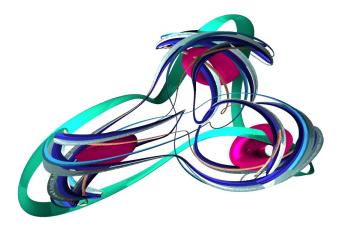
Exotic Rotation Domains in Complex Hénon Dynamics



Shigehiro Ushiki

Mar. 27, 2023

Abstract

Abstract : Fatou component of complex dynamical system is called a rotation domain if the dynamics in the set is quasiperiodic. The closure of the orbit of almost any initial point is a circle or a torus. We say a rotation domain is exotic if the domain is not simply connected. In this talk, we explain how to observe such object numerically.

Contents

- 0. Introduction
- 1. Rotation domain
- 2. Reversible dynamics
- 3. Exotic rotation domain
- 4. Surface automorphism

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Introduction

0. Introduction

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ = のへぐ

Volume preserving complex Hénon map

In this note, we consider complex Hénon map $h: \mathbb{C}^2 \to \mathbb{C}^2$, defined by

$$h(x,y) = (x^2 + c - ay, x).$$

Its differential map is given by

$$dh = \left(egin{array}{cc} 2x & -a \ 1 & 0 \end{array}
ight).$$

The (complex) determinant is given by

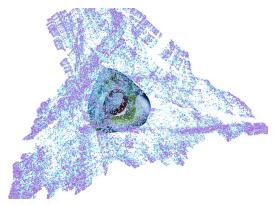
$$\det(dh) = a,$$

And the volume in \mathbb{C}^2 is multiplied by $|a|^2$,

$$\operatorname{vol}(h(U)) = |a|^2 \operatorname{vol}(U).$$

Hénon map h is said volume preserving if |a| = 1.

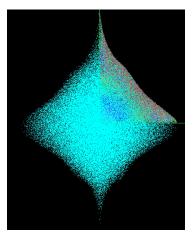
Invariant sets for volume preserving Hénon map



In this picture, many points in the Julia set of a volume preserving complex Hénon map, with several bounded orbits are plotted. These bounded orbits seem to belong to a Siegel disk.

Siegel Reinhardt domain

Siegel disk can be mapped holomorphically to its linear model, a Reinhardt domain.



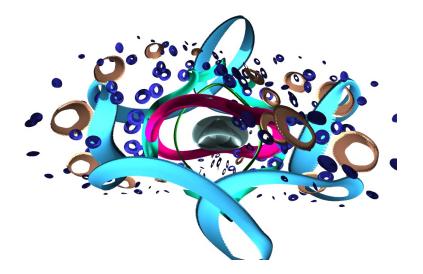
Siegel disk has a fixed (or periodic) point of the dynamical system.

Rotation domain without periodic point is called an **exotic** rotation domain.

We try to explain how to observe such domains, by means of numerical computation.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Orbits in rotation domains



▲□▶▲□▶▲≡▶▲≡▶ ≡ のQ⊙

Rotation domain

1. Rotation domain

Fatou set (volume preserving case)

Let $f : \mathbb{C}^2 \to \mathbb{C}^2$ be a volume preserving complex Hénon map.

A point $p \in \mathbb{C}^2$ is a point of the **forward Fatou set** F_f^+ if there exists an open neighborhood U of p on which the sequence $\{f^n\}_{n\in\mathbb{N}}$ forms a normal family of holomorphic mappings from Uto \mathbb{C}^2 .

Define the **backward Fatou set** F_f^- and the **Fatou set** F_f by

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

$$F_f^- = F_{f^{-1}}^+, \quad F_f = F_f^+ \cap F_f^-.$$

REMARK. It is known ([FM], 1989) that $F_f = F_f^+ = F_f^-$.

Rotation domain

Suppose Ω is a connected component of Fatou set F_f with $f(\Omega) = \Omega$. Define the set of all limits of convergent subsequences \mathcal{G} by

$$\mathcal{G} = \left\{ g = \lim_{n_j \to \infty} f^{n_j} : \Omega \to \overline{\Omega} \right\}.$$

If $g = \lim_{n_j \to \infty} f^{n_j}$ is such a limit, then g must preserve volume, and thus it is locally invertible. It follows that $g : \Omega \to \Omega$.

It is known that \mathcal{G} is a compact Lie group, by a theorem of H. Cartan. The connected component \mathcal{G}_0 of the identity must be a (real) torus.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

In the volume preserving Hénon map case,

THEOREM. (Bedford-Smilie, 1991). \mathcal{G}_0 is isomorphic to \mathbb{T}^{ρ} with $\rho = 1$ or 2.

Such a domain is called a **rotation domain**, and we refer to ρ as the **rank** of the rotation domain.

Reinhardt domain

Let $R \subset \mathbb{C}^2$ be a connected open set. We say that R is a **Reinhardt domain** if $(e^{i\theta}z, e^{i\phi}w) \in R$ for all $(z, w) \in R$ and all $\theta, \phi \in \mathbb{R}$.

If Ω is a rank 2 rotation domain, then the \mathcal{G} -action on Ω may be conjugated to the standard linear action on \mathbb{C}^2 .

THEOREM. (Barret-Bedford-Dadok, 1989) There are a Reinhardt domain $R \subset \mathbb{C}^2$, a linear map $L : (x, y) \mapsto (\alpha x, \beta y)$, $|\alpha| = |\beta| = 1$, and a biholomorphic map $\psi : \Omega \to R$ such that $\psi \circ f = L \circ \psi$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Siegel's theorem (*n*-dimensional case)

 $(\lambda_1, \cdots, \lambda_n) \in \mathbb{C}^n$ is said to satisfy a **multiplicative** diophantian condition if there are positive constants C and ν , such that

 $|\lambda_1^{k_1}\cdots\lambda_n^{k_n}-\lambda_s|\geq C(k_1+\cdots+k_n)^{-\nu}$

for $s = 1, \dots, n$, and $k_1, \dots, k_n \ge 0$, with $k_1 + \dots + k_n \ge 2$.

Let $f : \mathbb{C}^n \to \mathbb{C}^n$ be holomorphic near a fixed point $O \in \mathbb{C}^n$, and let $\lambda_1, \dots, \lambda_n$ denote the eigenvalues of df_O .

THEOREM. (Siegel, 1942)

If these eigenvalues satisfy a multiplicative diophantian condition, then f is holomorphically linearizable near the fixed point.

REMARK. Siegel's theorem was for n = 1. According to V. Arnold, higher dimensional cases was a "folklore theorem" for thirty years when he published a proof in textbook ([A2],1978). A proof of this theorem was also included in Sternberg ([St], 1961). There are sharper linearizability conditions. See Bryuno ([B],1965), Yoccoz ([Y],1984).

Siegel disk

Suppose $|\lambda_s| = 1$, $s = 1, \dots, n$, and a multiplicative diophantian condition or the Bryuno condition holds.

The maximal linearizable neighborhood of the fixed point is called a **Siegel disk**.

The dynamics in the Siegel disk is holomorphically conjugate to the linear part of f at the fixed point.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The image, by the conjugacy, of the Siegel disk is invariant under the linear map df_O .

This linearising map is called a **Siegel linearizer**.

Siegel uniformizer

Open neighborhood of the origin invariant under diagonal linear map of eigenvalues λ_s , $|\lambda_s| = 1$, $s = 1, \dots, n$ is a Reinhardt domain.

The inverse map from the image domain to Siegel disk is holomorphic.

Our Reinhardt domain must be a maximal domain of holomorphy of this inverse map.

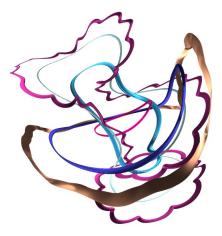
It is a logarithmically convex complete Reinhardt domain.

Let Ω be a Siegel disk, and let $\psi : \Omega \to R$ be the Siegel linearizer onto Reihardt domain R.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

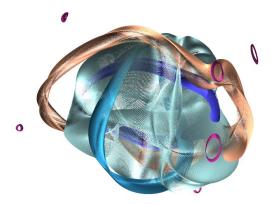
Its inverse map $\varphi = \psi^{-1} : R \to \Omega$ is called a **Siegel** uniformizer.

Some orbits in a Siegel disk



▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Some orbits in a Siegel disk



▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Complete Reinhardt domain (2-dimensional case)

A Reinhardt domain $R \subset \mathbb{C}^2$ is said **complete** if $(x, y) \in R$ for all $(z, w) \in R$ and all |x| < |z|, |y| < |w|.

The first quadrant part *B* of the real slice $R \cap \mathbb{R}^2$ is called the **base** of *R*.

Siegel disk has a fixed (or periodic) point.

The Reinhardt domain isomorphic to Siegel disk is a complete and logarythmically convex Reinhardt domain.

A rotation domain without periodic point will be called an **exotic rotation domain**.

Reinhardt domain for exotic rotation domain is not complete.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Exotic rotation domain ?

Reversible dynamics

2. Reversible dynamics

Reversible maps

Let $\tau : \mathbb{C}^2 \to \mathbb{C}^2$ be the involution defined by $\tau(x, y) = (\bar{y}, \bar{x})$, called **swap conjugacy**.

We say that a map f is τ -reversible if $\tau \circ f \circ \tau = f^{-1}$.

$$\begin{array}{cccc} \mathbb{C}^2 & \stackrel{f}{\longrightarrow} & \mathbb{C}^2 \\ \updownarrow \tau & & \updownarrow \tau \\ \mathbb{C}^2 & \xleftarrow{f} & \mathbb{C}^2. \end{array}$$

Conjugate diagonal $\Delta' = \{(x, \bar{x}) | x \in \mathbb{C}\}$ is the set of fixed points of involution τ .

Reversible Hénon map

THEOREM. A (quadratic) Hénon map is τ -reversible if and only if it has the form

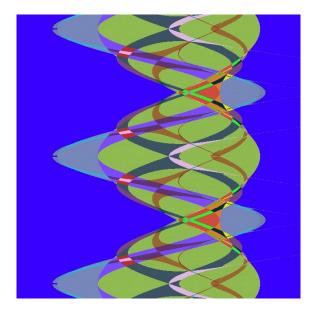
$$f(x,y) = (\beta(x^2 + \alpha) - \beta^2 y, x)$$

where $\alpha \in \mathbb{R}$ and $|\beta| = 1$.

In fact, set $X = \beta(x^2 + \alpha) - \beta^2 y$, Y = x, then we have x = Y, $y = \overline{\beta}(Y^2 + \alpha) - \overline{\beta}^2 X$.

Hénon map $h(z, w) = (z^2 + c - aw, z)$ is conjugate to f by change of coordinates $(z, w) = (\beta x, \beta y)$ with $a = \beta^2, c = \alpha \beta^2$.

Parameter space of τ -reversible Hénon map, $(\alpha, \arg(\beta))$



▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > のへで

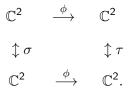
Swap conjugacy au and complex conjugacy σ

Let $\sigma : \mathbb{C}^2 \to \mathbb{C}^2$ be the anti-holomorphic involution defined by the complex conjugation $\sigma(p,q) = (\bar{p},\bar{q})$.

Let $\phi : \mathbb{C}^2 \to \mathbb{C}^2$ be a holomorphic isomorphism defined by

$$\phi(p,q) = (p + iq, p - iq).$$

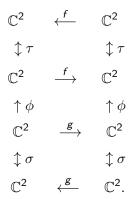
PROPOSITION. Involutions τ and σ are conjugate by ϕ .



 $\label{eq:proposition} \begin{array}{ll} \operatorname{Proposition} & \phi \text{ maps the real axis } \mathbb{R}^2 \text{ onto the conjugate } \\ \operatorname{diagonal} \Delta'. \end{array}$

τ -reversibility and σ -reversibility

PROPOSITION. If f is τ -reversible, then $g = \phi^{-1} \circ f \circ \phi$ is σ -reversible.



Reversible linear map

 $\begin{array}{ll} \mbox{Proposition.} & \mbox{The eigenvalues of σ-reversible 2×2 matrix} \\ \mbox{can be written as} & \end{array}$

 $\delta\gamma$ and $\delta\gamma^{-1}$,

with $|\delta| = 1$, and $|\gamma| = 1$ or $\gamma \in \mathbb{R}$.

PROOF. Let *L* be a σ -reversible 2 × 2 matrix. As $\overline{L} = L^{-1}$, $|\det L| = 1$. Let $\det(L) = \delta^2$, and let $A = \delta^{-1}L$. Then $\det(A) = 1$, and $\overline{A} = A^{-1}$. Hence it follows that trace $(A) \in \mathbb{R}$.

REMARK. Same result holds for τ -reversible matrix.

Involution and matrix

A A^{-1} -A \bar{A} realreversiblepure imaginary ^{t}A symmetricorthogonalskew symmetric A^* Hermiteunitaryskew Hermite

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Real eigenvector

PROPOSITION. Simple eigenvalue λ , with $|\lambda| = 1$, of σ -reversible 2 × 2 matrix *L* has a real eigenvector $v \in \mathbb{R}^2$.

PROOF. Without loss of generality, we can assume v = (1, q), with $Lv = \lambda v$. By σ -reversibility of L, we have

$$L\bar{v} = \overline{L}v = \overline{L^{-1}v} = \overline{\lambda^{-1}v} = \overline{\overline{\lambda}v} = \lambda\overline{v}.$$

Since the eigenspace of λ is spanned by v, we conclude $v = \overline{v} \in \mathbb{R}^2$.

REMARK. Same result holds for τ -reversible matrix, with \mathbb{R}^2 replaced by Δ' .

Reversible dynamics

Let $G : \mathbb{C}^2 \to \mathbb{C}^2$ be a σ -reversible biholomorphic diffeomorphism with fixed point $P \in \mathbb{R}^2$, G(P) = P.

Let $L = dG_P : T_P \rightarrow T_P$ be the differential map at the fixed point.

Then L is σ -reversible, too. (Use real eigenvectors as the basis of T_{P} .)

Suppose the fixed point P is a center of Siegel disk Ω and

$$\varphi: R \to \Omega$$

is a Siegel uniformizer satisfying

 $G \circ \varphi = \varphi \circ L$ and $d\varphi_{(0,0)}(\mathbb{R}^2) = \mathbb{R}^2 \subset T_P.$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

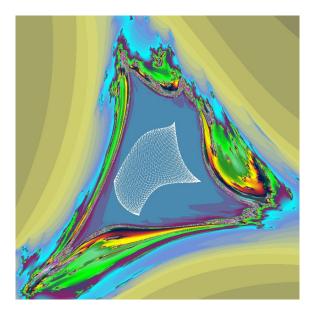
Real Sigel uniformizer

THEOREM. Siegel uniformizer φ induces a real analytic diffeomorphism of $R \cap \mathbb{R}^2$ onto $\Omega \cap \mathbb{R}^2$.

PROOF. We denote $\overline{G} = \sigma \circ G \circ \sigma$, $\overline{L} = \sigma \circ L \circ \sigma$, and $\overline{\varphi} = \sigma \circ \varphi \circ \sigma$. (These are holomorphic.) From $G \circ \varphi = \varphi \circ L$, we have $\varphi \circ L^{-1} = G^{-1} \circ \varphi$. By σ -reversibility, we have $L^{-1} = \overline{L}$ and $G^{-1} = \overline{G}$. And by taking the σ -conjugacy, we get $\overline{\varphi} \circ L = G \circ \overline{\varphi}$. Finally, $d\overline{\varphi}_{(0,0)}|_{\mathbb{R}^2} = d\varphi_{(0,0)}|_{\mathbb{R}^2}$ imply $\overline{\varphi} = \varphi$ by the uniqueness of Siegel uniformizer.

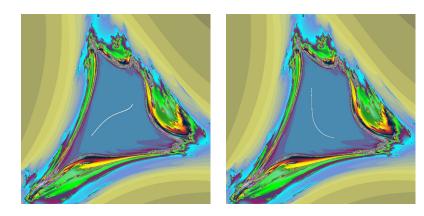
COROLLARY. Siegel uniformizer of a fixed point in Δ' for τ -reversible map induces a real analytic diffeomorphism of $R \cap \mathbb{R}^2$ onto $\Omega \cap \Delta'$.

$\Delta'\text{-slice}$ of a Siegel disk



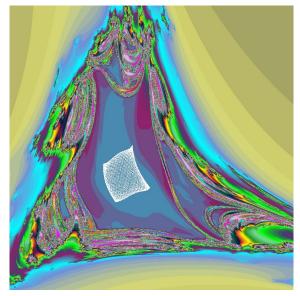
・ロト・日本・日本・日本・日本・日本

$\Delta'\text{-slice}$ of a Siegel disk



▲ロト ▲母 ト ▲目 ト ▲目 ト → 日 → のへの

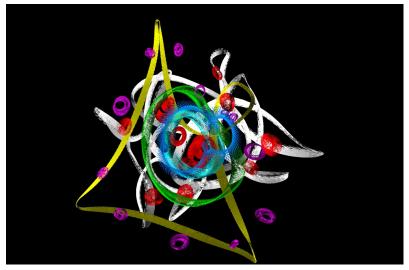
Slice of another Siegel disk



 $\alpha = -0.2101699, \beta = \exp(0.7694274i)$

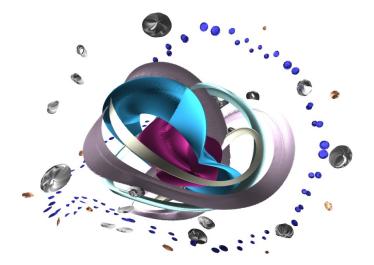
(ロ)、(型)、(E)、(E)、 E

Some orbits near the Siegel disk



$\alpha = -0.2101699, \beta = \exp(0.7694274i)$

Some orbits near a Siegel disk



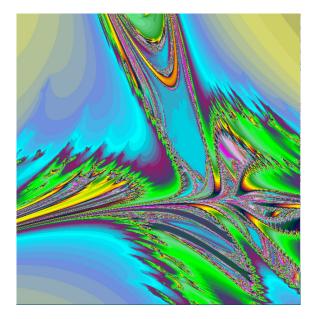
▲□▶▲圖▶▲圖▶▲圖▶ = ● のQの

Exotic rotation domain

3. Exotic rotation domain

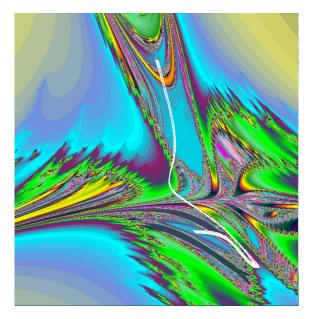
▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Conjugate diagonal slice for $\alpha = \text{0.269423}, \beta = e^{1.02773i}$



・ロト・日本・日本・日本・日本・日本

An Orbit in a rotation domain



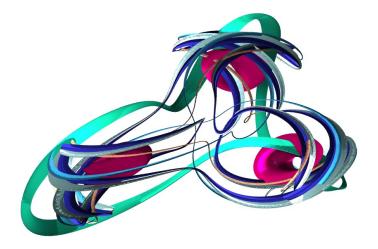
・ロト・西ト・西ト・西ト・日・ シック

Multiply connected Reinhardt domain could be a model of rotation domain of rank 2.

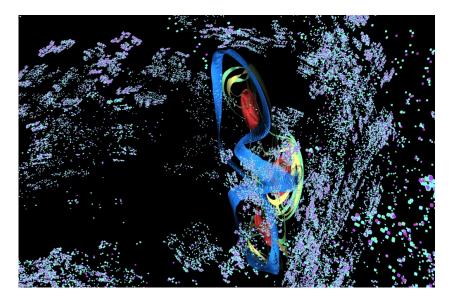
THEOREM(Bedford). Let f be reversible by τ , and let $\Omega = f(\Omega)$ be a rank 2 Fatou component with $\Omega \cap \Delta' \neq \emptyset$. If Ω contains a fixed point, then $\Omega \cap \Delta'$ is connected; otherwise it has exactly two connected components.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

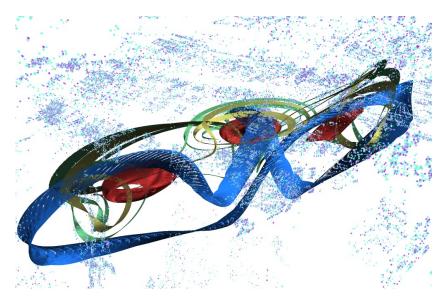
Orbits in rotation domains



Orbits in rotation domains and points in Julia set

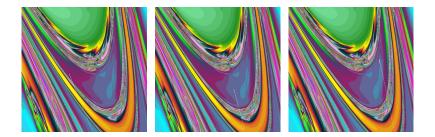


Same as previous

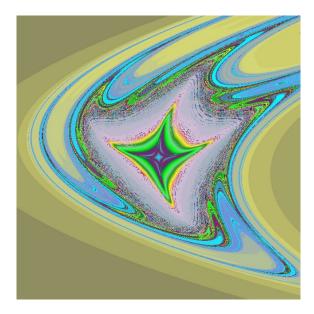


Same as previous, another projection

 Δ' -slice

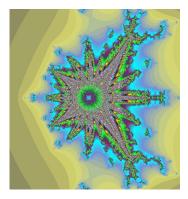


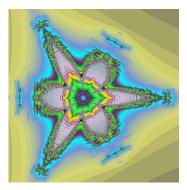
Real volume preserving Hénon map, $\alpha = 0, \beta = 1$.



▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

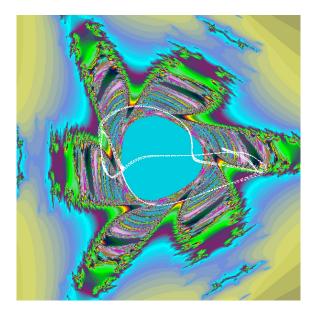
Real volume preserving Hénon map, Δ slice and Δ 'slice





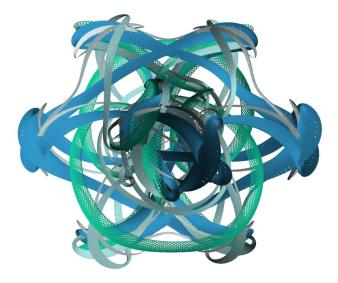
(日)

Conjugate diagonal slice for $\alpha=\mathbf{0},\beta=e^{0.005i}$

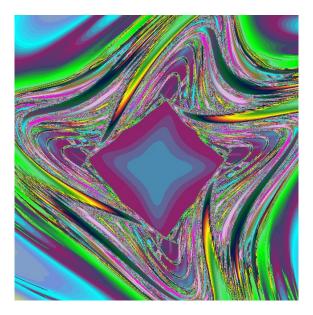


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - のへで

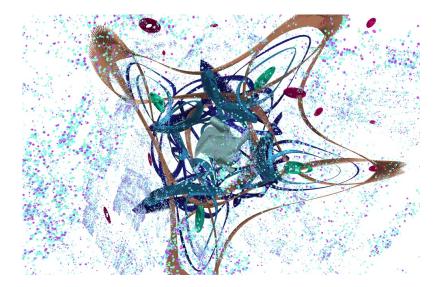
Orbits in a rotation domain



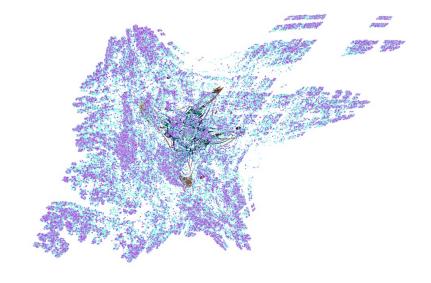
Real slice



Rotaion domains and Julia set



Same as above

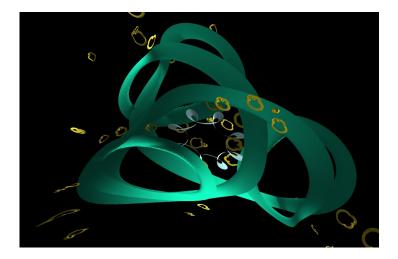


Surface automorphism

4. Surface automorphism

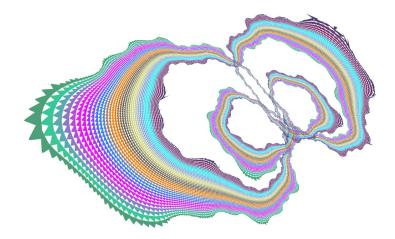
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Orbits in a rotation domain of surface automorphism



◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Attracting Herman ring

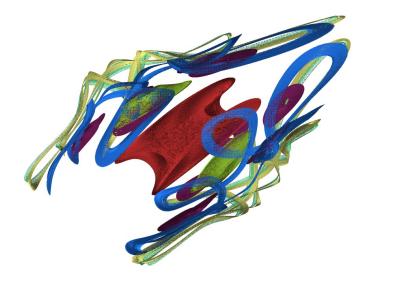


Thank you !

Thank you !

▲口 ▶ ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 二 臣

Periodic rotation domain



[A1] V. Arnold, Small denominators I, on the mappings of the circumference into itself, Amer. Math. Soc. Transl., **46**(1965), 213-284.

[A2] V. Arnold, Chapitres supplémentaires de la théorie des équations différentielles ordinaires, Editions Mir, MOSCOU, 1978. [BBD] D. Barret, E. Bedford and J. Dadok, \mathbb{T}^n -actions on holomorphically separable complex manifolds. Math. Z. **202**(1989), 65-82.

[BK1] E. Bedford and KH. Kim. Periodicities in Linear Fractional Recurrences: Degree growth of birational surface maps, Mich. Math. J. **54**(2006), 647-670.

[BK2] E. Bedford and KH. Kim. Dynamics of Rational Surface Automorphisms: Linear Fractional Recurrences. J. Geomet. Anal. **19**(2009), 553-583.

[BS1] E. Bedford and J. Smilie. Polynomial diffeomorphisms of \mathbb{C}^2 : currents, equilibrium measures and hyperbolicity. Invent. Math. **103**(1991), 69-99.

[BS2] E.Bedford and J. Smilie. Polynomial diffeomorphisms of \mathbb{C}^2 .

II : stable manifolds and recurrence. J. Amer. Math. Soc.

4(1991), no. 4, 657-679.

[Br] A. D. Bryuno, Convergence of transformations of differential equations to normal forms. Dokl. Acad. Nauk USSR **165**(1965), 987-989.

[BW] O. Biham and W. Wenzel, Unstable orbits and the symbolic dynamics of the conmlex Hénon map, Physical Review A, **42**(1990), 4639-4646.

[C1] S. Cantat. Dynamique des automorphisms des surfaces projectives complexes. C.R. Acad. Sci. Paris Sér I Math., **328**(1999), 901-906.

[C2] S. Cantat. Dynamique des automorphismes des surfaces K3. Acta Math., **187**(2001),1-57.

[C3] S. Cantat. Dynamics of automorphisms of compact complex surfaces. "Frontiers in Complex Dynamics – In Celebration of John Milnor's 80th birthday", Eds. A.Bonifant, M. Lyubich, S. Sutherland, Prinston University Press, Princeton and Oxford, 463-509, 2014

[D] J. Diller. Cremona transformations, surface automorphisms, and plane cubics. Michigan Math. J. 60(2011), no. 2, 409-440, with an appendix by Igor Dolgachev.

[FM] S. Friedland and J. Milnor, Dynamical properties of plane polynomial automorphisms. Ergodic Theory and Dynamical Systems **9** (1989), no.1, 67-99.

[H] M. Herman, Sur la conjugation différentiables des difféomorphismes du cercle à les rotations, Pub. I. H. É. S. **49**(1979), 5-233.

[M1] C. T. McMullen. Dynamics on K3 surfaces Salem numbers and Siegel disks. J. reine angew. Math. 545(2002), 201-233.
[M2] C. T. McMullen. Dynamics on blowups of the projective plane. Publ. Sci. IHES, 105(2007), 49-89.
[N] M. Nagata. On rational surfaces. II. Mem. Coll. Sci. Univ. Kyoto Ser. A Math., 33(1960/1961), 271-293.
[Si] C. L. Siegel, Iteration of analytic functions, Ann. of Math.

43(1942), 607-612.

[St] S. Sternberg, Infinite Lie groups and the formal aspects of dynamical systems. J. Math. Mech. 10 (1961), 451-474. [Ue] T. Uehara. Rational surface automorphisms with positive entropy. Ann. Inst. Fourier (Grenoble) 66(2016), 377-432. [Us1] S. Ushiki, Sur les liaisons-cols des systèmes dynamiques analytiques, C. R. Acad. Sci. Sér. A. 291(1980), 447-449. [Us2] S. Ushiki, Unstable manifolds of analytic dynamical systems, Journal of Mathematics of Kyoto University, **21**(1981), 763-785. [Y] J.-C. Yoccoz, Conjugation differéciable des difféomorphisms du cercle dont le nombre de rotation vérifie une condition diophantienne, Ann. Sci. E. N. S. Paris, 17(1984), 333-359. [Z] E. Zehnder, A simple proof of a generalization of a theorem by C. L. Siegel, in "Geometry and Topology III", edit. do Carmo and Palis, Lecture Notes Math. 597, Springer, 1977.