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Abstract

Possible structures of Mordell-Weil groups are completely
classified by Oguiso and Shioda([OS],1991).

Karayayla([K],2011) gave a list of possible groups of surface
automorphisms preserving a section.

In this note, we construct a concrete example of an elliptic
surface, whose Mordell-Weil group is isomorphic to the dual lattice
of E7.

The generators of the Mordell-Weil group are specified, in
terms of sections of the elliptic fibration, and in terms of
automorphisms of invariant cubic curve.

The group of the automorphisms of the elliptic surface is
determined.
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Elliptic surface

Let S be a complex manifold of complex dimension 2.
Suppose there is an elliptic fibration onto P1:

ψ : S → P1.

And suppose there is a cross section

σ : P1 → S , ψ ◦ σ = id .

We want to understand the structure of the group of

automorphisms,

Aut(S).

Fibration ψ induces homomorphisms (not trivial)

0→ Ãut(S)→ Aut(S)→ Aut(P1).



Aut(S)
S : elliptic surface. (notations are explained later)

(Gizatullin,[Gi],1980)(Grivaux,[Gr], 2019)

0→ Ãut(S)→ Aut(S)→ Aut(P1).

0→ Ker(tr)→ Pic(S)
tr−→ Pic(X ){C(t)} deg−→Z.

K⊥S /Ker(tr) ∼= Pic0(X ){C(t)}.

(Shioda,[S],1990)

MW (S) ∼= NS(S)/T , E (K )/E (K )tor ∼= (E (K )0)∗.

(Karayayla,[K],2011)

Aut(S) = MW (S)×Autσ(S).

0→ Z/2Z→ Autσ(S)→ Autψ(P1)→ 0.

We try to find a concrete and explicit example of non-trivial
Aut(S).



An elliptic surface

Consider a surface automorphism with invariant cuspidal cubic
curve for orbit data (1, 3, 5), cyclic , choosing eigenvalue
κ = exp(2πi/7).

The configuration of the singular fibers is III II I7
1.

By Karayayla’s table, Autσ(S) ∼= Z/14Z.
The type of trivial lattice T is A1.
The rank of MW (S) is 7. MW (S) does not have torsions.
By Oguiso and Shioda’s table, MW (S) ∼= E ∗7 .

Aut(S) ∼= E ∗7 ×Z/14Z.

Find a basis of MW (S) among the exceptional fibers of S .
Observe their behavior under homomorphism

MW (S)→ Aut(Pic(XIII)).



Elliptic curves of period 7



A section
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Birational map

Let f : P2 -→ P2 be a birational map. Under certain
conditions, birational map induces a holomorphic automorphism
F : S → S of rational surface S , which is obtained by successive
blowing ups of P2, with projection π : S → P2.

S
F−→ S

↓ π ↓ π

P2 f
-→ P2.



Elliptic fibration

A surjective holomorphic map ψ : S → P1 is an elliptic
fibration if almost all fibers, ψ−1(ξ), are smooth curves of genus
1, and no fiber contains an exceptional (-1)-curve.

An elliptic surface S over P1 is a smooth projective surface
with an elliptic fibration over P1.

For fixed S , fibration ψ : S → P1 is unique (up to Möbius
transformation).



Kodaira names

Singular fibers are classified by Kodaira. (smooth fiber is
indicated by I0)

In, n ≥ 1, II, III, IV, I∗n, n ≥ 0, IV∗, III∗, II∗.

Euler number:

e(In) = n, e(II) = 2, e(III) = 3, e(IV) = 4,

e(I∗n) = n + 6, e(IV∗) = 8, e(III∗) = 9, e(II∗) = 10.

∑
Fv : singular fiber

e(Fv ) = 12.



Preservation of elliptic fibration

We say that automorphism F : S → S preserves elliptic
fibration ψ : S → P1, if commutative diagram

S
F−→ S

↓ ψ ↓ ψ

P1 Ω−→ P1.

holds for some Möbius transformation Ω : P1 → P1.
S can have other automorphisms. Every automorphism of S

preserves the fibration.
Let Aut(S) denote the group of automorphisms of S .
Let Autψ(P1) denote the group of Möbius transformations

induced by fibration ψ.

Autψ(P1) =
{

Ω : P1 → P1 | Ω ◦ ψ = ψ ◦ F , for some F ∈ Aut(S)
}
.



Section

Suppose fibration ψ : S → P1 has a section σ : P1 → S , i.e.,
ψ ◦ σ = id ., and let

Autσ(S) =
{
F ∈ Aut(S) | F (σ(P1)) = σ(P1)

}
,

Karayayla([K],2011) showed a short exact sequence of groups

0→ Z/2Z→ Autσ(S)→ Autψ(P1)→ 0.

He gave a list of all the possible configurations of singular
fibers for each type of the group of Möbius transformations.

Rem. There are rational elliptic surfaces which do not admit
sections.



Mordell-Weil group

By specifying a section σ : P1 → S , the set of sections of
fibration ψ : S → P1 form an additive group, regarding the
specified section σ as the origin of each fiber. The addition of
sections is defined by the group law in each smooth fiber as elliptic
curve, and by taking the closure for a section. This group is called
the Mordell-Weil group, MW (S), of S .

Karayayla([K], 2011) proved for rational surface with a section :

Theorem.
Aut(S) = MW (S)×Autσ(S).

(tζ1 ◦ α1)(tζ2 ◦ α2) = (tζ1+α1(ζ2) ◦ (α1 ◦ α2)).

(tζ denotes the translation induced by σ → ζ.)



Mordell-Weil rank

It is known ([Gi], 1980) that in the case of rational surface,

rank(MW (S)) = 8−
∑
v∈R

(mv − 1).

Where, R is the set of points v ∈ P1, such that Fv = ψ−1(v) is
not smooth, and mv is the number of irreducible components of
the singular fiber.

Rem. (Grivaux,[Gr], 2019).
(Gizatullin,[Gi],1980)

0→ Ãut(S)→ Aut(S)→ Aut(P1).

0→ Ker(tr)→ Pic(S)
tr−→ Pic(X ){C(t)} deg−→Z.

K⊥S /Ker(tr) ∼= Pic0(X ){C(t)} ↪→ Ãut(S).



2. Construction of elliptic surface

2. Construction of elliptic
surface



Cuspidal cubic curve

Let C denote the cubic curve {y = x3} in P2.

This curve has a parametrization

p : C→ C , p(t) = (t, t3).

We want to find birational map f : P2 -→ P2, which map C
onto itself.

f (C ) = C .

f has indeterminacy points I (f ). The equality should be
understood ”modulo exceptional points”.

f (C ) = f (C \ I (f )).

f induces an automorphism of the cubic curve C , which can be
described by an affine map t 7→ λ(t + µ) for some constants
λ ∈ C×, µ ∈ C.



Explicit formula for invariant cuspidal cubic curve case

Proposition. For λ ∈ C× and a1, a2, a3 ∈ C with a1 + a2 + a3 6= 0,
there exists a quadratic birational map f : P2 -→ P2, such that

f (C ) = C , I (f ) = {p(a1), p(a2), p(a3)},

inducing t 7→ λ(t + ν1

3 ), with ν1 = a1 + a2 + a3.

Proposition. The quadratic birational map f : P2 -→ P2 in the
previous proposition is given by

X = λ

(
x +

ν1

3
+

ν1(y − x3)

ν1x2 − ν2x + ν3 − y

)
,

Y = λ3

(
(x +

ν1

3
)3 + (y − x3)(1 +

ν2
1x +

ν3
1

3 − ν1ν2

ν1x2 − ν2x + ν3 − y
)

)
.

Where ν2 = a1a2 + a2a3 + a3a1, and ν3 = a1a2a3.



Exceptional lines

A quadratic birational map f : P2 -→ P2 always acts by
blowing up three indeterminacy points in P2 and blowing down the
three exceptional lines joining them.

The inverse map f −1 is also quadratic and the images of three
exceptional lines of f are the indeterminacy points of f −1.

The indeterminacy points I (f −1) = {p(b1), p(b2), p(b3)} are
given by

bi = λ(ai −
2ν1

3
), i = 1, 2, 3.

Rem.
−aj − ak = ai − ν1.



Surface automorphism

We have
I (f ) = {p(a1), p(a2), p(a3)}

and
I (f −1) = {p(b1), p(b2), p(b3)}

If, for some positive integers n1, n2, n3, and permutation
σ : {1, 2, 3} → {1, 2, 3},

p(aσ(i)) = f ◦(ni−1)p(bi ), i = 1, 2, 3,

holds, then f lifts to a surface automorphism by blowing up
(n1 + n2 + n3) points (provided they are all distinct)

p(bi ), f (p(bi )), · · · , f ◦(ni−1)(p(bi )), i = 1, 2, 3.



Orbit data

Positive integers (n1, n2, n3) with permutation σ is said an
orbit data.

Following Diller([D], 2011), we look for determinant λ and a
quadratic birational transformation f , which maps C onto itself
and realizes the prescribed orbit data.

In order to simplify our calculations, we suppose the fixed point of
t 7→ λ(t + ν1

3 ) is 1
3 , so that

ν1 =
1

λ
− 1.

Rem. The case without fixed point, λ = 1, and the case with fixed
point = 0, are not treated.



Conditions

In terms of inner dynamics, the conditions are as follows.

aσ(i) = λni−1(bi −
1

3
) +

1

3
, i = 1, 2, 3,

bi = λai +
2

3
(λ− 1), i = 1, 2, 3,

a1 + a2 + a3 =
1

λ
− 1.

Eliminate ai , bi , i = 1, 2, 3, to obtain an equation in λ, which is
a necessary condition.



Polynomial equation and Picard coordinates(cyclic case)

Necessary condition P(λ) = 0 for cyclic permutation case
(σ(1) = 2, σ(2) = 3, σ(3) = 1):

P(λ) = (λ− 2)λn1+n2+n3 + (λ− 1)(λn1+n2 + λn2+n3 + λn3+n1 )

+(λ− 1)(λn1 + λn2 + λn3 ) + 2λ− 1.

If λni+nj+nk 6= 1, we have :

ai = −λ
nk−1(λnj (λni + 1) + 1)(λ− 1)

λni+nj+nk − 1
+

1

3

((i , j , k) = (1, 2, 3), (2, 3, 1), (3, 1, 2)).



Characteristic polynomial

From orbit data and a choice of a root of P(λ), surface
automorphism, F : S → S , is induced by bowing-up the birational
map f : P2 → P2.

The cohomology group H2(S ,Z) is spanned by the class of a
generic line and the classes of the exceptional fibers. It is
isomorphic to a Minkowski lattice Z1,n with inner product

(x · y) = x0y0 − x1y1 − x2y2 − · · · − xnyn

defined by the intersection product.
Orbit data determines the characteristic polynomial P(λ) of

F ∗ : H2(S ,Z)→ H2(S ,Z).
The polynomial P(λ) obtained as a necessary condition and the

characteristic polynomial P(λ) coincide (not by chance).



Orbit data (1,3,5)cyclic

We choose orbit data (1, 3, 5),cyclic .

In our case of orbit data (1, 3, 5), cyclic , the characteristic
polynomial is as follows.

P(λ) = (λ− 1)(λ2 − 1)(λ7 − 1).

Among the orbit data with n1 + n2 + n3 = 9, this is the only
one case with factor (λ7 − 1).

In the case of a root of unity for a candidate of the choice of
eigenvalue, we must be careful about the conflict and zero-division
in the process.

We choose a primitive 7th root of unity κ = exp(2πi/7).
Picard coordinates of base points are computed by the

formulas above.



Picard coordinates for eigenvalue exp(2πi
7 ) in Pic0(XII)

B1 A1 C3

C4 C2

C5 C1

B2

B3



Surface automorphism F : S → S .

Proposition. There exists a surface automorphism F : S → S ,
with invariant cuspidal cubic curve, realizing orbit data
(1, 3, 5)cyclic , and the determinant κ (along the cuspidal cubic
curve) which is a primitive 7th root of unity.



F : S → S , CSPc135t1R, real slice



F : S → S , CSPc135t1D, diagonal slice



F : S → S , QLc135t2R, real slice



F : S → S , QLc135t2D, diagonal slice
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3. Elliptic fibration



Elliptic fibration of F

Surface automorphism F is as in the previous section.

Proposition. Surface automorphism, F : S → S , preserves an
elliptic fibration ψ : S → P1, whose configuration of singular fibers
is III II I7

1.

Proposition.
Autψ(P1) ∼= Z/7Z.

Proposition.
Autσ(S) ∼= Z/14Z.



F ∗ : H2(S ,Z)→ H2(S ,Z)

Now, let A1 ∈ H2(S ,Z) denote the cohomology class of the
exceptional fiber [π−1(p(b1))]. Let Bi = [π−1(f i−1(p(b2)))],
i = 1, 2, 3, and Ci = [π−1(f i−1(p(b3))], i = 1, 2, 3, 4, 5.

Let H ∈ H2(S ,Z) denote the class of a generic line [π−1(L)].
A basis of H2(S ,Z) is given by classes

H,A1,B1,B2,B3,C1,C2,C3,C4,C5.

Automorphism F ∗ : H2(S ,Z)→ H2(S ,Z) acts as follows.

H 7→ 2H − A1 − B3 − C5,

A1 7→ H − A1 − B3,

B3 7→ B2 7→ B1 7→ H − B3 − C5,

C5 7→ C4 7→ C3 7→ C2 7→ C1 7→ H − A1 − C5.



Anticanonical class

The characteristic polynomial of F ∗ : H2(S ,Z)→ H2(S ,Z) is

P(λ) = (λ− 1)(λ2 − 1)(λ7 − 1).

Eigenvalue λ = 1 has multiplicity 3.
The eigenspace of F ∗ for eigenvalue 1 is one-dimensional and

spanned by the anti-canonical class.

F = −KS = 3H − A1 − B1 − B2 − B3 − C1 − C2 − C3 − C4 − C5.

This is the class of the invariant cuspidal cubic curve.
This vector sits at the top of the Jordan block of size 3.
And it is the class of fibers of the elliptic fibration below.



Periodic curve of period 2

Periodic roots of period two are as follows. They are mapped
to each other by F ∗.

Q = 2H − A1 − B1 − B3 − C1 − C3 − C5,

L = H − B2 − C2 − C4.

Especially, the vectors sum up to F , as they form a singular
fiber of the elliptic fibration (nodality is verified later).

Proposition. Classes Q and L are nodal roots and they
consist a singular fiber of type III.



Nodal root

For Rational surface, following commutative diagram holds.

0 −→ Pic(S)
c1−→ H2(S ,Z) −→ 0,

↓ r ↓ ι∗

0→ Pic0(X ) −→ Pic(X )
deg−→ H2(X ,Z) −→ 0.

X : cuspidal cubic, three lines through a point, quadric with a
tangent line

Pic0(X ) ' C,
X : nodal cubic (one, two, or three nodes)

Pic0(X ) ' C/Z,
X : elliptic cubic

Pic0(X ) ' C/Λ.



Genus formula

If R ∈ H2(S ,Z) is a cohomology class of an irreducible
component of a reducible singular fiber of the fibration, then

R2 = −2, and r ◦ c−1
1 (R) = 0.

The condition r ◦ c−1
1 (R) = 0 implies R is nodal, i.e. it

represents the class of a curve.

And R2 = −2 implies the curve is isomorphic to a Riemann
sphere.

The arithmetic genus of a curve C representing class R is

g(C ) =
1

2
R.(R+ KS) + 1.



Singular fiber of type III

Periodic roots Q and L represent a cycle of periodic curves of
period two.

Q2 = L2 = −2, Q · L = 2,

Q+ L = −KS , KS · KS = 0.

Q · KS = L · KS = 0.

The sum of Picard coordinates of components of Q and L
vanish, so that

r ◦ c−1
1 (Q) = r ◦ c−1

1 (L) = 0 ∈ Pic(X ).

Next, we show that Q and L form a singular fiber of type III,
we use the Lefschetz formula and the Atyah-Bott formula.



Lefschetz formula and Atyah-Bott formula

Suppose F : S → S satisfy det(DF − I ) 6= 0 at all fixed points.

Lefschetz formula :

∑
F (p)=p

sign(det(DFp − I )) =
4∑

k=0

(−1)kTr(F∗|Hk (S ,R)).

Atyah-Bott formula : for r = 0, 1, 2,

∑
F (z)=z

Tr ∧r DFz
det(I − DFz)

=
4∑

s=0

(−1)sTr(F ∗|Hr,s(S)).



Singular fiber of type III

From the characteristic polynomial

P(λ) = (λ− 1)(λ2 − 1)(λ7 − 1)

of F ∗ : H2(S ,Z)→ H2(S ,Z), and the Lefschetz formula, we see
that F : S → S has three fixed points, a cycle of period two, (and
a cycle of period 7).

Two fixed points are in the cuspidal cubic curve.

Q and L has one fixed point and a cycle of period two.
So, they form a singular fiber of type III.



Eigenvalues of periodic points

Eigenvalues of the cuspidal fixed point in the invariant cuspidal
cubic curve are κ−2 and κ−3.

Eigenvalues at the fixed point ( 1
3 ,

1
27 ) are κ and κ−6.

Eigenvalues of the third fixed point, −κ3 and −κ5, can be
computed from the determinant κ at the fixed point and the
Atyah-Bott formula applied to F with r = 0.

Eigenvalues of the 2-cycle, κ4 and κ5, can be computed from
the determinant κ2 of the cycle and the Atyah-Bott formula
applied to F 2 with r = 0.



Quadic and a tangent line

This shows that the 2-cycle is not hyperbolic.

Q and L form a singular fiber of type III, i.e., quadric and a
tangent line.

The eigenvalues of the 2-cycle and of the third fixed point
imply the multiplier in the singular fiber, of type III, is κ2.

Rem. Surface automorphism derived from invariant cubic curve
consisting of a quadric and a tangent line for orbit data
(1, 3, 5)cyclic and eigenvalue κ2, also has an invariant cuspidal
cubic curve. This automorphism is conjugate to our automorphism.



Irreducible singular fibers I7
1

Periodic roots of period 7 are

7→ A1 − B3 7→ B1 − C1 7→ B2 − C2 7→ B3 − C3 7→

H − A1 − B1 − C4 7→ H − B1 − B2 − C5 7→ H − A1 − B2 − B3 7→,

and

7→ A1 − C3 7→ H − A1 − C1 − C4 7→ H − B1 − C2 − C5 7→

H − A1 − B2 − C3 7→ H − B1 − B3 − C4 7→ H − B2 − C1 − C5 7→

H − A1 − B3 − C2 7→ .

These roots are not nodal, i.e., the Picard sum of these roots are not
zero.

However, the Lefschetz formula implies the existence of a cycle of
period 7.

By counting the number of branches of J-map, I7 is not possible.



Section



Configuration of singular fibers

Configuration of singular fibers for our automorphism

F : S → S is

III II I7
1.

P(λ) = (λ− 1)(λ2 − 1)(λ7 − 1).

Fiber J d r e G Pic0 δ p
II 0 7 6 2 0 C κ 21
III 1 7 6 3 Z/2Z C κ2 1 + 2
I7
1 ∞ 7× 1 0 7× 1 Z/7Z C× ? 7



Persson’s list of configurations

In the list of configurations of singular fibers given by
Persson([P],1990), those containing I7 or I7

1 are :

III II I7
1, II2 I7 I1, III I7 I2

1, II I7 I2 I1, II I7 I3
1,

II I3 I7
1, I7 I2 I3

1, I7 I5
1, I3 I2 I7

1.
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4. Mordell-Weil group



Mordell-Weil group

By specifying a section σ : P1 → S , the set of sections of
fibration ψ : S → P1 form an additive group, regarding the
specified section σ as the origin of each fiber. The addition of
sections is defined by the group law in each smooth fiber as elliptic
curve, and by taking the closure for a section. This group is called
the Mordell-Weil group, MW (S), of S .

Let T denote the subgroup of NS(S) ∼= H2(S ,Z) generated by
the class of the specified section O = [σ(P1)] and all the classes of
irreducible components of fibers of the fibration.

Theorem(Shioda,[S],1990).

MW (S) ∼= NS(S)/T . (as group)



Orthogonal projection

Let Fv denote reducible fiber with Fv = ψ−1(v), v ∈ R ⊂ P1,

Fv = Θv ,0 + · · ·+ Θv ,mv−1, (O ·Θi ) = δ0,i

Tv = Θv ,1 + · · ·+ Θv ,mv−1,

T =< O > ⊕ < F > ⊕
⊕
v∈R

Tv .

Let L = T⊥ be the orthogonal complement of T in NS(S) with
respect to the intersection product. Orthogonal projection
ϕ : MW (S)→ L⊗Q can be expressed as follows.

ϕ(P) = (P)− (O)− ((P · O) + χ)F+

+
∑
v∈R

(Θv ,1, · · · ,Θv ,mv−1)(−A−1
v )

 (P ·Θv ,1)
...

(P ·Θv ,mv−1)

 .

where Av = {(Θv ,i ·Θv ,j)}1≤i,j≤mv−1, and χ = χ(S) = −(O · O) = 1.



Root system

In our case with configuration of singular fibers III II I7
1, singular

fiber of type III is reducible.

Fiber | Im I∗m II∗ III∗ IV∗ IV III
Tv | Am−1 Dm+4 E8 E7 E6 A2 A1

Let T =
⊕

v∈R Tv . The table of Oguiso and Shioda( [OS] 1991)
tells us:

No. r rkT T detT n E (K )0 E (K )
2 7 1 A1 2 1 E7 E∗7

.

◦ − ◦ − ◦ − ◦ − ◦ − ◦
|
◦

Rem. E (K )0 ∼= L = T⊥, E (K ) ∼= L∗ ∼= MW (S). (as group)



Group of the automorphisms

Together with the Karayayla’s table, the group of the

automorphisms of our surface S is:

Aut(S) ∼= E ∗7 × Z/14Z.

We want to have a more concrete idea of the group.



Root system E7

We choose section C3 as the origin of MW (S).
Trivial lattice T is spanned by C3, F , and L, with

F = 3H − A1 − B1 − B2 − B3 − C1 − C2 − C3 − C4 − C5,

L = H − B2 − C2 − C4.

The orhogonal complement L = T⊥ in NS(S) ∼= H2(S ,Z) is
spanned by

s0 = B1 − A1, s1 = B3 − C1, s2 = C1 − C5, s3 = C5 − B1,

s4 = A1 + B1 + C4 − H, s5 = C2 − C4, s6 = B2 − C2,

which form a basis of root system E7.

s1 − s2 − s3 − s4 − s5 − s6

|
s0



Proposition([SS]) For a rational elliptic surface,

E (K ) = < P; P̄ · Ō = 0 >

We have at least 8 sections, exceptional fibers of π : S → P2,
representing classes

A1,B1,B2,B3,C1,C2,C4,C5.

Their images ϕ(A1), · · · , ϕ(C5) span L∗, the dual of L.

In our case, ϕ : MW (S)→ L∗ can be expressed as follows.

ϕ(P) = (P)− (O)− ((P · O) + χ)F +
1

2
(P · L)L.

where O = C3 and χ = χ(S) = −(O · O) = 1.



ϕ : MW (S)→ L∗

s0 = B1 − A1, s1 = B3 − C1, s2 = C1 − C5, s3 = C5 − B1,

s4 = A1 + B1 + C4 − H, s5 = C2 − C4, s6 = B2 − C2.

ϕ(A1) = A1−C3−F = −3H + 2A1 +B1 +B2 +B3 +C1 +C2 +C4 +C5

= s0 + s1 + 2s2 + 3s3 + 3s4 + 2s5 + s6,

ϕ(B1) = B1 − C3 −F = ϕ(A1) + s0,

ϕ(B3) = ϕ(A1) + s0 + s1 + s2 + s3,

ϕ(C1) = ϕ(A1) + s0 + s2 + s3,

ϕ(C5) = ϕ(A1) + s0 + s3,



ϕ : MW (S)→ L∗

ϕ(B2) = B2 − C3 −F +
1

2
L

= B2 − A1 + ϕ(A1) +
1

2
(H − B2 − C2 − C4)

= ϕ(A1) +
1

2
(−(A1 + B1 + C4 − H) + (B1 − A1) + (B2 − C2))

= ϕ(A1)− 1

2
(s4 − s0 − s6),

ϕ(C2) = ϕ(B2)− s6,

ϕ(C4) = ϕ(B2)− s5 − s6.

The dual lattice L∗ is generated by

s0, s1, s2, s3, s5, s6, and s∗ =
1

2
(s4 − s0 − s6).



Generators in MW (S)

These elements are expressed as

s0 = ϕ(B1)− ϕ(A1), s1 = ϕ(B3)− ϕ(C1),

s2 = ϕ(C1)− ϕ(C5), s3 = ϕ(C5)− ϕ(B1),

s5 = ϕ(C2)− ϕ(C4), s6 = ϕ(B2)− ϕ(C2),

s∗ = ϕ(A1)− ϕ(B2).

We see that 7 elements in MW (S):

B1 − A1, B3 − C1, C1 − C5, C5 − B1,

C2 − C4, B2 − C2, A1 − B2

are ”linearly independent” and form a basis (of type A7).
These elements specify translations in each fiber of the elliptic

fibration.



5. Homomorphism MW (S)→ C× Z/2Z

5. Homomorphism
MW (S)→ C× Z/2Z



Nodal root

For Rational surface, following commutative diagram holds.

0 −→ Pic(S)
c1−→ H2(S ,Z) −→ 0,

↓ r ↓ ι∗

0→ Pic0(X ) −→ Pic(X )
deg−→ H2(X ,Z) −→ 0.

X : cuspidal cubic, three lines through a point, quadric with a
tangent line : Pic0(X ) ' C,

X : nodal cubic (one, two, or three nodes) : Pic0(X ) ' C/Z,
X : elliptic cubic : Pic0(X ) ' C/Λ.

Rem. For rational elliptic surface S ,

NS(S) ∼= Pic(S) ∼= H2(S ,Z).



Homomorphism MW (S)→ Aut(Fv)

Since element P ∈ MW (S), regarded as an automorphism of S
preserving the fibration and sending the specified section O to
section P, P induces an automorphism of each fiber Fv .

We consider P − O in place of P, to be more compatible with
the group structure as automorphisms.

Element A− B ∈ MW (S) should be considered as
(A− O)− (B − O).

We denote MW(S) = {A− B | A,B ∈ MW (S)}.

Especially, we have homomorphisms

rv :MW(S)→ Aut(Pic(Fv )),

for each fiber Fv .



In our case

In our case, invariant cubic curve XIII consists of quadric Q
and a tangent line L.

0 −→ Pic(S)
c1−→ H2(S ,Z) −→ 0,

↓ rIII ↓ ι∗

0→ C −→ Pic(XIII)
deg−→ Z2 −→ 0.



Group structure of singular fiber

Let Gm
∼= C/Z, Ga

∼= C.

Proposition(Shioda [SS]). The singular fibers of elliptic
surfaces admit the follwing group structure :

Gm × G (Fv ) : G (In) ∼= Z/nZ,

Ga × G (Fv ) : G (I∗2m) ∼= (Z/2Z)2,

G (I∗2m+1) ∼= Z/4Z,

G (II) ∼= G (II∗) ∼= {0},

G (III) ∼= G (III∗) ∼= Z/2Z,

G (IV) ∼= G (IV∗) ∼= Z/3Z.



Picard automorphism

For Fv = XIII, we have Ga
∼= C, G (III) ∼= Z/2Z.

Consider the map rIII :MW(S)→ C× Z/2Z.

For A− B ∈MW(S),

rIII(A− B) = ((r(A)− r(B)), ((A · L)− (B · L)) mod 2).

The Picard coordinates in XIII is not canonically defined, but
the group structure of translations in XIII is well defined.



Picard coordinates for eigenvalue exp(4πi
7 ) in Pic0(XIII)

C4

C1

B1

C5 B3

B2

A1 C3

C2



Picard coordinates of sections

Let r0, r1, r2, r3, r5, r6 and r∗ denote the Picard coordinates of
7 elements in MW(S) :

B1 − A1, B3 − C1, C1 − C5, C5 − B1,

C2 − C4, B2 − C2, A1 − B2,

which are plotted in the next slide.

r0, r2 and r5 are on a line.
These vectors span a Z-module of rank 6 with relation

r0 + r2 + r5 + r6 + r∗ = 0.



Picard coordinates for eigenvalue exp(4πi
7 ) in Ga

r2
r0 r6

r3
r∗

r1

r5



Picard coordinates for eigenvalue exp(4πi
7 ) in Pic0(XIII)

C4
C1

B1

C5 B3

B2

A1 C3

C2



rIII :MW(S)→ C× Z/2Z

Homomorphism

rIII :MW(S)→ C× Z/2Z
is given by

rIII(B1 − A1) = (r0, 0),

rIII(B3 − C1) = (r1, 0),

rIII(C1 − C5) = (r2, 0),

rIII(C5 − B1) = (r3, 0),

rIII(C2 − C4) = (r5, 0),

rIII(B2 − C2) = (r6, 0),

rIII(A1 − B2) = (r∗, 1),

These span a lattice of “rank 7” in C× Z/2Z.



Thank you.

Thank you.



Picard coordinates for eigenvalue exp(2πi
7 ) in Pic0(XII)

B1 A1 C3

C4 C2

C5 C1

B2

B3



Generalized eigenvector

Generalized eigenvector for F ∗ is:

H − 2B1 − B2 − 2C1 − C2 + C4 + 2C5

= H−A1−B1−C4−(B1−A1)−2(C1−C5)−2(C2−C4)−(B2−C2)

= −s0 − 2s2 − s4 − 2s5 − s6.
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