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Abstract

Automorphisms of complex surfaces can have various dynamics
in the Julia set.

In this note, we show an example suggesting the dynamics in
the Julia set.

Computer pictures suggest that the dynamics in the Julia set is
semi-conjugate to the natural extension of a subshift of finite type.

This dynamics is a kind of Markov chain.
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1.Surface automorphism

1. Surface automorphism



Surface automorphism

For λ ∈ C×, let us consider a birational map
f : (x , y) 7→ (X ,Y ), defined by

X =
x(y + 1)

y + 3
2 x2 − 1

2

, Y = λ
y2 − 3

4 x2 − 1
4

y + 3
2 x2 − 1

2

.

Its inverse map f −1 : (X ,Y ) 7→ (x , y) is given by

x =
X (λ−1Y − 1)

λ−1Y − 3
2 X 2 + 1

2

, y =
(λ−1Y )2 − 3

4 X 2 − 1
4

λ−1Y − 3
2 X 2 + 1

2

.



Invariant cubic curve

X =
x(y + 1)

y + 3
2 x2 − 1

2

, Y = λ
y2 − 3

4 x2 − 1
4

y + 3
2 x2 − 1

2

.

This biratinal map preserves three lines {x = 0}, {x = 1},
{x = −1}, passing through a point at infinity.

Each of these lines is mapped onto itself.

(0, y) 7→ (0, λ(y +
1

2
)),

(1, y) 7→ (1, λ(y − 1)),

(−1, y) 7→ (−1, λ(y − 1)).



Picard parametrization

(0, y) 7→ (0, λ(y +
1

2
)),

(1, y) 7→ (1, λ(y − 1)),

(−1, y) 7→ (−1, λ(y − 1)).

Define a parametrization of cubic curve x3 − x = 0, by

p1 : t 7→ (0,
1

2
t), p2 : t 7→ (1,−t), p3 : t 7→ (−1,−t).

Through this parametrization, the dynamics in the cubic curve
is described as

t 7→ λ(t + 1).

Proposition. For t1, t2, t3 ∈ C,

t1 + t2 + t3 = 0 if and only if p1(t1),p2(t2),p3(t3) are on a line.



Dynamics in the Poicard coordinate

Assume λ 6= 1.
t 7→ λ(t + 1).

Fixed point is : t = λ
1−λ . Its k-th iteration:

t 7→ λkt + λk + λk−1 + · · ·+ λ.

Three fixed points of f are:

(0,
1

2

λ

1− λ
), (1,− λ

1− λ
), (−1,− λ

1− λ
).

These are (non-flip) saddles with eigenvalues λ and λ−4.
(The fixed point at infinity is a source (or a sink, or a center of

a rotation domain of rank 1) with eigenvalues λ−1 and λ−1.)



Indeterminacy points

f (x , y) = (X ,Y );

X =
x(y + 1)

y + 3
2 x2 − 1

2

, Y = λ
y2 − 3

4 x2 − 1
4

y + 3
2 x2 − 1

2

.

Indeterminacy points of f are as follows.

(0,
1

2
), (1,−1), (−1,−1).

Their Picard coordinates are all t = 1.
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Indeterminay points of the inverse map

f −1(X ,Y ) = (x , y);

x =
X (λ−1Y − 1)

λ−1Y − 3
2 X 2 + 1

2

, y =
(λ−1Y )2 − 3

4 X 2 − 1
4

λ−1Y − 3
2 X 2 + 1

2

.

The indeterminacy points of the inverse map f −1 are as follows.

(0,− 1

2
λ), (1, λ), (−1, λ).

In Picard coordintes, t = −λ, for all.



Surface automorphism

To construct a surface automorphism from a quadratic
birational map, we require that the indeterminacy points of the
inverse map, which are exceptional values of f , is mapped to the
indeterminacy points of f by some iterate of f .

In our case, dynamics and indeterminacy points in three lines
are the same in the Picard coordinates.

In this note, we try to construct a surface automorphism with
orbit data (4, 4, 4), id ., i .e.,

1 = λ3(−λ) + λ3 + λ2 + λ,

or
λ4 − λ3 − λ2 − λ+ 1 = 0.



Quadratic birational transformation

Let λ = 0.580691832... be the smallest positive real root of
equation

z4 − z3 − z2 − z + 1 = 0.



Blow-up base

Let
t1 = −λ,

t2 = −λ2 + λ,

t3 = −λ3 + λ2 + λ,

t4 = −λ4 + λ3 + λ2 + λ,

ai = p1(ti ), bi = p2(ti ), ci = p3(ti ), i = 1, 2, 3, 4.

By blowing-up these twelve points, f defines a surface
automorphism.



Real slice

Let XC denote the complex surface obtained by these blow-ups,
and let

FC : XC → XC

denote the induced surface automorphism.
As we took λ ∈ R, the real axis RP2 ⊂ CP2 is invariant under

f , the subset XR, obtained by blowing-up the twelve points in the
real way, is invariant under FC,

XR ⊂ XC

and FC induces a real analytic automrphism, FR = FC |XR ,

FR : XR → XR.



2. Homology

2. Homology



Our complex surface XC is obtained by blowing-up the complex
projective space CP2 in twelve points.

Let L denote the homology class of a generic complex line in
CP2.

The homology classes of the exceptional fibers at base points
ai ,bi , ci , i = 1, 2, 3, 4, will be denoted as Ai ,Bi , Ci , i = 1, 2, 3, 4.

Homology group H2(XC,Z) ' Z1,12 is generated by

L,A1,A2,A3,A4,B1,B2,B3,B4, C1, C2, C3, C4.

Homomorphism induced by automorphism FC acts as follows.

L 7→ 2L −A1 − B1 − C1,

A1 7→ A2, A2 7→ A3, A3 7→ A4, A4 7→ L − B1 − C1,

B1 7→ B2, B2 7→ B3, B3 7→ B4, B4 7→ L −A1 − C1,

C1 7→ C2, C2 7→ C3, C3 7→ C4, C4 7→ L −A1 − B1.



Characteristic polynomial

These data describe the linear isomorphism
FC∗ : H2(XC,Z)→ H2(XC,Z), whose characteristic polynomial,
χC(z), is as follows.

χC(z) = z13 − 2z12 + 3z8 − 3z5 + 2z − 1,

or
χC(z) = (z − 1)(z4 − 1)2(z4 − z3 − z2 − z + 1).

We denote by CC, the cyclotomic factor and by SC, the Salem
factor.

CC(z) = (z − 1)(z4 − 1)2, SC(z) = z4 − z3 − z2 − z + 1.



Eigenvalues and traces
Let λ1, λ2, · · · , λn be the eigenvalues of n × n-matrix L, with

characteristic polynomial

det(zI − L) = P(z) = zn + a1z
n−1 + a2z

n−2 + · · ·+ an.

Let

τk =
n∑

i=1

λki = trace(Lk),

σk =
∑

i1<i2<···<ik

λi1λi2 · · ·λik = (−1)kak .

Then
τ`σk = (

∑
i0

λ`i0)(
∑

i1<i2<···<ik

λi1λi2 · · ·λik )

=
∑

i1<i2<···<ik

∑
i0∈{i1,··· ,ik}

λ`i0λi1λi2 · · ·λik

+
∑

i1<i2<···<ik

∑
i0∈|{i1,··· ,ik}

λ`i0λi1λi2 · · ·λik



Traces

Traces τk can be computed from the coefficients of the
characteristic polynomial, inductively.

σk = (−1)kak ,

τk = τk−1σ1 − τk−2σ2 + · · ·+ (−1)kτ1σk−1 + (−1)k+1kσk .

τ1 = −a1,

τ2 = a21 − 2a2,

τ3 = −a31 + 3a1a2 − 3a3,

τ4 = a41 − 4a21a2 + 2a22 + 4a1a3 − 4a4.

We denote as τk(P) to indicate the trace of linear map with
characteristic polynomial P(z).



3. Lefschetz formula

3. Lefschetz formula



Lefschetz number

Let |K | be a finite polyhedra, and let f : |K | → |K | be a
continuous map.

Let Ti (|K |) denote the torsion subgroup of the homology
group Hi (|K |,Z).

Let Bi (|K |) = Hi (|K |,Z)/Ti (|K |).

f induces a homomorphism f∗|Bi (|K |) : Bi (|K |)→ Bi (|K |).

Lefschetz number Λ(f ) of f is defined by

Λ(f ) =
dimK∑
i=0

(−1)i trace(f∗|Bi (|K |)).



Lefschetz formula

Suppose M is a compact smooth manifold without boundary.
And suppose f : M → M is a differentiable map satisfying

det(Df − I ) 6= 0 at all fixed points.

The Lefschetz index of fixed point p of f is defined as

Ind(f ; p) = sign(det(Dfp − I )).

The Lefschetz formula is

∑
f (p)=p

Ind(f ; p) =
dimM∑
k=0

(−1)ktrace(f∗|Hk (M,R)).



Surface automorphism FC

Let us consider the case of FC : XC → XC.

H0(XC,Z) ' Z, trace(F∗|H0) = 1,

H2(XC,Z) ' Z1,12, trace(F∗|H2) = 2,

H4(XC,Z) ' Z, trace(F∗|H4) = 1.

By the Lefschetz formula, we conclude that FC has four fixed
points, because in the complex dynamical system case, Lefschetz
index is always 1.



The characteristic polynomial of FC∗|H2 is :

χC(z) = z13 − 2z12 + 3z8 − 3z5 + 2z − 1,

or
χC(z) = (z − 1)(z4 − 1)2(z4 − z3 − z2 − z + 1).

Then
Λ(F k

C) = 2 + trace(F k
C∗|H2).

gives the number of fixed points of F k
C .

Trace of F k
C∗|H2 can be computed from the coefficients of the

characteristic polynomial.



Partial trace

In the followings, we shall examine the contribution of each
eigenvalue to periodic orbits.

Our characteristic polynomial factorizes into cyclotomic
factors, CC(z), and a Salem polynomial, SC(z).

CC(z) = (z − 1)(z4 − 1)2, SC(z) = z4 − z3 − z2 − z + 1.

To describe periodic cycles in terms of Lefschetz index, for
m ∈ N and k ∈ Z, let

m(k) =

{
m k ≡ 0 (mod m)
0 otherwise

.

Then
Λ(F k

C) = 3 · 1(k) + 2 · 4(k) + τk(SC).

τ1(SC) = 1, τ2(SC) = 3, τ3(SC) = 7, τ4(SC) = 7.



4. Real slice

4. Real slice



Real surface

Consider the real slice FR : XR → XR.
XR is a non-orientable real 2-dimensional analytic manifold

without boundary.
In this case, XR is invariant under FC : XC → XC .

H0(XR,Z) ' Z,

H1(XR,Z) ' Z2 ⊕ Z12, B1(XR) ' Z12,

H2(XR,Z) ' 0.

Let Ai ,Bi ,Ci denote the 1-dimensional homology class
representing the real slice of Ai ,Bi , Ci , respectively, with the
clockwise orientation, for i = 1, 2, 3, 4.

And let L∞ denote the homology class of the line at infinity
with counter-clockwise orientation.



FR : XR → XR



Homology group

Let Q denote the homology class of the invariant cubic curve.

Q = L∞+A1+A2+A3+A4+B1+B2+B3+B4+C1+C2+C3+C4.

Immediately, we see that 2Q = 0 in H1(XR). The torsion
subgroup T1(XR) is generated by Q.

The quotient group B1(XR) is spanned by
Ai ,Bi ,Ci , i = 1, 2, 3, 4., by eliminating L∞ and setting Q to be 0.

In the followings, we abuse these homology classes with those
in B1(XR).

That is, homology classes are regarded as that modulo Q.



Local index

In our case, FR has an eigenform η = dx∧dy
x3−x satisfying

F ∗Rη = λ−1η, in the complement of the invariant cubic curve
{x3 − x = 0}.

λ > 0 is a reciprocal of a Salem number.
If p ∈ XR \ Q is an isolated fixed point of Fm

R , then
detDFm

R |p = λm > 0.

If p is a sink or a source of period m, then Ind(f m, p) = 1, since

Ind(f m, p) = sign(det(Df mp − I )).

If p is a saddle of period m, with eigenvalues µ1, µ2, then

Ind(f m, p) = 1, if µ1 < −1 < µ2 < 0. (bi-flip saddle)

Ind(f m, p) = −1, if 0 < µ1 < 1 < µ2. (non-flip saddle)



Lefschetz index of saddles

If p is a bi-flip saddle of period m, with Ind(f m, p) = 1, then

Ind(f jm, p) = −(−1)j , j = 1, 2, · · · .

If p is a non-flip saddle of period m, with Ind(f m, p) = −1,
then

Ind(f jm, p) = −1, j = 1, 2, · · · .

Using notation m(k) =

{
m k ≡ 0 (mod m)
0 otherwise

,

Ind(F k
R , p) = m(k), for source or sink of period m,

Ind(F k
R , p) = m(k)− 2m(k), for bi-flip saddle of period m,

Ind(F k
R , p) = −m(k), for non-flip saddle of period m.
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Jacobian of FR

The determinant of FR is as follows.

det(DFR) =
λ(y + 1)(y − 1

2 + 3
2 x)(y − 1

2 −
3
2 x)

(y − 1
2 + 3

2 x2)3
.

The determinant of FR, with respect to the real coordinates
(x , y), changes sign across lines of critical points, curve of poles,
and across the line at infinity.



FR : XR → XR



Homomorphism FR∗

Indeterminacy points A4,B4,C4 are mapped to lines through
two of the blown down points A1,B1,C1.

By FR∗, generators of H1(XR,Z) are mapped as follows.

A1 7→ −A2, A2 7→ −A3, A3 7→ −A4,

A4 7→ Q + A1 + A2 + A3 + A4 + B2 + B3 + B4 + C2 + C3 + C4,

B1 7→ −B2, B2 7→ −B3, B3 7→ −B4,

B4 7→ Q + A2 + A3 + A4 + B1 + B2 + B3 + B4 − C2 − C3 − C4,

C1 7→ −C2, C2 7→ −C3, C3 7→ −C4,

C4 7→ Q + A2 + A3 + A4 − B2 − B3 − B4 + C1 + C2 + C3 + C4,

Q 7→ Q.



Linear action on H1(XR,Z)/Z2Q

The characteristic polynomial is given by the determinant of
the following matrix.



A1 A2 A3 A4 B1 B2 B3 B4 C1 C2 C3 C4

A1 −t 1
A2 −1 −t 1 1 1
A3 −1 −t 1 1 1
A4 −1 1− t 1 1
B1 −t 1
B2 1 −1 −t 1 −1
B3 1 −1 −t 1 −1
B4 1 −1 1− t −1
C1 −t 1
C2 1 −1 −1 −t 1
C3 1 −1 −1 −t 1
C4 1 −1 −1 1− t



.



Characteristic polynomial

The determinant of this matrix turns out to be as follows.

χR(t) = (t − 1)4(t2 + 1)2(t4 + t3 − t2 + t + 1)

= t12−3t11+3t10+t9−9t8+18t7−22t6+18t5−9t4+t3+3t2−3t+1.

Decompose it to cyclotomic factor, CR(t), and Salem factor,
SR(t).

CR(t) = (t − 1)4(t2 + 1)2, SR(t) = t4 + t3 − t2 + t + 1.

As CR(t) = (t − 1)4(t4 − 1)2/(t2 − 1)2,

Λ(F k
R) = 1(k)− (4 · 1(k) + 2 · 4(k)− 2 · 2(k) + τk(SR)).

And since SR(−z) = SC(z),

τk(SR) = (−1)kτk(SC).



Lefschetz numbers

Compare this with that of complex version.

CC(z) = (z − 1)(z4 − 1)2, SC(z) = z4 − z3 − z2 − z + 1.

Λ(F k
C) = 3 · 1(k) + 2 · 4(k) + τk(SC).

τ1(SC) = 1, τ2(SC) = 3, τ3(SC) = 7, τ4(SC) = 7.

More precisely,

Λ(F k
C) = 4 · 1(k) + 2(k) + 2 · 4(k) + (τk(SC)− 1(k)− 2(k)).

And

Λ(F k
R) = 1(k)− (4 · 1(k) + 2 · 4(k)− 2 · 2(k) + τk(SR))

= 1(k)− 3 · 1(k)− 2 · 4(k)− (−1)k(τk(SC)− 1(k)− 2(k)).

Here, we used τk(SR) = (−1)kτk(SC), and
1(k)− 2(k) = −(−1)k1(k).



Compare

Λ(F k
C) = 4 · 1(k) + 2(k) + 2 · 4(k) + (τk(SC)− 1(k)− 2(k)).

Λ(F k
R) = 1(k)− 3 · 1(k)− 2 · 4(k)− (−1)k(τk(SC)− 1(k)− 2(k)).

These show that the four fixed points in XC became one
source(or sink) and three non-flip saddles,

Cycle of period two is in XC \ XR.
All other periodic points are in XR, and cycles of odd period

are bi-flip saddles and cycles of even period are non-flip saddles.



5. Julia set

5. Julia set



The measure of maximal entropy

Theorem(Bedford-Lyubich-Smilie 1993, Cantat 2003). Let f
be a loxodromic automorphism of a complex projective surface X .
Let Per(f , k) be the set of isolated periodic points of f with period
at most k . Then

1

λkf

∑
p∈Per(f ,k)

δp

converges toward µf as k goes to ∞. The same result holds if
Per(f , k) is replaced by the set Persad(f , k) of saddle periodic
points of period at most k .

If p is a saddle point, either p is contained in the support of
µf , or p is contained in a cycle of periodic rational curves.
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FR : XR → XR



Homology classes

Proposition. There are homology classes in H1(XR,Z),
such that the subspace spanned by the classes is invariant under
FR∗, and the characteristic polynomial of the action of FR∗ in the
subspace is the Salem factor SR.

Proof. Let α, β, γ, δ ∈ H1(XR,Z) be as follows.

α = Q + A1 − A3 − A4 − B1 + B3 + B4 − C1 + C3 + C4,

β = A1−A2−2A3−2A4−B1+B2+2B3+2B4−C1+C2+2C3+2C4,

γ = A1 − A3 − 2A4 − B1 + B3 + 2B4 − C1 + C3 + 2C4,

δ = A1 − A4 − B1 + B4 − C1 + C4.



FR : XR → XR



These classes are represented by lifting smooth loops passing
through base points in RP2, respectively,

α : a2 → b2 → c2 → a2,

β : a1 → b2 → c1 → a2 → b1 → c2 → a1,

γ : a1 → b3 → c1 → a3 → b1 → c3 → a1,

δ : a1 → b4 → c1 → a4 → b1 → c4 → a1.

They are mapped by FR∗ as

α 7→ −γ, β 7→ −β − γ, γ 7→ −β − δ, δ 7→ −α.



In matrix form:

FR∗


α
β
γ
δ

 =


0 0 0 −1
0 −1 −1 0
−1 −1 0 0
0 0 −1 0




α
β
γ
δ

 .

The characteristic polynomial of this linear map in the
sub-lattice spanned by these is same as the Salem factor

SR(t) = t4 + t3 − t2 + t + 1.
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