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Abstract

We construct an elliptic surface, such that the fibration
structure and the group of automorphisms can be determined.

A pencil of cubic curves passing through nine base points
defines an elliptic surface by blowing up the base points.

Inspecting the pencil of cubic curves, singular fibers and a
section of the elliptic fibration are detected.

We construct four birational maps preserving the cubic pencil.

They induce automorphisms of the elliptic surface.

The symmetries of the elliptic fibration and these
automorphisms generate the group of automorphisms.
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0. Introduction



Birational map

Let f : P? -— P2 be a birational map. Under certain
conditions, birational map induces a holomorphic automorphism
F : S — S of rational surface S, which is obtained by successive
blowing ups of P?, with projection 7 : S — P2



Elliptic fibration

A surjective holomorphic map 1 : S — P! is an elliptictic
fibration if almost all fibers are smooth curves of genus 1, and no
fiber contains an exceptional (-1)-curve.

An elliptic surface S over P! is a smooth projective surface
with an elliptic fibration over P?.



Preservation of elliptic fibration

We say that automorphism F : § — S preserves elliptic
fibration ¢ : S — P, if

S — S

1y 1y
P! LI

holds for some Mébius transformation Q : P! — PL.



Theorem of Gizatullin

The dynamical degree \; of F is defined as

A\ = (I_-n)*Hl/n_

lim ||
n—oo

THEOREM(Gizatullin [1980], Cantat [1999])
Assume F € Aut(S), A1 =1, and {||(F")*||} nen is
unbounded. Then F preserves an elliptic fibration.



Kodaira names

Singular fibers are classified by Kodaira. (smooth fiber is
indicated by Iy)

Iy n>1, I, I, IV,

I*, n>0, IV, II*, II*.

)

Euler number:

X(In) =n X(”) =2, X(/”) =3, X(IV) =4,

x(Iy=n+6, x(IV*)=8, x(IlI")=9, x(II")=10.

> x(F,) = 12.

F,:singular fiber



Classical example

Lyness ([L], 1942, 1945, 1961) found an invariant function

(x+y+a)(x+1)(y+1)
xy

ra(x,y) =

for a family of birational automorphisms

y+a
X

fa(x,y) = (v, ).

f2 has an invariant pencil of cubic curves.



Lyness example

Picture of log|ra(x, y)|.
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Single dynamics

In the case of orbit data (1,1,7), cyclic, with invariant cuspidal
curve, the configuration of singular fibers of the invariant elliptic
fibration is Il I5, I3, I>.

and

Aut(S)

~

In this case, we have rank(MW/(S)) = 1, Auts(P') = {id.},

< F>XZ/2Z.
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Multiple dynamics

The elliptic surface S itself is determined by the nine base
points of successive blowups.

In this note, we consider surface automorphisms sharing a
rational surface S.

Together with the symmetries of S, we try to understand the
group of automorphisms Aut(S).

We construct an elliptic surface S with

Aut(S) ~ < Hf,Hg > X Ds.

Oguiso and Shioda ([OS], 1991) have calculated MW/(S) for
each configuration of singular fibers. {H¢(0), Hg(o)} is an
orthonormal basis of MW(S) ~ < 1/6 >%2.

Our surface S provides a concrete and explicit example.



1. An Elliptic Surface



Base points
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Pencil of cubic curves

Cubic curves {x3 — x =0} and {y3 — y = 0} pass through all
points of X.

The family of cubic curves

vy —y =v(x*—x), velP!

defines a pencil of cubic curves.

Three lines passing through a point ( IV ) : v =0, 0.
Quadric and a line intersecting in two points ( /) : v ==l
If v =1, then

V¥ =y—(C=x)=( - ) +xy+x*—1).

If v=—1, then

V¥=y+(C=x) =+ —xy+x*-1).



Blowups

By blowing up the nine points in X, we obtain a rational
surface, S, with projection 7 : § — P2,

Define rational function ¢ : P? — P! by

p(x,y) =

Then ) = (extention of) p o7 : S — P! defines an elliptic
fibration.

Singular fibers are (in Kodaira's notation):
IV(v=0), IV(v=00), h(v=1), h(v=-1).

This configuration has symmetries v — ——, and v — —v.
We denote this group by Autg(P!) ~ (Z/ZZ)



Section

Let o : P! — S be a section of the fibration ¢ : S — P1,
defined by
o(v)="v" € n7}(0) ~PL.

After Karayayla([K],2011), we denote, by Aut,(S), the group
of automorphisms of S leaving the image of this section invariant.
He showed a short exact sequence of groups

1 — 7/27 — Aut,(S) — Auts(P') — 1.



Aut,(5)

The group Aut,(S) ~ Dy is generated by involutions

xy)=(,x) = ve L
(x,y) = (=x,y) = v —v,
(x,y) = (=x,—y)

= V= V.
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Group of Automorphisms

2. Group of Automorphisms



Mordell-Weil group

By specifying a section o : P* — S, the set of sections of
fibration 9 : S — P! form an additive group, regarding the
specified section o as the origin of each fiber. The addition of
sections is defined by the group law in each smooth fiber as elliptic
curve, and by taking the closure for a section. This group is called
the Mordell-Weil group, MW(S), of S.

Karayayla([K], 2011) proved :

THEOREM.
Aut(S) = MW(S) x Aut,(S).

(te 0 a1)(te, © @2) = (to1an(e) © (@1 © a2)).



Mordell-Weil rank

It is known ([Gi], 1980) that in the case of rational surface,

rank(MW(S)) =8 — Y _(m, —1).

vER

Where, R is the set of points v € P!, such that F, = ¢~ 1(v) is
not smooth, and m, is the number of irreducible components of
the singular fiber.

In our case,
R ={0,00,1, -1},
my=me =3, m=m_1=2.

So, we have
rank(MW(S)) = 2.

In the next section, we look for two automorphisms.



3. Multiple Dynamics



Birational map yielding S

Let us consider quadratic birational map

2x2 —xy —x+y—-1 —2y>+xy—x+y+1
3xy +x+y—1 7 3xy +x+y—1 '

f(X,y)=<

Its inverse map is

—2x2 —xy+x+y+1 —2y2—xy—x—y—i—1>

f1 =
(x.y) ( 3xy —x+y+1 3xy = x+y+1



Indeterminacy points

Quadratic birational map f : P? - — P? acts by blowing up
three indeterminacy points in P2 and blowing down the three
exceptional lines joining them.

The inverse map f~! is also quadratic and the images of three
exceptional lines of f are the indeterminacy points of 1.

Let
I(f)={pi,p3.p3}
and
l(fil) = {p1_7p2_7p3_}7
with
pi = fp; . p0)), {ij ky ={1,2,3}.



Orbit data

In our case of f,

p]—_i_ = (07 1)) p;_ = (170)7 P;_ = (_17 _1)7
p; = (170)’ Py = (Ov _1)7 P:; = (_17 1)'

And

py =pr, P =Ffpy). pP3=F(p3)

py — (1,1) = (0,0) = (1,-1) = pi,

p3 — (—=1,0) — p3.

The orbit data of f is (1,5, 3), transposition(1,2), and X is the

set of nine basepoints for f.



FS_)S
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Grouth of F*

Quadratic birational map f lifts to a surface automorphism
F:5—S.

The characteristic polynomial of the cohomology
homomorphism F* : H(S,Z) — H%(S,Z) is

x(d) = (d = 1)(d* — 1)(d® — 1)(d* — 1).

And
I(F*)"|| ~ Cn?.



Inner dynamics in vertical IV (v = o0)

F preserves the elliptic fibration on S. Observe the dynamics in
cubic curve {x3 — x = 0}.
Let

1
71-1)’ tr — (1, *tz), t3 — (*1, *t3)

t1 — (0, 5

be the Picard parametrization.

We see 1
7t1) = (1a _(tl + 1))a

1 -1) = (0,5 (&2 + 1))

f(-1,—t3) = (-1, —(t3 + 1)).

The dynamics in {x*> — x = 0} s,
transposition of two components, 7, = tr(0,1).
translation by 1, 7o :t+—t+ 1.

f(0,



Inner dynamics in horizontal /V (v = 0)

F also preserves cubic curve {y3 —y = 0}.

Let
1
up — (7u1,0), up — (—u,1), uz— (—uz, —1).
We have
1
f(—u1,0) = (= (~w — 1), -1),

2
1
(-, 1) = (5 (-u2 = 1),0),
f(—us,—1) = (—(—us —1),1).
The dynamics in {y3 —y =0} is
cyclic permutation of components, 19 = cy(0,—1,1).
affine map, m:u—~ —u-—1



F:5§5— 5

IV(v =00): N =tr(0,1), 7o0 : t— t+1, (1,5,3)tr.
IV(v=0): no=cy(0,-1,1), 70: u+— —u—1, (1,5,3)tr.
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Mordell-Weil automorphism

Our automorphism F : § — S preserves singular fibers
IV(v =0), and /V(v = o0), but permutes other singular fibers
h(v=1)and h(v =-1).

Involution (x, y) — (—x,y) preserves singular fibers
IV(v =0), IV(v =00) and permutes h(v =1) and h(v = —1).

Composition of F with this involution preserves each singular
fibers and hence each leaf of the elliptic fibration. And the image
of the specific section o determines an element in the Mordell-Weil

group.



Birational map preserving every fiber

Recall birational map

F(x,) 2x° —xy —x+y—1 —2y2+xy—x—+y+1
X,y) = )
Y 3xy +x+y—1 7 3xy +x+y—1

Let
he(x, ) “2x2+xy+x—y+1 -2+ xy—x+y+1

x,y) = )
Xy 3xy +x+y—-1 3xy +x+y—1

)

_1 _ 2x° —xy+x—y—1 22 —xy—x+y—1
hf (X>y)_ .

3xy —x—y—1 3xy —x—y—1



Dynamics of hy

I(hf) = {(170)7 (07 1)7 (_1’ _1)}'
I(hf_l) = {(17 1)7 (O’ _1)a (_170)}'
In vertical 1V,
{x=0}—{x=-1} = {x=1} — {x =0},
t—t+ 1.
In horizontal 1V,
{y=0—{y=-1}=»{y=1} = {y =0}

u—u+1.



Hf: S — S, (Mordell-Weil map)

V(v =00): N =cy(0,-1,1), 7o : t — t+1, (3,3,3)id.
IV(v=0): no=cy(0,-1,1), 7o:u—u—+1, (3,3,3)id.
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Another automorphism

There are similar automorphisms with different dynamics.

2x2 —xy +x—y—1 =2y’ 4+ xy+x—y+1
3xy = x—y—-1 "~ 3xy—x—y—1 '

glx.y) = (

gl (xy) = <

2x°+xy—x—y—1 22+ xy+x+y—1
3xy —x+y+1 ' 3xy—x+y+1 '

This automorphism also defines a Mordell-Weil section by
composing involution (x, y) — (x, —y).



G:S—=S5

IV(v =00): ne =cy(0,1,-1), 70 : t = —t —1, (1,5,3)tr
IV(v=0): no=tr(0,-1), 7o: u— u+1, (1,5,3)tr.

=] F
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Let

2x° —xy+x—y—1 22 —xy—x+y—1
3xy = x—y—1 "~ 3xy —x—y—1 )

hetxon) =

—2x2 —xy —x+y+1 —2y2—xy—|—x+y—|—1)

hgt =
g (xY) ( 3xy +x—y+1 3xy +x—y+1



Hy : S — S Mordell-Weil map derived from G

IV(v=00): 1 =cy(0,1,—1),
V(v =0):

Teo  t—>t+1, (3,3,3)id.
no =cy(0,-1,1), 7o:u—u—1, (3,3,3)id.
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Automorphisms of S




Recall Karayayla's theorem:
THEOREM.
Aut(S) = MW(S) X Aut,(S).

With Gizatullin's estimate
rank(MW(S)) =2

for our surface S.
Additive group MW(S) is generated by two automorphisms
above.
Hr and Hg commutes, and He? o Hg? induces
Too i t—=>t+p+gq,and 7p: u— u+ p—q. Hence
rank(< Hr, Hg >) = 2.
Aut,(S) ~ D4 is generated by involutions.



Aut(S5)

We conclude, in our case,

Aut(S) ~ < Hf,Hg > X Ds.



Thank you.
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Appendix
The generator of E(K)? of S are

Vi, =P_11+Pio+Po—1—P1,-1—FPo1— P10,

Vi, =Pi1+Po-1+P-10—P-1-1—Pro—Foa.

And the generator of MW(S) are
P11, P11,

for Hr, Hg, and
P_11, P11,
for H; ', H L.

HE(VH,) = Vi, — K.
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