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Abstract

Automorphisms of complex surfaces can have various invariant
curves. In this note, we consider families of rational surface
automorphisms with invariant cubic curve.

Such rational automorphism can have, at the same time, an
invariant line, or an invariant quadratic curve, or a pair of lines
intersecting at a point, which are disjoint from the invariant cubic
curve.
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0. Fatou domain



Fatou set

Let f : X → X be an automorphism of a compact complex
manifold X .

A point p ∈ X is a point of the forward Fatou set F+
f if there

exists an open neighborhood U of p on which the sequence
{f n}n∈N forms a normal family of holomorphic mappings from U
to X .

Define the backward Fatou set F−f and the Fatou set Ff by

F−f = F+
f −1 , Ff = F+

f ∩ F−f .



Dissipative Hénon map

In the Hénon map case, Bedford and Smilie [BS2] proved :

Theorem (Bedford-Smilie, 1991) Suppose that f is
dissipative, and f (Ω) = Ω is an invariant Fatou component
satisfying {f n(p) : n ≥ 0} ⊂ Ω for some p ∈ Ω. Then one of the
following occurs:

1. Ω = basin of an attracting fixed point, and Ω ∼= C2.
2. Ω = basin of a rotational disk, and Ω ∼= D× C.
3. Ω = basin of a rotational annulus, and Ω ∼= A× C.

Rem. Existence of case 3 is an open problem.
Rem. Existence of parabolic basins is proved by T. Ueda

(1986, 1991).



Dissipative surface automorphism

Followings are found.
(no rigorous proof for case 2)

1. basin of an attracting periodic/fixed point ∼= C2.
2. basin of a rotational annulus ∼= ”A× C ”. (?)
3. basin of a rotational Riemann sphere ∼= ”P× C ”. (??)
4. basin of a curve of periodic points ∼= ”P× C ”. (??)

Followings are not found yet.
5. basin of a parabolic periodic/fixed point ∼= C2. (???)
6. basin of a rotational disk ∼= D× C. (???)

Rem. ”P× C ” is the normal line bundle.



Example : (case 2) orbit data (3,3,4), cyclic, horizontal
slice



Example : (case 2) orbit data (3,3,4), cyclic, in surface



Example: (case 3) orbit data (3,4,5), id, real slice



Example: (case 4) orbit data (3,3,4), id, horizontal slice



Volume preserving automorphism

Suppose Ω is a Fatou component of a volume preserving
automorphism f with f (Ω) = Ω. Define the set of all limits of
convergent subsequences G by

G =

{
g = lim

nj→∞
f nj : Ω→ Ω

}
.

If g = limnj→∞ f nj is such a limit, then g must preserve volume,
and thus it is locally invertible. It follows that g : Ω→ Ω.

It is known that G is a compact Lie group, by a theorem of H.
Cartan. The connected component G0 of the identity must be a
(real) torus.



Rank of a rotation domain

In the volume preserving Hénon map case, known result is as
follows.

Theorem (Bedford-Smilie 1991).
G0 is isomorphic to Tρ with ρ = 1 or 2.

Same result should hold for surface automorphism case.

Such a domain is called a rotation domain, and we refer to ρ
as the rank of the rotation domain.



Reinhardt domain

Let D ⊂ C2 be a connected open set. We say that D is a
Reinhardt domain if (e iθz , e iφw) ∈ D for all (z ,w) ∈ D and all
θ, φ ∈ R.

If Ω is a rank 2 rotation domain, then the G-action on Ω may
be conjugated to the standard linear action on C2.

Theorem. (Barrettt-Bedford-Dadok 1989) There are a
Reinhardt domain D ⊂ C2, a linear map L : (x , y) 7→ (αx , βy),
|α| = |β| = 1, and a biholomorphic map Φ : Ω→ D such that
Φ ◦ f = L ◦ Φ.



Volume preserving Hénon map

Volume preserving Hénon map can have rotation domains.

1. Rotation domain of rank 1 (not well understood).
2. Siegel disk ∼= Reinhardt domain ⊃ D× D.
3. Exotic rotation domain ∼= A× D. (?)

Rem. Case 3 is numerically found. We don’t have a proof.



Example: (case 2) Siegel disk



Example: (case 2) Siegel disk



Example: (case 3) exotic rotation domain (?)



Example: (case 3) exotic rotation domain (?)



Volume preserving surface automorphism

Volume preserving surface automorphisms can have various
kinds of rotation domains.

1. Rotation domain of rank 1.
2. Siegel disk ∼= Reinhardt domain ⊃ D× D.
3. Exotic rotation domain ∼= ”A× D ”. (?)
4. Super-exotic rotation domain ∼= ”P× D ”. (??)
5. Ultra-exotic rotation domain ∼= ”A× A ”. (???)

Rem. In case 1, there are various types, not well understood.
Rem. Case 3 is numerically found without proof.
Rem. Case 4 is numerically observed.
Rem. Case 5 is not found yet.

Rem. ”P× D ” is the normal disk bundle.



Example: (case 3) exotic rotation domain (?)



Example: (case 3) exotic rotation domain (?)



Example: (case 3) exotic rotation domain (?)



Example: (case 4) super exotic rotation domain (??)



Example: (case 4) super exotic rotation domain (??)



1. Cremona transformation



Cremona involution

Cremona involution J : P2 → P2 is defined by

J[x : y : z ] = [x−1 : y−1 : z−1] = [yz : zx : xy ].

For linear transformations L1, L2 ∈ PGL(P2),

f = L1 ◦ J ◦ L2

is a birational transformation.



Cremona transformations with invariant cubic curve

A birational transformation f : P2 → P2 is called a Cremona
transformation.

A quadratic transformation f : P2 → P2 always acts by blowing
up three (indeterminacy) points I (f ) = {p+

1 , p
+
2 , p

+
3 } in P2 and

blowing down the (exceptional) lines joining them. The inverse
map f −1 is also a quadratic transformation and
I (f −1) = {p−1 , p

−
2 , p

−
3 } consists of the images of the three

exceptional lines.

p−i = f (`(p+
j , p

+
k )) for {i , j , k} = {1, 2, 3}.

Here, `(p, q) denotes the line passing through p and q.



Orbit data

Suppose that for natural numbers n1, n2, n3, and a permutation
σ : {1, 2, 3} → {1, 2, 3}, f satisfies

f ni−1(p−i ) = p+
σ(i), i = 1, 2, 3.

`(p+
j , p

+
k )→ p−i → f (p−i )→ · · · → p+

σ(i) → `(p−σ(j), p
−
σ(k)).

By blowing up in n1 + n2 + n3 points

p−1 , f (p−1 ), · · · , f n1−1(p−1 ) = p+
σ(1),

p−2 , f (p−2 ), · · · , f n2−1(p−2 ) = p+
σ(2),

p−3 , f (p−3 ), · · · , f n3−1(p−3 ) = p+
σ(3),

f lifts to a surface automorphism.



2. Surface automorphism



Quadratic Cremona transformation

Let C be a cubic curve of one of the following :

(case C) a caspidal cubic curve
(case L) three lines passing through a point,
(case Q) a conic and a tangent line.

Theorem. (Diller 2011) Let orbit data n1, n2, n3, σ ∈ Σ3

be given. Except for some specific cases, there exists an
automorphism f for each root of P(λ) that is not a root of unity,
which realize the orbit data, with determinant λ.

Such f is unique up to conjugacy of linear transformation
preserving C .



Uehara’s formula of birational transformation

Uehara(2016) obtained an explicit formula for Cremona
transformations with an invariant cuspidal cubic curve.

For λ ∈ C× and a1, a2, a3 ∈ C with a1 + a2 + a3 6= 0, XC = λ
(
x + ν1

3 + ν1(y−x3)
ν1x2−ν2x+ν3−y

)
YC = λ3

(
(x + ν1

3 )3 + y − x3 + ν1(y−x3)
ν1x2−ν2x+ν3−y (ν1(x + ν1

3 )− ν2)
)

where ν1 = a1 + a2 + a3, ν2 = a1a2 + a2a3 + a3a1, and ν3 = a1a2a3.



Three lines passing through a point

In the case of three lines passing through a point,
Uehara(2019) obtained an explicit formula. There are three cases
for the permutation of three lines {x(x2 − 1) = 0}. XLI = x − ν1x(x2−1)

ν1x2+(a2−a3)x+2y−a1

YLI = λ(y − ν1

3 ) +
(λ−1)(x2−1)(y− a1

2 )

ν1x2+(a2−a3)x+2y−a1 XLT = −x + ν1x(x2−1)
ν1x2+(a2−a3)x+2y−a1

YLT = λ(y − ν1

3 ) +
(λ−1)(x2−1)(y− a1

2 )

ν1x2+(a2−a3)x+2y−a1

 XLC = − x+1
3x−1

(
1 + 2ν1x(x−1)

(− a1
2 +a2−2a3)x2+(a2+2a3)x+(3x−1)y+

a1
2

)
YLC =

λ(y− ν1
3 )(2y+ν1x

2+(a2−a3)x−a1)−λν1(x2−1)(y− a1
2 )

(− a1
2 +a2−2a3)x2+(a2+2a3)x+(3x−1)y+

a1
2



Conic and a tangent line

Uehara(2019) obtained an explicit formula also in the case of
conic and a tangent line. There are two cases for the permutation
of components : conic {xy = 1} and a tangent line {x = 0}.


XQQ = a1a2x

2−(a1+a2)x+xy

λ( ν1
3 a1a2x2− 2

3 ν1xy+(a1a2−
ν1
3 (a1+a2))x+y+a3)

YQQ =
λ
(

ν2

9 a1a2x
2+( 4

9 ν
2
1 )xy+y2+( 2

3 ν1a1a2−
ν1
9 (a1+a2))x+(a3−

ν1
3 )y− ν1

3 a3

)
ν1
3 a1a2x2− 2

3 ν1xy+(a1a2−
ν1
3 (a1+a2))x+y+a3 XQL = xy−1

−λ(ν3x2+ 2
3 ν1xy−ν2x−y+

ν1
3 )

YQL =
−λ( ν1ν3

3 x2+( 4
9 ν

2
1−ν2)xy+(ν3−

ν1ν2
3 )x−(y− ν1

3 )2)
ν3x2+ 2

3 ν1xy−ν2x−y+
ν1
3



Characteristic polynomial

Orbit data determines the characteristic polynomial P(λ) of
f ∗ : H2(X ,Z)→ H2(X ,Z).

Bedford and Kim [BK1] have computed explicitly for any orbit
data n1, n2, n3, σ.

P(λ) = λ1+Σnjp(
1

λ
) + (−1)ordσp(λ),

where
p(λ) = 1− 2λ+

∑
j=σj

λ1+nj +
∑
j 6=σj

λnj (1− λ).



Characteristic polynomial for orbit data n1, n2, n3, σ

(case id) σ = id .

P(λ) = (λ− 2)λn1+n2+n3 + λn1+n2 + λn2+n3 + λn3+n1

− λn1+1 − λn2+1 − λn3+1 + 2λ− 1.

(case tr) σ is a transposition (σ(1) = 2, σ(2) = 1, σ(3) = 3).

P(λ) = (λ− 2)λn1+n2+n3 + λn1+n2 + (λ− 1)(λn1+n3 + λn2+n3 )

−(λ− 1)(λn1 + λn2 ) + λn3+1 − 2λ+ 1.

(case cy) σ is a cyclic permutation (σ(1) = 2, σ(2) = 3, σ(3) = 1).

P(λ) = (λ− 2)λn1+n2+n3 + (λ− 1)(λn1+n2 + λn2+n3 + λn3+n1 )

+(λ− 1)(λn1 + λn2 + λn3 ) + 2λ− 1.



Orbit data to parameters

From orbit data (n1, n2, n3),σ, parameters a1, a2, a3 are
determined by the followings. To simplify the computations, the
Picard coordinate of the fixed point is fixed to 1

3 .

a1 + a2 + a3 =
1

λ
− 1.

aσ(i) −
1

3
= λni−1(bi −

1

3
),

bi −
1

3
= λ · (ai −

1

3
) + λ− 1,

for i = 1, 2, 3.

These equations have a solution iff P(λ) = 0 (assuming λ is not
a root of unity).



Picard coordinate of indeterminate points

(case id) σ = id .

ai = −λ
ni−1(λ− 1)

λni − 1
+

1

3
(i = 1, 2, 3).

(case tr) σ = (1, 2)

ai = −λ
nj−1(λni + 1)(λ− 1)

λni+nj − 1
+

1

3
((i , j) = (1, 2), (2, 1)).

ak = −λ
nk−1(λ− 1)

λnk − 1
+

1

3
(k = 3).

(case cy) σ = (1, 2, 3)

ai = −λ
nk−1(λnj (λni + 1) + 1)(λ− 1)

λni+nj+nk − 1
+

1

3

((i , j , k) = (1, 2, 3), (2, 3, 1), (3, 1, 2)).



Indeterminate points

(case C) caspidal cubic curve {y = x3} :

p+
i = (ai , a

3
i ), i = 1, 2, 3,

p−i = (bi , b
3
i ), i = 1, 2, 3.

(case LI) three lines {x(x2 − 1) = 0}, each line mapped to itself.

p+
1 = (0,− 1

2
a1), p+

2 = (1, a2), p+
3 = (−1, a3).

p−1 = (0,− 1

2
b1), p−2 = (1, b2), p−3 = (−1, b3).



Indeterminate points

(case LT) three lines {x(x2 − 1) = 0}, {x = ±1} mapped to each
other.

p+
1 = (0,− 1

2
a1), p+

2 = (1, a2), p+
3 = (−1, a3).

p−1 = (0,− 1

2
b1), p−2 = (1, b3), p−3 = (−1, b2).

(case LC) three lines {x(x2 − 1) = 0}, mapped cyclically.

p+
1 = (0,− 1

2
a1), p+

2 = (1, a2), p+
3 = (−1, a3).

p−1 = (0,− 1

2
b3), p−2 = (1, b1), p−3 = (−1, b2).



Indeterminate points

(case QQ) conic {xy = 1} and a tangent line {x = 0}, each mapped
to itself.

p+
1 = (a1, a

−1
1 ), p+

2 = (a2, a
−1
2 ), p+

3 = (0,−a3).

p−1 = (b1, b
−1
1 ), p−2 = (b2, b

−1
2 ), p−3 = (0,−b3).

(case QL) conic {xy = 1} and a tangent line {x = 0}, mapped to
each other.

p+
1 = (a1, a

−1
1 ), p+

2 = (a2, a
−1
2 ), p+

3 = (a3, a
−1
3 ).

p−1 = (b1, b
−1
1 ), p−2 = (b2, b

−1
2 ), p−3 = (b3, b

−1
3 ).



Determinant and Eigen meromorphic form

In our cases of cubic curve, each component of regular part is
isomorphic to C. Automorphism f : S → S restricted to the
invariant cubic curve is an ”affine” map. The ”derivative” D(f |C )
is called the determinant of f .

Meromorphic (1, 1)-form η with pole along the invariant curve
C is mapped to a scaler multiple of η.

f ∗η = λ(f )η.

Theorem
D(f |C ) = λ(f ).

λ(f ) is also called the determinant of f . If p ∈ S \ C is a
periodic point of period k , then

detDf kp = λ(f )k .



3. Invariant line



Attracting invariant line

In the dissipative case, (0 < λ < 1), the determinant with
respect to the two-form η is equal to λ.

If there is an invariant curve, disjoint from the cubic curve, and
the intrinsic dynamics in the extra invariant curve is neutral, then
this extra curve must be an attractor, since η is regular in S \ C .

According to [DJS], invariant curve must be a tree of genus 0,
if it is not contained in the cubic curve.



Invariant curve

Theorem. (Diller-Jackson-Sommese 2007)
Let f : S → S be an algebraically stable map with λf > 1, and

suppose that C = f (C ) is a connected curve with g(C ) = 1.
Then by contracting finitely many curves, one may further arrange
the following.

(1) C ∼ −KS is an anticanonical divisor.
(2) I (f n) ⊂ C for every n ∈ Z.
(3) Any connected curve strictly contained in C has genus zero.
(4) If W is a connected f -invariant curve not completely

contained in C , then W has genus zero, is disjoint
from C , and is equal to a tree of smooth rational curves,
each with self-intersection −2.

Rem. Here λf means the first dynamical degree of f .



Example : (case C) orbit data (3,4,5), id, diagonal slice



Attracting invariant line with irrational(?) rotation, real
slice



Attracting invariant line with irrational(?) rotation



Invariant line (necessary condition)

If there exists an invariant line disjoint from the anticanonical
cubic curve, it passes through three points to be blown up, one of
which is an indeterminate point of the base birational map.

The sum of the Picard coordinates of the three blowup points
vanishes.

The intersection of the invariant line and a component of the
anticanonical curve, counted as points in P2, must be equal to the
degree of the component.

This line necessarily contains two fixed points.
( Our automorphism has four fixed points.)



Following cases are inadequate.

(case LI) three lines passing through a point, each line mapped
to itself ⇒ antocanonical cubic curve contains four fixed points.

(case LT) three lines passing through a point, two of them are
swapped ⇒ automorphism cannot have an invariant line
intersecting the three lines.

(case QQ) conic and a tangent line, each component mapped
itself ⇒ automorphism cannot have an invariant line intersecting
two components.



Invariant line (sufficient condition)

Suppose that the anticanonical cubic curve of our surface
automorphism is one of the followings.

(case C) caspidal cubic curve
(case LC) three lines passing through a point permuted

cyclically
(case QL) conic and a tangent line permuted by the

automorphism

Theorem. In the case of orbit data (3, n2, n3) with
σ(1) = 1, the surface automorphism has an invariant line passing
through three blowup points p+

1 , p
−
1 , and f (p−1 ).

Rem. In this case, the self-intersection of the strict transform
of this invariant line is −2.



(Cuspidal) Orbit data (3,4,5),id , real slice



Example: super exotic rotation domain (?)



Proof. Let p+
1 = (a1, a

3
1), p−1 = (b1, b

3
1), and f (p−1 ) = (c1, c

3
1 ).

Then,

a1 = −d2(d − 1)

d3 − 1
+

1

3
, b1 = − d − 1

d3 − 1
+

1

3
, c1 = −d(d − 1)

d3 − 1
+

1

3
.

Immediately we see that a1 + b1 + c1 = 0. Hence three points
p+

1 , p
−
1 , f (p−1 ) are on a line. Let L denote this line. As L passes through

the indeterminate point p+
1 , its image f (L) is a line. Since f (L) passes

through p+
1 = f 2(p−1 ) and f (p−1 ), it coincides with L.

In our case, L is disjoint from the invariant cubic curve.

Invariant line intersecting the cubic curve will be treated later.



Line of periodic points

Theorem. In the case of orbit data (3, 3, n), σ = id . or
σ = (1, 2), with n ≥ 4, the surface automorphism f has an
invariant line of period-three periodic points.

Proof. Similarly as in the case of (3, n2, n3), σ(1) = 1, f has an
invariant line, say L, passing through points p+

1 , p−1 , and f (p−1 ). In this
case we have p+

2 = p+
1 and p−2 = p−1 . The image f (p+

1 ) is the line
passing through p−2 and p−3 . The point in the strict transform of L must
be mapped to a point in the same line. So p+

1 is mapped to p−2 . This
shows that the Möbius transformation f |L has a periodic point of period
3. Consequently, all the points of L, except for two fixed points, are
periodic points of period 3.



Orbit data (3,3,4), id, P× D(?), t3, rank 1.



Orbit data (3,3,4), id, P, tr , attractor, diagonal slice



4. Invariant conic



Attracting quadratic curve

There are cases where the attractor is an invariant quadratic
curve, disjoint from the cubic curve.

Following pictures are in the case of caspidal cubic curve.
Invariant quadratic curves exist in other cases, too.



Orbit data (2,4,4), transposition (1,2), diagonal slice



Attracting quadratic curve with irrational(?) rotation, real
slice



Invariant conic (necessary condition)

If there is an invariant quadratic curve, disjoint from the
anticanonical cubic curve, it must pass trough 6 points to be blown
up, two of which are indeterminate points of the base birational
map.

The sum of the Picard coordinates of these 6 blowup points
vanish.

The number of blowup points in each component of the
anticanonical curve must be 2 times the degree of the component.

The invariant quadratic curve contains two fixed points.



Invariant quadratic curve

Suppose the anticanonical curbic curve of surface automorphism
is a caspidal cubic curve.

Theorem. In the case of orbit data (2, 4, n) with
transposition (1,2), the surface automorphism has an invariant
quadratic curve passing through six blowup points
p+

1 , p
−
1 , p

+
2 , p

−
2 , f (p−2 ), f 2(p−2 ).



Caspidal, orbit data (2,4,4),tr, t3, real slice



Quadratic curve in rotation of rank 2(?)



Proof. Quadratic curve is mapped to a quadratic curve by
Cremona transformation if the quadratic curve passes through exactly
two indeterminate points. If there exists a quadratic curve passing
through these 6 points, its image by f is a quadratic curve, since p+

1 and
p+

2 are indeterminate points. Points p+
1 = f (p−1 ), p+

2 = f 3(p−2 ), f (p−2 ),
f 2(p−2 ) are in the image quadratic curve. The line passing through p+

1

and p+
3 , which contains another point in the quadratic curve, is mapped

to p−2 . Hence p−2 is in the image of the quadratic curve. Similarly, p−1 is
in the image, too. The image quadratic curve must be the same
quadratic curve, since 6 points determine the quadratic curve.

So, we only need to prove the existence of a quadratic curve passing
through the 6 points.



Let

a1 = −d(d4 + 1)(d − 1)

d6 − 1
+

1

3
, a2 = −d3(d2 + 1)(d − 1)

d6 − 1
+

1

3
,

b1 = − (d2 + 1)(d − 1)

d6 − 1
+

1

3
, b2 = − (d4 + 1)(d − 1)

d6 − 1
+

1

3
,

c1 = −d(d2 + 1)(d − 1)

d6 − 1
+

1

3
, c2 = −d2(d2 + 1)(d − 1)

d6 − 1
+

1

3
.

These are the x-coordinates of the blowup points.

p+
1 = (a1, a

3
1), p−1 = (b1, b

3
1),

p+
2 = (a2, a

3
2), p−2 = (b2, b

3
2),

f (p−2 ) = (c1, c
3
1 ), f 2(p−2 ) = (c2, c

3
2 ).

Immediately, we see that

a1 + a2 + b1 + b2 + c1 + c2 = 0.



Consider polynomial of degree 6 :

P(z) = (z − a1)(z − a2)(z − b1)(z − b2)(z − c1)(z − c2)

= z6 + A4z
4 + A3z

3 + A2z
2 + A1z + A0.

Let Q(x , y) be a quadratic polynomial defined by

Q(x , y) = y2 + A4xy + A3y + A2x
2 + A1x + A0.

The 6 points p+
1 , p

−
1 , p

+
2 , p

−
2 , f (p−2 ), f 2(p−2 ) satisfy Q(x , y) = 0.

Hence the quadratic curve Q(x , y) = 0 passes through these 6 points.

We conclude that quadratic curve {Q(x , y) = 0} is invariant under f .

Rem. The strict transform of this quadratic curve has
self-intersection −2.



Other cases of invariant conic

There are other cases.

Theorem In the case of three lines passing through a point,
permuted by transposition η = (1, 2), with orbit data
(4, n, 2),σ = id ., the surface automorphism has an invariant
quadratic curve passing through six blowup points
p−1 , f (p−1 ), f 2(p−1 ), p+

1 , p
−
3 , p

+
3 .

Theorem In the case of conic and a tangent line, permuted
by transposition η = (1, 2), with orbit data (1, 5, n),σ = (1, 2)., the
surface automorphism has an invariant quadratic curve passing
through six blowup points p+

1 , p
−
2 , f (p−2 ), f 2(p−2 ), f 3(p−2 ), p+

2 .



Still other cases of invariant conic

Theorem In the case of caspidal anticanonical curve, with
orbit data (4, 2, n),σ = id ., the surface automorphism has an
invariant quadratic curve passing through six blowup points
p−1 , f (p−1 ), f 2(p−1 ), p+

1 , p
−
2 , p

+
2 .

In this case the quadratic curve consists of two lines passing
through a fixed point and permuted by the automorphism.

Theorem In the case of caspidal cubic curve, with orbit
data (1, 5, n),σ = (1, 2)., the surface automorphism has an
invariant quadratic curve passing through six blowup points
p+

1 , p
−
2 , f (p−2 ), f 2(p−2 ), f 3(p−2 ), p+

2 .
In this case the quadratic curve consists of two lines passing

through a fixed point and permuted by the automorphism.



Quadratic curve in a rotation domain of rank 2 (?)



Invariant curves of self intersectin −1

There are many cases of surface automorphisms having an
invariant line, an invariant quadratic curve or both of them with
self intersection −1, which can be blown down.

There is a case where three disjoint lines permuted cyclically,
disjoint from the anticanonical cubic curve in the case of a conic
with a tangent line, each component mapped to itself, with orbit
data (2, 3, 7), σ = id .



Thank you !
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