Multiple Dynamics on Elliptic Surface

Shigehiro Ushiki
April 22, 2022

Abstract

We construct an elliptic surface, such that the fibration structure and the group of automorphisms can be determined.

A pencil of cubic curves passing through nine base points defines an elliptic surface by blowing up the base points.

Inspecting the pencil of cubic curves, singular fibers and a section of the elliptic fibration are detected.

We construct four birational maps preserving the cubic pencil.
They induce automorphisms of the elliptic surface.
The symmetries of the elliptic fibration and these automorphisms generate the group of automorphisms.

Contents

0. Introduction
1. An Elliptic Surface
2. Group of Automorphisms
3. Multiple Dynamics

Acknowledgement

The author is grateful to Prof. Uehara for advices and ideas related to the study of dynamics of elliptic fibrations.

0 . Introduction

Birational map

Let $f: \mathbb{P}^{2} \rightarrow \mathbb{P}^{2}$ be a birational map. Under certain conditions, birational map induces a holomorphic automorphism $F: S \rightarrow S$ of rational surface S, which is obtained by successive blowing ups of \mathbb{P}^{2}, with projection $\pi: S \rightarrow \mathbb{P}^{2}$.

$$
\begin{array}{lll}
S & \xrightarrow{F} & S \\
\downarrow \pi & & \downarrow \pi \\
\mathbb{P}^{2} & -\xrightarrow{f} & \mathbb{P}^{2} .
\end{array}
$$

Elliptic fibration

A surjective holomorphic map $\psi: S \rightarrow \mathbb{P}^{1}$ is an elliptictic fibration if almost all fibers are smooth curves of genus 1 , and no fiber contains an exceptional (-1)-curve.

An elliptic surface S over \mathbb{P}^{1} is a smooth projective surface with an elliptic fibration over \mathbb{P}^{1}.

Preservation of elliptic fibration

We say that automorphism $F: S \rightarrow S$ preserves elliptic fibration $\psi: S \rightarrow \mathbb{P}^{1}$, if

$$
\begin{array}{lll}
S & \xrightarrow{F} & S \\
\downarrow \psi & & \downarrow \psi \\
\mathbb{P}^{1} & \xrightarrow{\Omega} & \mathbb{P}^{1} .
\end{array}
$$

holds for some Möbius transformation $\Omega: \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$.

Theorem of Gizatullin

The dynamical degree λ_{1} of F is defined as

$$
\lambda_{1}=\lim _{n \rightarrow \infty}\left\|\left(F^{n}\right)^{*}\right\|^{1 / n}
$$

Theorem(Gizatullin [1980], Cantat [1999])
Assume $F \in \operatorname{Aut}(S), \lambda_{1}=1$, and $\left\{\left\|\left(F^{n}\right)^{*}\right\|\right\}_{n \in \mathbb{N}}$ is unbounded. Then F preserves an elliptic fibration.

Kodaira names

Singular fibers are classified by Kodaira. (smooth fiber is indicated by I_{0})

$$
\begin{aligned}
& I_{n}, n \geq 1, \quad \|, \quad I I I, \quad I V \\
& I_{n}^{*}, n \geq 0, \quad I^{*}, \quad \quad I I^{*}, \quad I^{*}
\end{aligned}
$$

Euler number:

$$
\begin{array}{clll}
\chi\left(I_{n}\right)=n, & \chi(I I)=2, & \chi(I I I)=3, & \chi(I V)=4, \\
\chi\left(I_{n}^{*}\right)=n+6, & \chi\left(I I^{*}\right)=8, & \chi\left(I I I^{*}\right)=9, & \chi\left(I I^{*}\right)=10 .
\end{array}
$$

$$
\sum \quad \chi\left(F_{v}\right)=12
$$

F_{v} :Singular fiber

Classical example

Lyness ([L], 1942, 1945, 1961) found an invariant function

$$
r_{a}(x, y)=\frac{(x+y+a)(x+1)(y+1)}{x y}
$$

for a family of birational automorphisms

$$
f_{a}(x, y)=\left(y, \frac{y+a}{x}\right) .
$$

f_{a} has an invariant pencil of cubic curves.

Lyness example

Picture of $\log \left|r_{a}(x, y)\right|$.

Single dynamics

In the case of orbit data $(1,1,7)$, cyclic, with invariant cuspidal curve, the configuration of singular fibers of the invariant elliptic fibration is $I I, I_{5}, I_{3}, I_{2}$.

In this case, we have $\operatorname{rank}(M W(S))=1, \operatorname{Aut}_{s}\left(\mathbb{P}^{1}\right)=\{i d\},$. and

$$
\operatorname{Aut}(S) \simeq<F>\rtimes \mathbb{Z} / 2 \mathbb{Z}
$$

Multiple dynamics

The elliptic surface S itself is determined by the nine base points of successive blowups.

In this note, we consider surface automorphisms sharing a rational surface S.

Together with the symmetries of S, we try to understand the group of automorphisms Aut(S).

We construct an elliptic surface S with

$$
\operatorname{Aut}(S) \simeq<H_{f}, H_{g}>\rtimes D_{4}
$$

Oguiso and Shioda ([OS], 1991) have calculated MW(S) for each configuration of singular fibers. $\left\{H_{f}(\sigma), H_{g}(\sigma)\right\}$ is an orthonormal basis of $M W(S) \simeq<1 / 6\rangle^{\oplus 2}$.

Our surface S provides a concrete and explicit example.

1. An Elliptic Surface

Base points

Let $\Sigma \subset \mathbb{P}^{2}$ denote the set of nine points $\{(n, m) \mid n, m=0, \pm 1\}$.

Pencil of cubic curves

Cubic curves $\left\{x^{3}-x=0\right\}$ and $\left\{y^{3}-y=0\right\}$ pass through all points of Σ.

The family of cubic curves

$$
y^{3}-y=v\left(x^{3}-x\right), \quad v \in \mathbb{P}^{1}
$$

defines a pencil of cubic curves.
Three lines passing through a point (IV):

$$
v=0, \infty
$$

Quadric and a line intersecting in two points (I_{2}):

$$
v= \pm 1
$$

If $v=1$, then

$$
y^{3}-y-\left(x^{3}-x\right)=(y-x)\left(y^{2}+x y+x^{2}-1\right)
$$

If $v=-1$, then

$$
y^{3}-y+\left(x^{3}-x\right)=(y+x)\left(y^{2}-x y+x^{2}-1\right)
$$

Blowups

By blowing up the nine points in Σ, we obtain a rational surface, S, with projection $\pi: S \rightarrow \mathbb{P}^{2}$.

Define rational function $\varphi: \mathbb{P}^{2} \rightarrow \mathbb{P}^{1}$ by

$$
\varphi(x, y)=\frac{y^{3}-y}{x^{3}-x}
$$

Then $\psi=$ (extention of) $\varphi \circ \pi: S \rightarrow \mathbb{P}^{1}$ defines an elliptic fibration.

Singular fibers are (in Kodaira's notation):

$$
I V(v=0), \quad I V(v=\infty), \quad I_{2}(v=1), \quad I_{2}(v=-1)
$$

This configuration has symmetries $v \mapsto \frac{1}{v}$, and $v \mapsto-v$. We denote this group by Auts $\left(\mathbb{P}^{1}\right) \simeq(\mathbb{Z} / 2 \mathbb{Z})^{2}$.

Section

Let $\sigma: \mathbb{P}^{1} \rightarrow S$ be a section of the fibration $\psi: S \rightarrow \mathbb{P}^{1}$, defined by

$$
\sigma(v)=" v^{"} \in \pi^{-1}(O) \simeq \mathbb{P}^{1}
$$

After Karayayla([K],2011), we denote, by $\operatorname{Aut}_{\sigma}(S)$, the group of automorphisms of S leaving the image of this section invariant. He showed a short exact sequence of groups

$$
1 \rightarrow \mathbb{Z} / 2 \mathbb{Z} \rightarrow \operatorname{Aut}_{\sigma}(S) \rightarrow \operatorname{Aut}_{s}\left(\mathbb{P}^{1}\right) \rightarrow 1
$$

$\operatorname{Aut}_{\sigma}(S)$

The group $\operatorname{Aut}_{\sigma}(S) \simeq D_{4}$ is generated by involutions

$$
\begin{aligned}
& (x, y) \mapsto(y, x) \quad \Rightarrow \quad v \mapsto \frac{1}{v} \\
& (x, y) \mapsto(-x, y) \quad \Rightarrow \quad v \mapsto-v \\
& (x, y) \mapsto(-x,-y) \quad \Rightarrow \quad v \mapsto v
\end{aligned}
$$

Group of Automorphisms

2. Group of Automorphisms

Mordell-Weil group

By specifying a section $\sigma: \mathbb{P}^{1} \rightarrow S$, the set of sections of fibration $\psi: S \rightarrow \mathbb{P}^{1}$ form an additive group, regarding the specified section σ as the origin of each fiber. The addition of sections is defined by the group law in each smooth fiber as elliptic curve, and by taking the closure for a section. This group is called the Mordell-Weil group, $M W(S)$, of S.

Karayayla([K], 2011) proved :
Theorem.

$$
\begin{gathered}
\operatorname{Aut}(S)=M W(S) \rtimes \operatorname{Aut}_{\sigma}(S) \\
\left(t_{\zeta_{1}} \circ \alpha_{1}\right)\left(t_{\zeta_{2}} \circ \alpha_{2}\right)=\left(t_{\zeta_{1}+\alpha_{1}\left(\zeta_{2}\right)} \circ\left(\alpha_{1} \circ \alpha_{2}\right)\right)
\end{gathered}
$$

Mordell-Weil rank

It is known ([Gi], 1980) that in the case of rational surface,

$$
\operatorname{rank}(M W(S))=8-\sum_{v \in R}\left(m_{v}-1\right)
$$

Where, R is the set of points $v \in \mathbb{P}^{1}$, such that $F_{v}=\psi^{-1}(v)$ is not smooth, and m_{v} is the number of irreducible components of the singular fiber.

In our case,

$$
\begin{gathered}
R=\{0, \infty, 1,-1\} \\
m_{0}=m_{\infty}=3, \quad m_{1}=m_{-1}=2
\end{gathered}
$$

So, we have

$$
\operatorname{rank}(M W(S))=2
$$

In the next section, we look for two automorphisms.

3. Multiple Dynamics

Birational map yielding S

Let us consider quadratic birational map

$$
f(x, y)=\left(\frac{2 x^{2}-x y-x+y-1}{3 x y+x+y-1}, \quad \frac{-2 y^{2}+x y-x+y+1}{3 x y+x+y-1}\right) .
$$

Its inverse map is

$$
f^{-1}(x, y)=\left(\frac{-2 x^{2}-x y+x+y+1}{3 x y-x+y+1}, \frac{-2 y^{2}-x y-x-y+1}{3 x y-x+y+1}\right) .
$$

Indeterminacy points

Quadratic birational map $f: \mathbb{P}^{2} \rightarrow \mathbb{P}^{2}$ acts by blowing up three indeterminacy points in \mathbb{P}^{2} and blowing down the three exceptional lines joining them.

The inverse map f^{-1} is also quadratic and the images of three exceptional lines of f are the indeterminacy points of f^{-1}.

Let

$$
I(f)=\left\{p_{1}^{+}, p_{2}^{+}, p_{3}^{+}\right\}
$$

and

$$
I\left(f^{-1}\right)=\left\{p_{1}^{-}, p_{2}^{-}, p_{3}^{-}\right\}
$$

with

$$
p_{i}^{-}=f\left(\ell\left(p_{j}^{+}, p_{k}^{+}\right)\right), \quad\{i, j, k\}=\{1,2,3\}
$$

Orbit data

In our case of f,

$$
\begin{aligned}
& p_{1}^{+}=(0,1), \quad p_{2}^{+}=(1,0), \quad p_{3}^{+}=(-1,-1), \\
& p_{1}^{-}=(1,0), \quad p_{2}^{-}=(0,-1), \quad p_{3}^{-}=(-1,1) .
\end{aligned}
$$

And

$$
\left.\begin{array}{c}
p_{2}^{+}=p_{1}^{-}, \quad p_{1}^{+}=f^{4}\left(p_{2}^{-}\right), \quad p_{3}^{+}=f^{2}\left(p_{3}^{-}\right) \\
p_{2}^{-} \mapsto(1,1) \\
\mapsto(0,0) \mapsto(1,-1) \mapsto p_{1}^{+} \\
p_{3}^{-}
\end{array}\right)(-1,0) \mapsto p_{3}^{+} .
$$

The orbit data of f is $(1,5,3)$, transposition $(1,2)$, and Σ is the set of nine basepoints for f.
$F: S \rightarrow S$

4ロ〉4句〉4 三〉4 三•

Grouth of F^{*}

Quadratic birational map f lifts to a surface automorphism $F: S \rightarrow S$.

The characteristic polynomial of the cohomology homomorphism $F^{*}: H^{2}(S, \mathbb{Z}) \rightarrow H^{2}(S, \mathbb{Z})$ is

$$
\chi(d)=(d-1)\left(d^{2}-1\right)\left(d^{3}-1\right)\left(d^{4}-1\right)
$$

And

$$
\left\|\left(F^{*}\right)^{n}\right\| \sim C n^{2} .
$$

Inner dynamics in vertical $\operatorname{IV}(v=\infty)$

F preserves the elliptic fibration on S. Observe the dynamics in cubic curve $\left\{x^{3}-x=0\right\}$.

Let

$$
t_{1} \mapsto\left(0, \frac{1}{2} t_{1}\right), \quad t_{2} \mapsto\left(1,-t_{2}\right), \quad t_{3} \mapsto\left(-1,-t_{3}\right)
$$

be the Picard parametrization.
We see

$$
\begin{gathered}
f\left(0, \frac{1}{2} t_{1}\right)=\left(1,-\left(t_{1}+1\right)\right) \\
f\left(1,-t_{2}\right)=\left(0, \frac{1}{2}\left(t_{2}+1\right)\right) \\
f\left(-1,-t_{3}\right)=\left(-1,-\left(t_{3}+1\right)\right)
\end{gathered}
$$

The dynamics in $\left\{x^{3}-x=0\right\}$ is, transposition of two components, $\quad \eta_{\infty}=\operatorname{tr}(0,1)$. translation by $1, \quad \tau_{\infty}: t \mapsto t+1$.

Inner dynamics in horizontal $I V(v=0)$

F also preserves cubic curve $\left\{y^{3}-y=0\right\}$.
Let

$$
u_{1} \mapsto\left(\frac{1}{2} u_{1}, 0\right), \quad u_{2} \mapsto\left(-u_{2}, 1\right), \quad u_{3} \mapsto\left(-u_{3},-1\right)
$$

We have

$$
\begin{aligned}
f\left(\frac{1}{2} u_{1}, 0\right) & =\left(-\left(-u_{1}-1\right),-1\right) \\
f\left(-u_{2}, 1\right) & =\left(\frac{1}{2}\left(-u_{2}-1\right), 0\right) \\
f\left(-u_{3},-1\right) & =\left(-\left(-u_{3}-1\right), 1\right)
\end{aligned}
$$

The dynamics in $\left\{y^{3}-y=0\right\}$ is
cyclic permutation of components, $\quad \eta_{0}=\operatorname{cy}(0,-1,1)$. affine map, $\quad \tau_{0}: u \mapsto-u-1$.

$F: S \rightarrow S$

$$
\begin{aligned}
& I V(v=\infty): \eta_{\infty}=\operatorname{tr}(0,1), \tau_{\infty}: t \mapsto t+1,(1,5,3) t r . \\
& I V(v=0): \eta_{0}=\operatorname{cy}(0,-1,1), \tau_{0}: u \mapsto-u-1,(1,5,3) t r .
\end{aligned}
$$

Mordell-Weil automorphism

Our automorphism $F: S \rightarrow S$ preserves singular fibers $I V(v=0)$, and $I V(v=\infty)$, but permutes other singular fibers $I_{2}(v=1)$ and $I_{2}(v=-1)$.

Involution $(x, y) \mapsto(-x, y)$ preserves singular fibers $I V(v=0), I V(v=\infty)$ and permutes $I_{2}(v=1)$ and $I_{2}(v=-1)$.

Composition of F with this involution preserves each singular fibers and hence each leaf of the elliptic fibration. And the image of the specific section σ determines an element in the Mordell-Weil group.

Birational map preserving every fiber

Recall birational map

$$
f(x, y)=\left(\frac{2 x^{2}-x y-x+y-1}{3 x y+x+y-1}, \frac{-2 y^{2}+x y-x+y+1}{3 x y+x+y-1}\right) .
$$

Let

$$
\left.\begin{array}{c}
h_{f}(x, y)=\left(\frac{-2 x^{2}+x y+x-y+1}{3 x y+x+y-1},\right. \\
\left.\frac{-2 y^{2}+x y-x+y+1}{3 x y+x+y-1}\right) . \\
h_{f}^{-1}(x, y)=\left(\frac{2 x^{2}-x y+x-y-1}{3 x y-x-y-1},\right.
\end{array} \frac{2 y^{2}-x y-x+y-1}{3 x y-x-y-1}\right) . .
$$

Dynamics of h_{f}

$$
\begin{gathered}
I\left(h_{f}\right)=\{(1,0),(0,1),(-1,-1)\} . \\
I\left(h_{f}^{-1}\right)=\{(1,1),(0,-1),(-1,0)\} .
\end{gathered}
$$

In vertical $I V$,

$$
\begin{gathered}
\{x=0\} \mapsto\{x=-1\} \mapsto\{x=1\} \mapsto\{x=0\}, \\
t \mapsto t+1
\end{gathered}
$$

In horizontal IV,

$$
\begin{gathered}
\{y=0\} \mapsto\{y=-1\} \mapsto\{y=1\} \mapsto\{y=0\}, \\
u \mapsto u+1
\end{gathered}
$$

$H_{f}: S \rightarrow S,($ Mordell-Weil map)

$$
\begin{aligned}
& I V(v=\infty): \eta_{\infty}=\operatorname{cy}(0,-1,1), \tau_{\infty}: t \mapsto t+1,(3,3,3) i d . \\
& I V(v=0): \eta_{0}=\operatorname{cy}(0,-1,1), \tau_{0}: u \mapsto u+1,(3,3,3) \mathrm{id} .
\end{aligned}
$$

Another automorphism

There are similar automorphisms with different dynamics.

$$
\begin{aligned}
& g(x, y)=\left(\frac{2 x^{2}-x y+x-y-1}{3 x y-x-y-1}, \frac{-2 y^{2}+x y+x-y+1}{3 x y-x-y-1}\right) \\
& g^{-1}(x, y)=\left(\frac{2 x^{2}+x y-x-y-1}{3 x y-x+y+1}, \frac{2 y^{2}+x y+x+y-1}{3 x y-x+y+1}\right)
\end{aligned}
$$

This automorphism also defines a Mordell-Weil section by composing involution $(x, y) \mapsto(x,-y)$.

$G: S \rightarrow S$

$$
\begin{aligned}
& \operatorname{IV}(v=\infty): \eta_{\infty}=\operatorname{cy}(0,1,-1), \tau_{\infty}: t \mapsto-t-1,(1,5,3) t r . \\
& I V(v=0): \eta_{0}=\operatorname{tr}(0,-1), \tau_{0}: u \mapsto u+1,(1,5,3) t r .
\end{aligned}
$$

Let

$$
\begin{gathered}
h_{g}(x, y)=\left(\frac{2 x^{2}-x y+x-y-1}{3 x y-x-y-1}, \frac{2 y^{2}-x y-x+y-1}{3 x y-x-y-1}\right) \\
h_{g}^{-1}(x, y)=\left(\frac{-2 x^{2}-x y-x+y+1}{3 x y+x-y+1},\right.
\end{gathered} \frac{\left.\frac{-2 y^{2}-x y+x+y+1}{3 x y+x-y+1}\right) .}{} .
$$

$H_{g}: S \rightarrow S$ Mordell-Weil map derived from G

$$
\begin{aligned}
& I V(v=\infty): \eta_{\infty}=\operatorname{cy}(0,1,-1), \tau_{\infty}: t \mapsto t+1,(3,3,3) i d . \\
& I V(v=0): \eta_{0}=\operatorname{cy}(0,-1,1), \tau_{0}: u \mapsto u-1,(3,3,3) i d .
\end{aligned}
$$

Automorphisms of S

Recall Karayayla's theorem:
Theorem.

$$
\operatorname{Aut}(S)=M W(S) \rtimes \operatorname{Aut}_{\sigma}(S)
$$

With Gizatullin's estimate

$$
\operatorname{rank}(M W(S))=2
$$

for our surface S.
Additive group $M W(S)$ is generated by two automorphisms above.
H_{f} and H_{g} commutes, and $H_{f}^{\circ p} \circ H_{g}^{\circ q}$ induces
$\tau_{\infty}: t \mapsto t+p+q$, and $\tau_{0}: u \mapsto u+p-q$. Hence $\operatorname{rank}\left(<H_{f}, H_{g}>\right)=2$.

Aut $_{\sigma}(S) \simeq D_{4}$ is generated by involutions.

We conclude, in our case,

$$
\operatorname{Aut}(S) \simeq<H_{f}, H_{g}>\rtimes D_{4}
$$

Thank you．

Appendix

The generator of $E(K)^{0}$ of S are

$$
\begin{aligned}
& V_{H_{f}}=P_{-1,1}+P_{1,0}+P_{0,-1}-P_{1,-1}-P_{0,1}-P_{-1,0} \\
& V_{H_{g}}=P_{1,1}+P_{0,-1}+P_{-1,0}-P_{-1,-1}-P_{1,0}-P_{0,1}
\end{aligned}
$$

And the generator of $M W(S)$ are

$$
P_{1,-1}, \quad P_{-1,-1}
$$

for H_{f}, H_{g}, and

$$
P_{-1,1}, \quad P_{1,1}
$$

for H_{f}^{-1}, H_{g}^{-1}.

$$
H_{f}^{*}\left(V_{H_{f}}\right)=V_{H_{f}}-K .
$$

References

[BK1] E. Bedford and K. Kim. Dynamics of Rational Surface Automorphisms: Linear Fractional Recurrences. J. Geomet. Anal. 19(2009), 553-583.
[BK2] E. Bedford and K. Kim. Dynamics of rational surface automorphisms: rotation domains. Amer. J. Math. 134(2012), no. 2, 379-405.

References

[C1] S. Cantat. Dynamique des automorphisms des surfaces projectives complexes. C.R. Acad. Sci. Paris Sér I Math., 328(10):901-906, 1999.
[C2] S. Cantat. Dynamics of automorphisms of compact complex surfaces. "Frontiers in Complex Dynamics - In Celebration of John Milnor's 80th birthday", Eds. A.Bonifant, M. Lyubich, S.
Sutherland, Prinston University Press, Princeton and Oxford, pp. 463-509, 2014

References

[D] J. Diller. Cremona transformations, surface automorphisms, and plane cubics. Michigan Math. J. 60(2011), no. 2, pp409-440, with an appendix by Igor Dolgachev.
[Gi] M. H. Gizatullin. Rational G-surfaces. Izv. Akad. Nauk SSSR
Ser. Mat. 44(1980), 110-144, 239.
[Gr] J. Grivaux. Parabolic automorphisms of projective surfaces (after M. H. Gizatullin)
https://hal.archives-ouvertes.fr/hal-01301468, Nov. 2019.
[K] T. Karayayla. The Classification of Automorphism Groups of Rational Elliptic Surface With Section, https://repository.upenn.rdu/edissertations/988, Spring 2011

References

[L] R. C. Lyness. Notes 1581, 1847, and 2952. Math. Gaz. 26, 62 (1942), 29, 231 (1945), and 45, 201 (1961).
[M] C. T. McMullen. Dynamics on blowups of the projective plane.
Publ. Sci. IHES, 105, 49-89(2007).
[N] M. Nagata. On rational surfaces. II. Mem. Coll. Sci. Univ.
Kyoto Ser. A Math., 33:271-293, 1960/1961.
[OS] K. Oguiso and T. Shioda. The Mordell-Weil Lattice of a
Rational Elliptic Surface. Commentarii Mathematici Universitatis
Sancti Pauli 40 (1991), 83-99.

References

[SS] M.Schütt, T. Shioda. Elliptic surfaces, Algebraic Geometry in East Asia - Seoul 2008, pp.51-160, Advanced Strudies in Pure Mathematics 60, 2010.
[U1] T. Uehara. Rational surface automorphisms preserving cuspidal anticanonical curves. Mathematische Annalen, Band 362, Heft 3-4, 2015.
[U2] T. Uehara. Rational surface automorphisms with positive entropy. Ann. Inst. Fourier (Grenoble) 66(2016), 377-432.

