
)xy+(

ν1

3
ν2−ν3)x+(y− ν1

3
)2).



case QL

Summing up :

XQL =
xy − 1

λ(−ν3x2 − 2
3ν1xy + ν2x + y − ν1

3 )
,

YQL =
−λ(−ν1ν3

3 x2 + (ν2 −
4ν2

1
9 )xy + (ν1

3 ν2 − ν3)x + (y − ν1
3 )2)

(−ν3x2 − 2
3ν1xy + ν2x + y − ν1

3 )
.



Orbit data for conic and a tangent line

Orbit data (n1, n2, n3), σ must be compatible with the
permutation η of Q and L.

(case QQ) f (Q) = Q, f (L) = L.

pQ(a1) ∈ Q, pQ(a2) ∈ Q, pL(a3) ∈ L,

pQ(b1) ∈ Q, pQ(b2) ∈ Q, pL(b3) ∈ L.

σ = id . or σ = (1, 2).

(case QL) f (Q) = L, f (L) = Q.

pQ(ai ) ∈ Q, pQ(bi ) ∈ Q, i = 1, 2, 3.

σ any, n1, n2, n3 odd.



QQmap (QQi363r)



QLmap (QLc173r)



Nodal cubic

5. Nodal cubic



Cubic curve with nodes

In this section, we consider the case where invariant cubic
curve has nodal singularities.

In this section, it is somewhat inconvenient to work with our
affine coordinates. We also use homogenious coordinates with
(x , y)↔ [x : y : 1], if necessary.

(case ND3) cubic curve consists of three lines Lx = {y = 0},
Ly = {x = 0}, and the line at infinity Lz ⊂ P2 .

(case ND2) cubic curve consists of conic Q = {xy = 1} and
the line at infinity Lz .

(case ND1) cubic curve has one node. In this case the surface
automorphism obtained by blow-ups has entropy zero.



case ND3

Parametrization of the cubic curve in case ND3 is as follows.

Let t ∈ C/Z.

px(t) = (e2πit , 0) ∈ Lx ,

py (t) = (0, e2πit) ∈ Ly ,

pz(t) = [1 : −e2πit : 0] ∈ Lz .

Three points px(t1), py (t2), pz(t3) are on a line if and only if
t1 + t2 + t3 ≡ 0 mod 1.



case ND3

Proposition. For a1, a2, a3 ∈ C/Z and b1, b2, b3 ∈ C/Z, with

a1 + a2 + a3 ≡ b1 + b2 + b3 |≡ 0 mod 1,

there exists a quadratic birational map f : P2 -→ P2, such that

f (Lx) = Lx , f (Ly ) = Ly , f (Lz) = Lz

and I (f ) = {px(a1), py (a2), pz(a3)},

inducing ti 7→ ti + bi , i = 1, 2, 3, in Lx , Ly , Lz respectively.

Rem. Multiplier is always 1. Do not confuse with bi in
cuspidal case.



ND3

Proof. Let A1 = e2πia1 , A2 = e2πia2 , A3 = e2πia3 , and
B1 = e2πib1 , B2 = e2πib2 , B3 = e2πib3 . Then,

px(a1) = (A1, 0) ∈ Lx , py (a2) = (0,A−1
2 ) ∈ Ly ,

pz(a3) = [1 : −A3 : 0] ∈ Lz .

We construct quadratic birational transformation of the form

f (x , y) = (
f1(x , y)

f3(x , y)
,
f2(x , y)

f3(x , y)
).

The line at infinity Lz is mapped to itself, the denominator f3(x , y)
must be a polynomial of degree 1, which defines a line passing
through indeterminacy points px(a1) and py (a2), we set

f3(x , y) = − A−1
1 x − A2y + 1.



ND3

As the y -axis is mapped to itself, and in the x-axis Lx , f induces

x = e2πit1 7→ X = e2πi(t1+b1) = B1x ,

we can set
f1(x , y) = B1x(−A−1

1 x + αy + 1),

for some constant α.
As the x-axis is mapped to itself, and in the y -axis Ly , f induces

y = e−2πit2 7→ Y = e−2πi(t2+b2) = B−1
2 y ,

we can set
f2(x , y) = B−1

2 y(βx − A2y + 1),

for some constant β.



ND3

The mapping induced on the line at infinity Lz is

z =
y

x
7→ Z =

Y

X
' B−1

1 B−1
2 z

β − A2z

−A−1
1 + αz

.

As the induced dynamics in Lz must be as z 7→ B3z , we get

B3 = −B−1
1 B−1

2 βA1 = −B−1
1 B−1

2 A2α
−1.

From the condition a1 + a2 + a3 ≡ b1 + b2 + b3, we have
A1A2A3 = B1B2B3. Hence

α = −A−1
1 A−1

3 , β = −A2A3.



ND3

We got

XND3 =
B1x(−A−1

1 x − A−1
1 A−1

3 y + 1)

−A−1
1 x − A2y + 1

,

YND3 =
B−1

2 y(−A2A3x − A2y + 1)

−A−1
1 x − A2y + 1

.

Or

XND3 = B1

(
x +

(A2 − A−1
1 A−1

3 )xy

−A−1
1 x − A2y + 1

)
,

YND3 = B−1
2

(
y +

(A−1
1 − A2A3)xy

−A−1
1 x − A2y + 1

)
.



Orbit data for ND3 map

In this case, as each component of the smooth part of the
invariant cubic curve is isomorphic to C/Z, possible determinant λ
is ±1. Possible combination of the permutation τ of the three lines
and the determinant τ is τ = id . and λ = 1 as a candidate for
surface automorphism of positive entropy.

Let (n1, n2, n3), σ = id be an orbit data. Suppose the
characteristic polynomial of this orbit data has a real root greater
than 1.

We need (m1,m2,m3) ∈ Z3 to determine a quadratic birational
transformation f preserving the nodal cubic curve {xyz = 0}, and
having the prescribed orbit data.



Conditions

Let p+
1 , p

+
2 , p

+
3 ∈ C/Z denote the parameter values of the

indeterminacy points I (f ) = {px(p+
1 ), py (p+

2 ), pz(p+
3 )}.

And let p−1 , p
−
2 , p

−
3 ∈ C/Z denote the parameter values of the

indeterminacy points I (f −1) = {px(p−1 ), py (p−2 ), pz(p−3 )}.

We look for translations b1, b2, b3 ∈ C/Z, together with {p±i }.
Set b = b1 + b2 + b3.

The conditions to be satisfied are as follows.

p+
1 + p+

2 + p+
3 ≡ b mod 1,

p−j ≡ p+
j + bj − b mod 1, j = 1, 2, 3,

p+
j ≡ p−j + (nj − 1)bj mod 1, j = 1, 2, 3.



Translations

From the second and third conditions, we have

njbj ≡ b mod 1, j = 1, 2, 3.

To solve these, we set (abusing notation)

njbj = b + mj , j = 1, 2, 3.

And with

bj =
1

nj
(b + mj), j = 1, 2, 3,

b = b1 + b2 + b3 = (
1

n1
+

1

n2
+

1

n3
)b +

m1

n1
+

m2

n2
+

m3

n3
,

we get

b =
m1n2n3 + m2n1n3 + m3n1n2

n1n2n3 − n1n2 − n2n3 − n3n1
,

bj =
mj

nj
+

1

nj
b, j = 1, 2, 3.



Choice of indeterminate points

We can choose

p+
1 =

b2 + b3

2
+ r1, p+

2 =
b1 + b3

2
+ r2, p+

3 =
b1 + b2

2
− r1− r2,

for any r1, r2 ∈ C.
Choice of r1 and r2 induces change of coordinates

(x , y) 7→ (e2πir1x , e−2πir2y). Dynamical systems are all
conjugate to each other.

If r1 = r2 = 0, the obtained map has a symmetry

p−i = −p+
i .



Pictures from NO3map (ND3i445R122,ND3i445R111)



Pictures from NO3map (ND3i445S111,ND3i445D111)



ND3map (ND3i556S110)



case ND2

The case ND2 is treated as follows.

Take parametrization in curve {z(xy − z2) = 0} as follows
Let t ∈ C/Z.

pQ(t) = (e2πit , e−2πit) ∈ Q = {xy = 1}.

pL(t) = [1 : −e2πit : 0] ∈ L = line at infinity.

Let p+
j ∈ C/Z, and set Aj = e2πip+

j , j = 1, 2, 3.

For translation b in the hyperbola Q, set B = e2πib.
For translation c in the line at infinity L, set C = e2πic .



Picard coordinates

Suppose t1 |≡ t2.
If three points pQ(t1), pQ(t2) ∈ Q, pL(t3) ∈ L are on a line,

then
e−2πit2 − e−2πit1

e2πit2 − e2πit1
= − e2πit3 .

This gives

(1− e2πi(t1+t2+t3))(e−2πit2 − e−2πit1) = 0,

and
t1 + t2 + t3 ≡ 0.

And if t1 + t2 + t3 ≡ 0, then the three points are on a line.



case ND2

Proposition. For p+
1 , p

+
2 , p

+
3 ∈ C/Z and b, c ∈ C/Z, with

p+
1 + p+

2 + p+
3 ≡ 2b + c |≡ 0 mod 1,

there exists a quadratic birational map f : P2 -→ P2, such that

f (Q) = Q, f (L) = L,

and I (f ) = {pQ(p+
1 ), pQ(p+

2 ), pL(p+
3 )},

inducing
t 7→ t + b, in Q,

t 7→ t + c , in L.

Rem. Multiplier is always 1. Do not confuse with bi in
cuspidal case.



case ND2

We construct birational map f : (x , y) 7→ (X ,Y ), as follows.
As the line at infinity is mapped to itself, the denominator must be
of degree 1 defining the line passing through the indeterminacy
points pQ(p+

1 ) = (A1,A
−1
1 ) and pQ(p+

2 ) = (A2,A
−1
2 ), the

denominator can be set to

f3(x , y) = x − A1 − A2 + A1A2y .

Recall f (pQ(t)) = pQ(t + b), i.e., X = Bx ,Y = B−1y in Q.
The dynamics in the hyperbola {xy = 1} is (x , y) 7→ (Bx ,B−1y).
Let

X = B

(
x +

U(xy − 1)

x − (A1 + A2) + A1A2y

)
,

Y = B−1

(
y +

V (xy − 1)

y − (A−1
1 + A−1

2 ) + A−1
1 A−1

2 x

)
,

for some U,V ∈ C.



case ND2

Recall f (pL(t)) = pL(t + c), i.e., −Z = −Cz in L.

As the dynamics in the line at infinity is z 7→ Cz , with z = y/x ,

Z = lim
x ,y→∞

Y /X =
B−2

1 + A−1
1 A−1

2 U
z
z + (1 + V )A−1

1 A−1
2

z + (A1A2 + U)−1
,

gives U = A−1
3 − A1A2 and V = A1A2A3 − 1.

(Used B2C = A1A2A3.)

The Cremona transformation F : (x , y) 7→ (X ,Y ) is given by

X = B

(
x +

(A−1
3 − A1A2)(xy − 1)

x − (A1 + A2) + A1A2y

)
,

Y = B−1

(
y +

(A3 − A−1
1 A−1

2 )(xy − 1)

y − (A−1
1 + A−1

2 ) + A−1
1 A−1

2 x

)
.



Orbit data for ND2

Relation between parameters of indeterminate points and
translation b and c :

p+
1 + p+

2 + p+
3 ≡ 2b + c mod 1.

Relation between parameters of indeteminate points :

p−1 ≡ p+
1 − b − c , p−2 ≡ p+

2 − b − c, p−3 ≡ p+
3 − 2b mod 1.

For orbit data (n1, n2, n3), σ, parameters must satisfy
followings.

p+
σ(j) ≡ p−1 + (nj − 1)b mod 1, j = 1, 2,

p+
3 ≡ p−3 + (n3 − 1)c mod 1.

Here, σ is either id . or transposition (1, 2).



extra data

Choose integers m1,m2,m3. Take representatives b, c ∈ C
(abusing notations), and compute in C.

p+
1 + p+

2 + p+
3 = 2b + c ,

p−1 = p+
1 − b − c , p−2 = p+

2 − b − c , p−3 = p+
3 − 2b,

p+
σ(j) = p−j + (nj − 1)b + mj , j = 1, 2,

p+
3 = p−3 + (n3 − 1)c + m3.

Maybe other choice of extra data, case by case.



(ND2) transposition case
For integers m1,m2,m3, and a complex number s, we get

b ≡ (n3 − 1)(m1 + m2) + 2m3

(n1 + n2 − 4)(n3 − 1)− 4
mod 1,

c ≡ 2(m1 + m2) + (n1 + n2 − 4)m3

(n1 + n2 − 4)(n3 − 1)− 4
mod 1,

and

p+
1 ≡

n2 − 1

2
b + s − m1

2
mod 1,

p+
2 ≡

n1 − 1

2
b + s +

m2

2
mod 1,

p+
3 ≡ b − 2s mod 1.

Parameter s gives choice of coordinates. When s = 0, the map has
symmetries. It is reversible by the complex conjugation, and it is
symmetric with respect to the conjugate diagonal. It is also
reversible by swapping involution (x , y) 7→ (y , x).



(ND2) case σ = id .

In the case of σ = id ., we need n1 = n2.
For m1,m3 ∈ Z, ` ∈ Z and ζ1, ζ2 ∈ C , we get

b ≡ (n3 − 1)m1 + m3

(n1 − 2)(n3 − 1)− 2
mod 1,

c ≡ 2m1 + (n1 − 2)m3

(n1 − 2)(n3 − 1)− 2
mod 1,

and

p+
1 ≡

2b + c + `

3
+ ζ1 + ζ2 mod 1,

p+
2 ≡

2b + c + `

3
+ ζ1 − ζ2 mod 1,

p+
3 ≡

2b + c + `

3
− 2ζ1 mod 1.

Parameters ζ1, ζ2 gives choice of coordinates.



example

In the case of orbit data (n1, n2, n3) = (4, 3, 5), σ = (1, 2), and
(m1,m2,m3) = (1, 1, 1), with s = 0, we have

b ≡ 1

4
, c ≡ 7

8
,

p+
1 ≡

3

4
, p+

2 ≡
3

8
, p+

3 ≡
1

4
.

And

p−1 ≡
5

8
, p−2 ≡

1

4
, p−3 ≡

3

4
.

Observe the symmetries of the Cremona transformation.

X = B

(
x +

(A−1
3 − A1A2)(xy − 1)

x − (A1 + A2) + A1A2y

)
,

Y = B−1

(
y +

(A3 − A−1
1 A−1

2 )(xy − 1)

y − (A−1
1 + A−1

2 ) + A−1
1 A−1

2 x

)
.



When s = 0,

p−1 ≡ −p
+
2 , p−2 ≡ −p

+
1 , p−3 ≡ −p

+
3 ,

we see
f = f −1 = S ◦ f ◦ S , T ◦ f ◦ T = f ,

where S : (x , y) 7→ (y , x), T : (x , y) 7→ (ȳ , x̄), are involutions.
Therefore, f : (x , y) 7→ (X ,Y ) is reversible with respect to involution S ,
and involution by the complex conjugation. It is symmetric with respect
to involution T .



Real slice for ND2map (4,3,5),σ = (1, 2)



Conjugate diagonal slice for ND2map (4,3,5),σ = (1, 2)



Conjugate diagonal slice for ND2map (4,3,5),σ = (1, 2),
some part



Conjugate diagonal slice for ND2map (4,3,5),σ = (1, 2),
zoomed out



Diagonal slice for ND2map (4,3,5),σ = (1, 2)



Diagonal slice for ND2map (4,3,5),σ = (1, 2), zoomed in



Elliptic curve

6. Elliptic curve



Elliptic curve

Diller [D] stated the existence of surface automorphisms with
positive entropy preserving a smooth cubic curve.

Proposition(Diller, 2011). Suppose that f is a quadratic
transformation properly fixing a smooth cubic curve C . If f has
positive entropy and lifts to an automorphism of some modification
X → P2, then either

C ∼= C/(Z + iZ) and the multiplier for f |C is ±i ; or
C ∼= C/(Z + eπi/3Z) and the multiplier for f |C is a prime cube

root of −1.



Weierstraß ℘-function

We use Weierstraß ℘-function as parametrization of invariant
smooth cubic curve.

Let τ ∈ C \ R and Λτ = Z + τZ be a lattice.
Weierstraß ℘-function ℘ : C/Λτ → P is defined by

℘(z) =
1

z2
+
∑
ω∈Λ′

τ

(
1

(z − ω)2
− 1

ω2
),

where Λ′τ = Λτ \ {0}.

Theorem The Weierstraß ℘-function satisfies a Weierstraß
equation

(℘′)2 = 4℘3 − g2℘− g3,

with g2 = 60
∑
ω∈Λ′

τ

ω−4, and g3 = 140
∑
ω∈Λ′

τ

ω−6.



parametrization

The parametrization of elliptic curve {y2 = 4x3 − g2x − g3} is
given by

p(t) = (℘(t), ℘′(t)), t ∈ C/Λτ .

Theorem(Diller, 2011) Let C ⊂ P2 be a smooth cubic curve.
Suppose we are given points p(p+

1 ), p(p+
2 ), p(p+

3 ) ∈ Creg , a
multiplier a ∈ C×, and a translation b ∈ C/Λ. Then there exists at
most one quadratic transformation f properly fixing C with
I (f ) = {p(p+

1 ), p(p+
2 ), p(p+

3 )} and f (p(t)) = p(at + b). This f
exists if and only if the following hold.

p+
1 + p+

2 + p+
3 /≡ 0;

a is a multiplier for Creg ;
a(p+

1 + p+
2 + p+

3 ) ≡ 3b.
Finally, the points of indeterminacy for f −1 are given by
p−j = ap+

j − 2b, j = 1, 2, 3.



Cremona transformation

The most basic non-linear birational transformation
J : P2 → P2 can be expressed as

[x : y : z ] 7→ [yz : zx : xy ].

J acts by blowing up points e1 = [1 : 0 : 0],
e2 = [0 : 1 : 0],e3 = [0 : 0 : 1] and then collasping the lines
{x = 0},{y = 0},{z = 0} to e1, e2, e3 respectively.

A generic quadratic Cremona transformation can be obtained
from J by pre- and post- composing with linear transformations
f = L1 ◦ J ◦ L−1

2 .



conditions

We see that

I (f ) = {L2(e1), L2(e2), L2(e3)}, I (f −1) = {L1(e1), L1(e2), L1(e3)}.

The choice of L1 and L2 is not unique, since specification of
three points does not determine a linear transformation uniquely.
We need a supplementary condition to determine the
transformation with uniqueness.

A unique biquadratic transformation f = L1 ◦ K ◦ J ◦ L−1
2 is

obtained by specifying a linear transformation K : P2 → P2, which
fixes e1,e2, e3, and setting

K̃ =

 k1 0 0
0 k2 0
0 0 k3

 ,



L̃1 =

 ℘(p−1 ) ℘(p−2 ) ℘(p−3 )
℘′(p−1 ) ℘′(p−2 ) ℘′(p−3 )

1 1 1

 ,

L̃2 =

 ℘(p+
1 ) ℘(p+

2 ) ℘(p+
3 )

℘′(p+
1 ) ℘′(p+

2 ) ℘′(p+
3 )

1 1 1

 .

Take a fixed point t0 of the inner dynamics t 7→ at + b. Then
point p(t0) must be a fixed point of f . We can choose K̃ by

L̃−1
1 (p(t0)) = K̃ ◦ J̃ ◦ L̃−1

2 (p(t0)).

Obtained biquadratic transformation f = L1 ◦K ◦ J ◦ L−1
2 is the

unique one satisfying

I (f ) = {p(p+
1 ), p(p+

2 ), p(p+
3 )}, I (f −1) = {p(p−1 ), p(p−2 ), p(p−3 )},

and f (p(t0)) = p(t0).



orbit data to transformation

As at most one quadratic transformation properly fixing C , this
f is the quadratic transformation described in the above theorem.

We have two cases.

(case ELI) C ∼= C/(Z + iZ) and the multiplier for f |C is ±i ;

(case ELW) C ∼= C/(Z + eπi/3Z) and the multiplier for f |C is a
prime cube root of −1.



case ELI

In case ELI, let Λ = Z + iZ, and we suppose the multiplier for
f |C is i .

The case of −i is similar.

Suppose the translation of the inner dynamics is b ∈ C/Λ.

Conditions for orbit data (n1, n2, n3), σ are as follows.

p+
1 + p+

2 + p+
3 ≡ −3ib |≡ 0 mod Λ,

p−j ≡ ip+
j − 2b mod Λ, j = 1, 2, 3.

p+
σ(j) ≡ inj−1(p−j −

1 + i

2
b) +

1 + i

2
b mod Λ, j = 1, 2, 3.



case ELI

The inner dynamics z 7→ iz + b is periodic of period 4. We
don’t have nj ≥ 5 as a realizable orbit data. So necessarily, to have
a transformation of positive entropy, we need

nj ≤ 4, j = 1, 2, 3.

If nj = 4 for some j , with σ(j) = j , we have

p+
j ≡ p+

j + 3ib mod Λ,

which gives 3ib ≡ 0. This case is not allowed.

If n1 + n2 + n3 ≤ 9, then the topological entropy of the surface
automorphism is 0.



case ELI

Therefor in the case of σ = id ., we have n1 + n2 + n3 ≤ 9. In
this case, the topological entropy of the quadratic transformation
is 0.

In the case of cyclic permutation σ = (1, 2, 3), possible orbit
data for quadratic transformation to have positive entropy are:

(4, 4, 4), (4, 4, 3), (4, 3, 3).

(case (4,4,2) does not have a solution)

In the case of transposition σ = (1, 2),possible orbit data for
quadratic transformation to have positive entropy are:

(4, 3, 3), (4, 4, 3).



case ELI, σ is cyclic

(case (4, 4, 4), σ = (1, 2, 3))

b ≡ 1

9
β, p+

1 ≡ 8ib +
1

3
α, p+

2 ≡ 5ib +
1

3
α, p+

3 ≡ 2ib +
1

3
α,

where β ∈ (Λ \ 3Λ)/9Λ and α ∈ Λ/3Λ.

(case (4, 4, 3), σ = (1, 2, 3))

b ≡ 1

15
β+

1

2
α, p+

1 ≡ (5−4i)b+
1

2
α, p+

2 ≡ (5−i)b+
1

2
α, p+

3 ≡ (5+2i)b+
1

2
α,

where β ∈ (Λ \ 5Λ)/15Λ, α = 0, or β ∈ Λ/15Λ, α = 1 + i .

(case (4, 3, 3), σ = (1, 2, 3))

b ≡ 2

15
β+

i

15
α, p+

1 ≡ (2−5

2
i)b+

1

2
α, p+

2 ≡ (2+
i

2
)b+

1

2
α, p+

3 ≡ (
7

2
−i)b− i

2
α,

where β ∈ (Λ \ 5Λ)/15Λ, α ∈ {0, 1, i , 1 + i}.



case ELI, σ is a transposition

(case (4,4,3), σ = (1, 2))

b ≡ 1

6
β, p1 ≡ (−1+

i

2
)b−γ

4
+
α

2
, p+

2 ≡ (−1−5

2
i)b−γ

4
+
α

2
, p+

3 ≡ (2−i)b+
γ

2
,

where β ∈ (Λ \ 2Λ)/6Λ, γ ∈ (1 + i)Λ, α ∈ Λ.

(case (4,3,3), σ = (1, 2))

b ≡ 1

18
β, p1 ≡ (

7

2
− 5i

2
b) +

α

2
, p+

2 ≡ (
7

2
+

i

2
i)b +

α

2
, p+

3 ≡ (−7− i)b,

where β ∈ ((1 + i)Λ \ 6Λ)/18Λ, α ∈ (1 + i)Λ/2Λ.



ELImap (ELIc433Rb40)



case ELW

In case ELW, let ε = eπi/3 and Λε = Z + εZ. We suppose the
mutiplier for f |C is ε.

The case of ε̄ is similar.

Suppose the translation of the inner dynamics is b ∈ C/Λε.

Conditions for orbit data (n1, n2, n3), σ are as follows.

p+
1 + p+

2 + p+
3 ≡ (3− 3ε)b |≡ 0 mod Λε,

p−j ≡ εp
+
j − 2b mod Λε, j = 1, 2, 3.

p+
σ(j) ≡ ε

nj−1(p−j − εb) + εb mod Λε, j = 1, 2, 3.



notations

By eliminating p−j , we get

p+
σ(j) ≡ ε

njp+
j + (ε− 2εnj−1 − εnj )b.

To simplify notations, let

κk = ε− 2εk−1 − εk , k = 0, 1, · · · , 6,

δk =
1

1− εk
, k = 1, 2, · · · , 5.

Then the equations are :

p+
σ(j) ≡ ε

njp+
j + κnjb mod Λε, j = 1, 2, 3.

with
p+

1 + p+
2 + p+

3 ≡ (3− 3ε)b |≡ 0 mod Λε.



case ELW, σ = id .

As the dynamics t 7→ εt + b ≡ ε(t − εb) + εb is periodic of
period 6, we need

n1, n2, n3 ≤ 6.

The case σ(j) = j and nj = 6, is not appropriate, as

0 ≡ κ6b ≡ (3ε− 3)b mod Λε.

For orbit data (n1, n2, n3), σ = id ., n1 + n2 + n3 ≥ 10, with
nj < 6, j = 1, 2, 3, ,

b ≡ β − δn1α1 − δn2α2 − δn3α3

δn1κn1 + δn2κn2 + δn3κn3 + 3ε− 3
mod Λε,

p+
j ≡ δnj (κnjb + αj) mod Λε, j = 1, 2, 3.

where α1, α2, α3, β ∈ Λε.



case ELW, σ = (1, 2), transposition

In the transposition case of orbit data (n1, n2, n3), σ = (1, 2),
with n1, n2 ≤ 6, n3 < 6, n1 + n2 + n3 ≥ 10, and n1 + n2 6= 6, we
have

b ≡ β − δn1+n2((εn2 + 1)α1 + (εn1 + 1)α2)− δn3α3

δn1+n2((εn2 + 1)κn1 + (εn1 + 1)κn2) + δn3κn3 + 3ε− 3
mod Λε,

p+
1 ≡ δn1+n2((εn2κn1 + κn2)b + εn2α1 + α2) mod Λε,

p+
2 ≡ δn1+n2((εn1κn2 + κn1)b + εn1α2 + α1) mod Λε,

p+
3 ≡ δn3(κn3b + α3) mod Λε,

where α1, α2, α3, β ∈ Λε.



case ELW, σ = (1, 2, 3), cyclic permutation

In the cyclic permutation case of orbit data (n1, n2, n3), σ = (1, 2, 3),
n1 + n2 + n3 ≥ 10, with n1, n2, n3 ≤ 6, and n1 + n2 + n3 6= 12, we have

b ≡ β − A1α1 − A2α2 − A3α3

δn1+n2+n3 (A1κn1 + A2κn2 + A3κn3 ) + 3ε− 3
mod Λε,

where A1 = εn2+n3 + εn2 + 1, A2 = εn3+n1 + εn3 + 1, A3 = εn1+n2 + εn1 + 1.

p+
1 ≡ δn1+n2+n3 ((εn2+n3κn1 +εn3κn2 +κn3 )b+εn2+n3α1+εn3α2+α3) mod Λε,

p+
2 ≡ δn1+n2+n3 ((εn3+n1κn2 +εn1κn3 +κn1 )b+εn3+n1α2+εn1α3+α1) mod Λε,

p+
3 ≡ δn1+n2+n3 ((εn1+n2κn3 +εn2κn1 +κn2 )b+εn1+n2α3+εn2α1+α2) mod Λε,

where α1, α2, α3, β ∈ Λε.



ELWmap(ELWi543Rb31a01a10a00)



Appendix

Theta functions. Let q = eπiτ denote the nome.

ϑ0(z) = 1 + 2
∞∑
n=1

(−1)nqn
2

cos 2nπz ,

ϑ1(z) = 2
∞∑
n=0

(−1)nq(n+ 1
2

)2
sin(2n + 1)πz ,

ϑ2(z) = 2
∞∑
n=0

q(n+ 1
2

)2
cos(2n + 1)πz ,

ϑ3(z) = 1 + 2
∞∑
n=1

qn
2

cos 2nπz .



Weierstraß ℘-function.

℘(z) = π2(ϑ2
3ϑ

2
2

ϑ2
0(z)

ϑ2
1(z)

− 1

3
(ϑ4

3 + ϑ4
2)).

℘′(z) = 2π2ϑ2
3ϑ

2
2ϑ0(z)

ϑ′0(z)ϑ1(z)− ϑ0(z)ϑ′1(z)

ϑ3
1(z)

.

g2 =
2

3
π4(ϑ8

2 + ϑ8
3 + ϑ8

0),

g3 =
8

27
π6(ϑ12

2 −
3

2
ϑ8

2ϑ
4
3 −

3

2
ϑ4

2ϑ
8
3 + ϑ12

3 ).

Here, ϑi = ϑi (0), i = 0, 2, 3.
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