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Abstract

Abstract : Fatou component of complex dynamical system is
called a rotation domain if the dynamics in the set is quasiperiodic.
The closure of the orbit of almost any initial point is a circle or a
torus. We say a rotation domain is exotic if the domain is not
simply connected. In this talk, we explain how to observe such
object numerically.
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Introduction

0. Introduction



Volume preserving complex Hénon map

In this note, we consider complex Hénon map h : C2 → C2,
defined by

h(x , y) = (x2 + c − ay , x).

Its differential map is given by

dh =

(
2x −a
1 0

)
.

The (complex) determinant is given by

det(dh) = a,

And the volume in C2 is multiplied by |a|2,

vol(h(U)) = |a|2vol(U).

Hénon map h is said volume preserving if |a| = 1.



Invariant sets for volume preserving Hénon map

In this picture, many points in the Julia set of a volume
preserving complex Hénon map, with several bounded orbits are
plotted. These bounded orbits seem to belong to a Siegel disk.



Siegel Reinhardt domain

Siegel disk can be mapped holomorphically to its linear model,
a Reinhardt domain.



Exotic rotation domain

Siegel disk has a fixed (or periodic) point of the dynamical
system.

Rotation domain without periodic point is called an exotic
rotation domain.

We try to explain how to observe such domains, by means of
numerical computation.



Orbits in rotation domains



Rotation domain

1. Rotation domain



Fatou set (volume preserving case)

Let f : C2 → C2 be a volume preserving complex Hénon map.

A point p ∈ C2 is a point of the forward Fatou set F+
f if

there exists an open neighborhood U of p on which the sequence
{f n}n∈N forms a normal family of holomorphic mappings from U
to C2.

Define the backward Fatou set F−f and the Fatou set Ff by

F−f = F+
f −1 , Ff = F+

f ∩ F−f .

Remark. It is known ([FM], 1989) that Ff = F+
f = F−f .



Rotation domain

Suppose Ω is a connected component of Fatou set Ff with
f (Ω) = Ω. Define the set of all limits of convergent subsequences
G by

G =

{
g = lim

nj→∞
f nj : Ω→ Ω

}
.

If g = limnj→∞ f nj is such a limit, then g must preserve volume,
and thus it is locally invertible. It follows that g : Ω→ Ω.

It is known that G is a compact Lie group, by a theorem of H.
Cartan. The connected component G0 of the identity must be a
(real) torus.



Rank of a rotation domain

In the volume preserving Hénon map case,

Theorem. (Bedford-Smilie, 1991).
G0 is isomorphic to Tρ with ρ = 1 or 2.

Such a domain is called a rotation domain, and we refer to ρ
as the rank of the rotation domain.



Reinhardt domain

Let R ⊂ C2 be a connected open set. We say that R is a
Reinhardt domain if (e iθz , e iφw) ∈ R for all (z ,w) ∈ R and all
θ, φ ∈ R.

If Ω is a rank 2 rotation domain, then the G-action on Ω may
be conjugated to the standard linear action on C2.

Theorem. (Barret-Bedford-Dadok, 1989) There are a
Reinhardt domain R ⊂ C2, a linear map L : (x , y) 7→ (αx , βy),
|α| = |β| = 1, and a biholomorphic map ψ : Ω→ R such that
ψ ◦ f = L ◦ ψ.



Siegel’s theorem (n-dimensional case)

(λ1, · · · , λn) ∈ Cn is said to satisfy a multiplicative
diophantian condition if there are positive constants C and ν,
such that

|λk11 · · ·λknn − λs | ≥ C (k1 + · · · kn)−ν

for s = 1, · · · , n, and k1, · · · , kn ≥ 0, with k1 + · · ·+ kn ≥ 2.
Let f : Cn → Cn be holomorphic near a fixed point O ∈ Cn,

and let λ1, · · · , λn denote the eigenvalues of dfO .

Theorem. (Siegel, 1942)
If these eigenvalues satisfy a multiplicative diophantian condition,

then f is holomorphically linearizable near the fixed point.

Remark. Siegel’s theorem was for n = 1. According to V. Arnold,

higher dimensional cases was a “folklore theorem” for thirty years when

he published a proof in textbook ([A2],1978). A proof of this theorem

was also included in Sternberg ([St], 1961). There are sharper

linearizabilty conditions. See Bryuno ([B],1965), Yoccoz ([Y],1984).



Siegel disk

Suppose |λs | = 1, s = 1, · · · , n, and a multiplicative
diophantian condition or the Bryuno condition holds.

The maximal linearizable neighborhood of the fixed point is
called a Siegel disk.

The dynamics in the Siegel disk is holomorphically conjugate to
the linear part of f at the fixed point.

The image, by the conjugacy, of the Siegel disk is invariant
under the linear map dfO .

This linearising map is called a Siegel linearizer.



Siegel uniformizer

Open neighborhood of the origin invariant under diagonal linear
map of eigenvalues λs , |λs | = 1, s = 1, · · · , n is a Reinhardt
domain.

The inverse map from the image domain to Siegel disk is
holomorphic.

Our Reinhardt domain must be a maximal domain of
holomorphy of this inverse map.

It is a logarithmically convex complete Reinhardt domain.

Let Ω be a Siegel disk, and let ψ : Ω→ R be the Siegel
linearizer onto Reihardt domain R.

Its inverse map ϕ = ψ−1 : R → Ω is called a Siegel
uniformizer.



Some orbits in a Siegel disk



Some orbits in a Siegel disk



Complete Reinhardt domain (2-dimensional case)

A Reinhardt domain R ⊂ C2 is said complete if (x , y) ∈ R for
all (z ,w) ∈ R and all |x | < |z |, |y | < |w |.

The first quadrant part B of the real slice R ∩ R2 is called the
base of R.

Siegel disk has a fixed (or periodic) point.

The Reinhardt domain isomorphic to Siegel disk is a complete
and logarythmically convex Reinhardt domain.

A rotation domain without periodic point will be called an
exotic rotation domain.

Reinhardt domain for exotic rotation domain is not complete.



Exotic rotation domain ?



Reversible dynamics

2. Reversible dynamics



Reversible maps

Let τ : C2 → C2 be the involution defined by τ(x , y) = (ȳ , x̄),
called swap conjugacy.

We say that a map f is τ -reversible if τ ◦ f ◦ τ = f −1.

C2 f−→ C2

l τ l τ

C2 f←− C2.

Conjugate diagonal ∆′ = {(x , x̄)|x ∈ C} is the set of fixed
points of involution τ .



Reversible Hénon map

Theorem. A (quadratic) Hénon map is τ -reversible if and
only if it has the form

f (x , y) = (β(x2 + α)− β2y , x)

where α ∈ R and |β| = 1.

In fact, set X = β(x2 + α)− β2y , Y = x , then we have
x = Y , y = β̄(Y 2 + α)− β̄2X .

Hénon map h(z ,w) = (z2 + c − aw , z) is conjugate to f by
change of coordinates (z ,w) = (βx , βy) with a = β2, c = αβ2.



Parameter space of τ -reversible Hénon map, (α, arg(β))



Swap conjugacy τ and complex conjugacy σ

Let σ : C2 → C2 be the anti-holomorphic involution defined by
the complex conjugation σ(p, q) = (p̄, q̄).

Let φ : C2 → C2 be a holomorphic isomorphism defined by

φ(p, q) = (p + iq, p − iq).

Proposition. Involutions τ and σ are conjugate by φ.

C2 φ−→ C2

l σ l τ

C2 φ−→ C2.

Proposition. φ maps the real axis R2 onto the conjugate
diagonal ∆′.



τ -reversibility and σ-reversibility

Proposition. If f is τ -reversible, then g = φ−1 ◦ f ◦ φ is
σ-reversible.

C2 f←− C2

l τ l τ

C2 f−→ C2

↑ φ ↑ φ

C2 g−→ C2

l σ l σ

C2 g←− C2.



Reversible linear map

Proposition. The eigenvalues of σ-reversible 2× 2 matrix
can be written as

δγ and δγ−1,

with |δ| = 1, and |γ| = 1 or γ ∈ R.

Proof. Let L be a σ-reversible 2× 2 matrix. As L̄ = L−1,
| det L| = 1. Let det(L) = δ2, and let A = δ−1L. Then det(A) = 1,
and Ā = A−1. Hence it follows that trace(A) ∈ R.

Remark. Same result holds for τ -reversible matrix.



Involution and matrix

A A−1 −A
Ā real reversible pure imaginary
tA symmetric orthogonal skew symmetric
A∗ Hermite unitary skew Hermite



Real eigenvector

Proposition. Simple eigenvalue λ, with |λ| = 1, of
σ-reversible 2× 2 matrix L has a real eigenvector v ∈ R2.

Proof. Without loss of generality, we can assume v = (1, q),
with Lv = λv . By σ-reversibility of L, we have

Lv̄ = L̄v = L−1v = λ−1v = λ̄v = λv̄ .

Since the eigenspace of λ is spanned by v , we conclude
v = v̄ ∈ R2.

Remark. Same result holds for τ -reversible matrix, with R2

replaced by ∆′.



Reversible dynamics

Let G : C2 → C2 be a σ-reversible biholomorphic
diffeomorphism with fixed point P ∈ R2, G (P) = P.

Let L = dGP : TP → TP be the differential map at the fixed
point.

Then L is σ-reversible, too. (Use real eigenvectors as the basis
of TP .)

Suppose the fixed point P is a center of Siegel disk Ω and

ϕ : R → Ω

is a Siegel uniformizer satisfying

G ◦ ϕ = ϕ ◦ L and dϕ(0,0)(R2) = R2 ⊂ TP .



Real Sigel uniformizer

Theorem. Siegel uniformizer ϕ induces a real analytic
diffeomorphism of R ∩ R2 onto Ω ∩ R2.

Proof. We denote Ḡ = σ ◦ G ◦ σ, L̄ = σ ◦ L ◦ σ, and
ϕ̄ = σ ◦ ϕ ◦ σ. (These are holomorphic.) From G ◦ ϕ = ϕ ◦ L, we
have ϕ ◦ L−1 = G−1 ◦ ϕ. By σ-reversibility, we have L−1 = L̄ and
G−1 = Ḡ . And by taking the σ-conjugacy, we get ϕ̄ ◦ L = G ◦ ϕ̄.
Finally, dϕ̄(0,0)|R2 = dϕ(0,0)|R2 imply ϕ̄ = ϕ by the uniqueness of
Siegel uniformizer.

Corollary. Siegel uniformizer of a fixed point in ∆′ for
τ -reversible map induces a real analytic diffeomorphism of R ∩ R2

onto Ω ∩∆′.



∆′-slice of a Siegel disk



∆′-slice of a Siegel disk



Slice of another Siegel disk

α = −0.2101699, β = exp(0.7694274i)



Some orbits near the Siegel disk

α = −0.2101699, β = exp(0.7694274i)



Some orbits near a Siegel disk



Exotic rotation domain

3. Exotic rotation domain



Conjugate diagonal slice for α = 0.269423, β = e1.02773i



An Orbit in a rotation domain



Multiply connected Reinhardt domain

Multiply connected Reinhardt domain could be a model of
rotation domain of rank 2.

Theorem(Bedford). Let f be reversible by τ , and let Ω = f (Ω)
be a rank 2 Fatou component with Ω ∩∆′ 6= ∅. If Ω contains a
fixed point, then Ω ∩∆′ is connected; otherwise it has exactly two
connected components.



Orbits in rotation domains



Orbits in rotation domains and points in Julia set



Same as previous



Same as previous, another projection



∆′-slice



Real volume preserving Hénon map, α = 0, β = 1.



Real volume preserving Hénon map, ∆slice and ∆′slice



Conjugate diagonal slice for α = 0, β = e0.005i



Orbits in a rotation domain



Real slice



Rotaion domains and Julia set



Same as above



Surface automorphism

4. Surface automorphism



Orbits in a rotation domain of surface automorphism



Attracting Herman ring



Thank you !

Thank you !



Periodic rotation domain
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équations différentielles ordinaires, Editions Mir, MOSCOU, 1978.
[BBD] D. Barret, E. Bedford and J. Dadok, Tn-actions on
holomorphically separable complex manifolds. Math. Z.
202(1989), 65-82.
[BK1] E. Bedford and KH. Kim. Periodicities in Linear Fractional
Recurrences: Degree growth of birational surface maps, Mich.
Math. J. 54(2006), 647-670.
[BK2] E. Bedford and KH. Kim. Dynamics of Rational Surface
Automorphisms: Linear Fractional Recurrences. J. Geomet. Anal.
19(2009), 553-583.



References

[BS1] E. Bedford and J. Smilie. Polynomial diffeomorphisms of C2

: currents, equilibrium measures and hyperbolicity. Invent. Math.
103(1991), 69-99.
[BS2] E.Bedford and J. Smilie. Polynomial diffeomorphisms of C2.
II : stable manifolds and recurrence. J. Amer. Math. Soc.
4(1991), no. 4, 657-679.
[Br] A. D. Bryuno, Convergence of transformations of differential
equations to normal forms. Dokl. Acad. Nauk USSR 165(1965),
987-989.
[BW] O. Biham and W. Wenzel, Unstable orbits and the symbolic
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