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Abstract

The Hénon map can have a locally linearizable fixed point with
eigenvalues of modulus 1.

The so-called ”Siegel ball” can be linearized to a logarithmically
convex complete Reinhardt domain.

Numerical trial of linearization will be presented.
(This trial was requested by E. Bedford.)

Hénon map and rational automorphism of rational surface can
have multiple Siegel balls.

Self-anti-conjugacy of the dynamics makes the coexistence
possible.

Problem of coexistence of Siegel balls was suggested by E.
Bedford.



Abstract
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Multiplicative diophantian condition

(λ1, · · · , λn) ∈ Cn is said to satisfy
a multiplicative diophantian condition
if there are positive constants C and ν, such that

|λk1
1 · · ·λknn − λs | ≥ C |k1 + · · · kn|−ν

for s = 1, · · · , n, and (k1, · · · , kn) ∈ Nn, with k1 + · · · kn ≥ 2.



Siegel’s theorem

Let f : Cn → Cn be holomorphic near a fixed point O ∈ Cn.
Let λ1, · · · , λn denote the eigenvalues of dfO .

Theorem (Siegel)
If these eigenvalues satisfy a multiplicative diophantian condition,

then f is holomorphically linearizable near the fixed point.



Siegel’s theorem

Let f : Cn → Cn be holomorphic near a fixed point O ∈ Cn.
Let λ1, · · · , λn denote the eigenvalues of dfO .

Theorem (Siegel)
If these eigenvalues satisfy a multiplicative diophantian condition,

then f is holomorphically linearizable near the fixed point.



Brjuno condition

Assume that all the eigenvalues λ1, · · · , λn are distict.
And assume the non-resonance condition

λk − λs 6= 0 for all s = 1, · · · , n and k ∈ Nn, |k| ≥ 2.

For m ≥ 2, let Ω(m) = min
2≤|k|≤m, 1≤s≤n

|λk − λs |.

Theorem (Brjuno)

If
∞∑
j=0

1

2j
log

1

Ω(2j+1)
<∞,

then f is holomorphically linearizable near the fixed point.

Theorem(Rüssmann, Raissy)
Same result holds, if f is formally linearizable and dfO is

diagonalizable.
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Siegel ball

Suppose |λs | = 1, s = 1, · · · , n, and a multiplicative
diophantian condition or the Brjuno condition holds.

The maximal linearizable neighborhood of the fixed point is
called a Siegel ball.

The dynamics in the Siegel ball is holomorphically conjugate to
the linear part of f at the fixed point.

The image, by the conjugacy, of the Siegel ball is invariant under
the linear map dfO .



Renhardt domain

Open neighborhood of the origin invariant under diagonal linear
map of eigenvalues λs , |λs | = 1, s = 1, · · · , n is a Reinhardt
domain.

The inverse map from the image domain to Siegel ball is
holomorphic.

Our Reinhardt domain must be a maximal domain of
holomorphy of this inverse map.

It is a logarithmically convex complete Reinhardt domain.



Hénon map and fixed points

Hénon map Hb,c : (x , y) 7→ (X ,Y ) is defined as{
X = x2 + c + by
Y = x

.

Fixed points, P = (p, p) and Q = (q, q), are given by

p = 1
2 (1− b) +

√
(1−b)2

4 − c ,

q = 1
2 (1− b)−

√
(1−b)2

4 − c .

Rem. a = −c, d = −b. (a, b) in Hénon’s original family. d is the
determinant.



Eigenvalues of fixed points

Eigenvalues are given by

λ±P = p ±
√
p2 + b,

λ±Q = q ±
√
q2 + b,

If two eigenvalues λ+
Q and λ−Q are specified, the fixed point

Q = (q, q) and the parameters b and c are computed as follows.

q = λ+
Q + λ−Q ,

b = −λ+
Qλ
−
Q ,

c = q − q2 − bq.



Conjugacy map

Take diophantian numbers θ1, θ2 ∈ [0, 1] such that θ1 − θ2 is
also diophantian.

Let λ+
Q = e2πiθ1 and λ−Q = e2πiθ2 .

Compute parameters b, c , so that our Hénon map has a Siegel
ball centered at fixed point Q.

If a point z = (x , y) ∈ C2 is in the Siegel ball, then, by setting
L = DHb,c(Q),

Ψ(z) = lim
n→∞

1

n

n−1∑
k=0

L−k(H◦kb,c(z)− Q)

converges and defines the conjugacy map from Siegel ball to
Reinhardt domain.



Siegel ball



Linearlized Siegel ball



Reinhardt domain



Real slice



Log-log picture



Satellite Siegel ball

Can a Siegel ball have satellites?

Can Siegel balls coexist?



Satellite Siegel ball

Can a Siegel ball have satellites?
Can Siegel balls coexist?



Siegel ball with satellites in Hénon map



Siegel ball with satellites in Hénon map



Siegel ball with secondary satellites



Swap-conjugacy and anti-conjugacy

Let T (x , y) = (ȳ , x̄) be an involution.
Let us call this map the swap-conjugacy map.

Rational automorphism f : C2 → C2 is said to be
self-anti-conjugate, if

T ◦ f ◦ T = f −1

holds.
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Self-anti-conjugate maps

Volume-preserving Hénon map, with a Siegel ball of period 1 or
2, can be conjugated to a self-anti-conjugate automorphism:

h(x , y) = (y , βP(y)− β2x),

where β is a complex number satisfying ββ̄ = 1, and P(y) is a
polynomial with real coefficients.

Proposition
h(x , y) is self-anti-conjugate.
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Self-anti-conjugacy of Hénon map

h(x , y) = (y , βP(y)− β2x),

T ◦ h ◦ T (x , y) = T ◦ h(ȳ , x̄)

= T (x̄ , βP(x̄)− β2ȳ)

= (β̄P(x̄)− β̄2y , x),

h−1(x , y) = (β−1P(x)− β−2y , x),

Hence T ◦ h ◦ T = h−1 holds if P(x̄) = P(x) and β̄ = β−1.



Siegel balls of period 1 or 2

Proposition
If the classical Hénon map has a Siegel ball around a fixed point,

or has a cycle of Siegel balls around periodic points of period 2,
then it is conjugate to a self-anti-conjugate map.



Conjugacy from the classical Hénon map

Suppose a fixed point of Hénon map H(x , y) = (y , y2 + c + bx)
has a Siegel ball with eigenvalues βλ and βλ̄, |β| = |λ| = 1. We
see −b = det(DH) = β2. Then the Jacobin matrix at the fixed
point (q, q) is

DH(q,q) = β

(
0 β̄
−β 2β̄q

)
.

We require the trace of this matrix to be real, we set q = tβ,
t ∈ R. Then (tβ)2 − (1 + β2)tβ + c = 0 must hold and c = −αb,
with α = t2 − (β + β̄)t ∈ R.

The conjugacy from Hénon map is given by x ′ = β̄x , y ′ = β̄y ,
with b = −β2, c = −αb and P(z) = z2 + α, α ∈ R.



case of 2-cycle of Siegel balls

If periodic point of period 2 has a cycle of Siegel balls, the
Hénon map is conjugate to our self-anti-conjugate map.

Let (p, q) and (q, p) be the periodic points of period two, which
satisfy q = p2 + c + bq, p = q2 + c + bp, p 6= q. We have
p + q = b − 1, pq = (b − 1)2 + c , and |b| = 1.

The Jacobian matrix of the 2-cycle is given by

D(H2)(p,q) = b

(
1 2p

b
2q
b 1 + 4pq

b

)
.

We require the trace to be real.

2 +
4pq

b
= 4(b + b̄) + 4cb̄ ∈ R.

Let c = −αb with α ∈ R.
Conjugacy map to self-anti-conjugate map is same as before.



Anti-conjugate orbit

(The following arguements hold if P(z̄) = P(z).)

Forward orbit of an initial point is anti-conjugate to the
backward orbit of the swap-conjugate inititial point.

If z0 = (x0, y0) and w0 = T (z0).
Then hn(z0) = T (h−n(w0)) for n = 1, 2, ....

Especially, if initial point is self-swap-conjugate, say
T (z0) = z0, then zn = T (z−n).

If initial point is mapped to its swap-conjugate point,
z1 = h(z0) = T (z0), then zn = T (z−n+1), for n=2,3,...
We will say this pair z0 and z1 a swap-conjugate pair.
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Anti-conjugate periodic orbit

Suppose periodic orbit z0, z1, · · · , zp−1 of h contains a
self-swap-conjugate point, say T (z0) = z0.
Then we have T (zk) = zp−k , k = 1, 2, · · · .

If p is even, then zp/2 is a self-swap-conjugate point.

If p is odd, then z(p−1)/2 and z(p+1)/2 is a swap-conjugate pair.

Suppose periodic orbit contains a swap-conjugate pair.
Then we have another swap-conjugate-pair if the period is even.
We have a self-swap-conjugate point if the period is odd.
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Jacobian matrix of self-anti-conjugate cycle

Theorem H
If periodic orbit z0, z1, · · · , zp−1 of h contains a

self-swap-conjugate point or a swap-conjugate pair, then the
Jacobian matrix of the cycle is of the form

D(hp)z0 = βpA,

where det(A) = 1 and trace(A) ∈ R.



Anti-linear algebra

For 2× 2−matrix A =

(
a b
c d

)
, define its anti-conjugate

matrix A! by,

A! =

(
ā −c̄
−b̄ d̄

)
.

Anti-conjugacy is an involution. We see immediately the
followings.

A!! = A, (AB)! = B !A!, β! = β̄ (as scalar matrix).
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Self-anti-conjugate matrix

We say A is self-anti-conjugate if A! = A.

Clearly, if A is self-anti-conjugate, then a, d ∈ R, b = −c̄ ,
and det(A) and trace(A) are real.

Proposition
BB ! is self-anti-conjugate for 2× 2-matrix B.

Proposition
If A is self-anti-conjugate, then BAB ! is self-anti-conjugate

for 2× 2-matrix B.



Self-anti-conjugate periodic cycle

Suppose z0, z1, · · · , zp−1 be a periodic cycle of our Hénon map
h(x , y) = (y , βP(y)− β2x), where zk = (xk , yk).

Let us assume that the period p = 2q + 1 is odd, and z0 is
self-swap-conjugate, so that

T (z0) = z0, T (zq) = zq+1.

The derivative of h at z = (x , y) is given by

Dhz =

(
0 1
−β2 βP ′(y)

)
= β

(
0 β̄
−β P ′(y)

)
.



Derivative at swap-conjugate pair

At the swap-conjugate pair zq = (xq, yq) and
zq+1 = (xq+1, yq+1) = T (xq, yq), we have

ȳq = xq+1 = yq = x̄q+1 ∈ R, and yq+1 = x̄q.

Hence,

Dhzq = β

(
0 β̄
−β P ′(yq)

)
,

and by setting Dhzq = βAq, Aq is a self-anti-conjugate matrix.



Derivative at self-swap-conjugate point

Let us consider the derivative Dh at self-swap-conjugate point.

z0 = h(zp−1), T (z0) = z0, z1 = h(z0), T (z1) = zp−1.

Note that yp−1 = x̄1 and x1 = y0, hence yp−1 = ȳ0.
We compute the derivative of h ◦ h at zp−1, as follows.

Dhz0 = β

(
0 β̄
−β P ′(y0)

)
, Dhzp−1 = β

(
0 β̄
−β P ′(yp−1)

)
.

Hence, by setting Dhz0 = βB0, Dhzp−1 = βB !
0,

we see that D(h ◦ h)zp−1 = β2B0B
!
0, and A0 = B0B

!
0 is

self-anti-conjugate.



Derivatives at swap-conjugate points

Let zk and zp−k be swap-conjugate points, i.e. zp−k = T (zk).

Note that zp−k−1 = T (zk+1), and yp−k−1 = xp−k = ȳk .

Compute the derivatives Dhzk and Dhzp−k−1
as follows.

Dhzk = β

(
0 β̄
−β P ′(yk)

)
, Dhzp−k−1

= β

(
0 β̄
−β P ′(yp−k−1)

)
.

Hence by setting Dhzk = βBk , Dhzp−k−1
= βB !

k .



Composition of derivatives along periodic orbit

Suppose z0, z1, · · · , zp−1 be a periodic cycle of our Hénon map
h(x , y) = (y , βP(y)− β2x), where zk = (xk , yk).

And assume that the period p = 2q + 1 is odd, and z0 is
self-swap-conjugate.

Proposition
For k = 1, · · · , q, derivative of h2k at zp−k is of the form

D(h2k)zp−k
= β2kAk−1,

where Ak−1 is a self-anti-conjugate matrix, i.e. A!
k−1 = Ak−1.



Composition of derivatives

Proof
Let Dhz0 = βB0, then Dhzp−1 = βB !

0.
Set A0 = B0B

!
0, then A!

0 = A0 and D(h2)zp−1 = β2A0.
Now assume D(h2k)zp−k

= β2kAk−1 and A!
k−1 = Ak−1.

Then by setting Ak = BkAk−1B
!
k , A!

k = Ak and

D(h2(k+1))zp−(k+1)
= DhzkD(h2k)zp−k

Dhzp−(k+1)

= βBkβ
2kAk−1βB

!
k = β2(k+1)BkAk−1B

!
k = β2(k+1)Ak .



Eigenvalues of self-anti-conjugate cycle

Proof of Theorem H
As proved in the proposition, if periodic cycle contains a

self-anti-conjugate point, say z0 = T (z0), and period p = 2q + 1 is
odd, then the Jacobian matrix of the cycle is of the form

D(hp)zq = β2qAq−1βAq = βpAq−1Aq.

Here, Aq−1 and Aq are self-aniti-conjugate matrices. Set
A = Aq−1Aq.

As is easily verified, det(A) = 1, and trace(A) ∈ R.
Other cases of self-anti-conjugate cycles can be similarly proved.



Siegel balls in birational automorphism



Rational automorphism of complex surface

Here, we notice that similar results hold for some rational
automorphisms of complex surface.

Rational automorphism,

f (x , y) = (y ,
y + α

x + iβ
+ iβ)

is self-anti-conjugate if α and β are real.
More generally, rational automorphism

f (x , y) = (y ,
P(y)

x + iβ
+ iβ)

is self-anti-conjugate if β is real and P(x̄) = P(x).



Self-anti-conjugacy of rational automorphism

f (x , y) = (y ,
P(y)

x + iβ
+ iβ),

T ◦ f ◦ T (x , y) = T ◦ f (ȳ , x̄)

= T (x̄ ,
P(x̄)

ȳ + iβ
+ iβ) = (

P(x̄)

y − iβ
− iβ, x),

and

f −1(x , y) = (
P(x)

y − iβ
− iβ, x).

Hence T ◦ f ◦ T = f −1 is satisfied.



Jacobian matrix of self-anti-conjugate cycle

Theorem R
If periodic orbit z0, z1, · · · , zp−1 of self-anti-conjugate birational

automorphism, f , contains a self-swap-conjugate point or a
swap-conjugate pair, then the Jacobian matrix of the cycle is of
the form

D(hp)z0 = λA, λ =

p−1∏
k=0

|xk + iβ|
xk + iβ

,

where zk = (xk , yk), det(A) = 1 and trace(A) ∈ R.



Derivative of f

The proof is mostly similar to the Hénon map case.
Suppose z0 is self-swap-conjugate and the period p = 2q + 1 is

odd. For k = 0, · · · , p − 1,

Dfzk =
1

xk + iβ

(
0 xk + iβ

−yk+1 + iβ P ′(yk)

)
.

As z0 is self swap-conjugate, T (z0) = z0, T (z1) = zp−1,
x1 = y0 = x̄0 = ȳp−1, and y1 = x̄p−1.

Dfz0 =
1

x0 + iβ

(
0 x0 + iβ

−y1 + iβ P ′(y0)

)
,

Dfzp−1 =
1

xp−1 + iβ

(
0 xp−1 + iβ

−y0 + iβ P ′(yp−1)

)
.



at self-swap-conjugate point

By setting

Dfz0 =
1

x0 + iβ
B0,

we have

Dfzp−1 =
1

xp−1 + iβ
B !

0

and A0 = B0B
!
0 is self-anti-conjugate.



at anti-conjugate pair

As we supposed, zq and zq+1 is an anti-conjugate pair satisfying

T (zq) = zp−q = zq+1 = f (zq).

yq+1 = x̄q, ȳq = xq+1 = yq.

Dfzq =
1

xq + iβ

(
0 xq + iβ

−yq+1 + iβ P ′(yq)

)
.

Set Dfzq = 1
xq+iβAq, then Aq is self-anti-conjugate.



Composition of derivatives along periodic orbit

As in the Hénon map case, suppoose z0, z1, · · · , zp−1 be a
periodic cycle of our birational automorphism f .

And assume the period p = 2q + 1 is odd, and z0 is
self-swap-conjugate.

Proposition
For k = 1, · · · , q, derivative of f 2k at zp−k is of the form

D(f 2k)zp−k
=

k−1∏
j=0

1

(xj + iβ)(xp−j−1 + iβ)

Ak−1

where Ak−1 is a self-anti-conjugate matrix, i.e. A!
k−1 = Ak−1.



Proof of proposition

For k = 1,

Dfz0Dfzp−1 =
1

(x0 + iβ)(xp−1 + iβ)
A0,

as shown in the computation above.
Now, aasume

D(f 2k)zp−k
=

k−1∏
j=0

1

(xj + iβ)(xp−j−1 + iβ)

Ak−1

holds with self-anti-conjugate matrix Ak−1.



derivatives

Then

D(f 2(k+1))zp−(k+1)
= DfzkD(f 2k)zp−k

Dfzp−(k+1)

=
1

xk + iβ
Bk

k−1∏
j=0

1

(xj + iβ)(xp−j−1 + iβ)

Ak−1
1

xp−(k+1) + iβ
B !
k

=

 k∏
j=0

1

(xj + iβ)(xp−j−1 + iβ)

BkAk−1B
!
k .

By setting Ak = BkAk−1B
!
k , Ak is self-anti-conjugate.



Proof of Theorm R

The Jacobian matriox of the periodic cycle is given by

D(f p)zq = D(f 2q)zp−qDfzq

=

 q∏
j=0

1

(xj + iβ)(xp−j−1 + iβ)

Aq−1
1

xq + iβ
Aq

=

p−1∏
j=0

1

xj + iβ

Aq−1Aq.

Note that det(Aq−1Aq) ∈ R and trace(Aq−1Aq) ∈ R, since
Aq−1 and Aq are self-anti-conjugate.



Determinant and Jacobian matrix of the cycle

Now, consider the determinant of the Jacobian matrix.

det(Dfzk ) =
yk+1 − iβ

xk + iβ
.

det(D(f p)zq) =

p−1∏
k=0

yk+1 − iβ

xk + iβ
=

p−1∏
k=0

x̄p−k−1 − iβ

xk + iβ
=

p−1∏
k=0

x̄k − iβ

xk + iβ
.

Then | det(D(f p)zq)| = 1. Hence, by setting

λ =

p−1∏
k=0

|xk + iβ|
xk + iβ

, A =

(
p−1∏
k=0

1

|xk + iβ|

)
Aq−1Aq,

D(f p)zq = λA,

with |λ| = 1 and det(A) = 1, trace(A) ∈ R.



Other cases

Other cases of self-anti-conjugate periodic cycles are proved
smimilarly.



Rational automorphism

Bedford and Kim studied rotation domains for a surface
automorphism fa,b(x , y) = (y , (y + a)/(x + b)).

Proposition
If fa,b has a siegel ball around a fixed point, then the

automorphism is conjugte to our self-anti-conjugate automorphism.



Proof of Proposition

The fixed point (p, p) satisfies p(p + b) = p + a. Assume the
eigenvalues of Dfa,b at the fixed point are λµ and λµ̄,
|λ| = |µ| = 1. Then

det(Dfa,b)(p,p) =
p + a

(p + b)2
= λ2.

By eliminating a, we obtain

p =
bλ2

1− λ2
, p + b =

b

1− λ2
.



The differential at the fixed point is

D(fa,b)(p,p) =

(
0 1

− p+a
(p+b)2

1
p+b

)
= λ

(
0 λ̄

−λ (λ̄−λ)
b

)
.

Hence we require
(λ̄− λ)

b
∈ R.

We set b = 2iβ, β ∈ R, and λ = cos θ + i sin θ. Then we
have

p =
2iβλ2

1− λ2
= −iβ − cos θ

sin θ
β, and

a = p(p + b)− p =
β2

sin2 θ
+

cos θ

sin θ
β + iβ.



As

α =
β2

sin2 θ
+

cos θ

sin θ
β ∈ R,

set a = α + iβ. Then x ′ = x + iβ, y ′ = y + iβ gives the
conjugacy from fa,b(x , y) = (y , (y + a)/(x + b)) to our
self-anti-conjugate map

f (x ′, y ′) = (y ′,
y ′ + α

x ′ + iβ
+ iβ).



2-cycle case

Proposition
If fa,b has a cycle of siegel balls around periodic point of period

2, then the automorphism is conjugte to our self-anti-conjugate
automorphism.



Proof

Suppose 2-cycle of fa,b has Siegel balls. Let (p, q) and (q, p)
denote the periodic point of period 2.

p =
q + a

p + b
, q =

p + a

q + b
,

and p, q are two roots of x2 + (b + 1)x + b + 1− a = 0. Hence,
pq = b + 1− a and p + q = −b − 1.

det(D(f 2
a,b)(p,q)) =

p + a

(q + b)2

q + a

(p + b)2
=

1− a + b

1− a
.



Now, assume eigenvalues of the cycle are λµ and λµ̄,
|λ| = |µ| = 1. Then

det(D(f 2
a,b)(p,q)) =

1− a + b

1− a
= λ2.

Compute the Jacobian matrix of the 2-cycle,

D(f 2
a,b)(p,q) =

1

(p + b)(q + b)

(
−q(p + b) p + b
−q −p(q + b) + 1

)
As (p + b)(q + b) = 1− a = bλ̄

λ−λ̄ , by setting

D(f 2
a,b)(p,q) = λA,

We have

detA = 1, trace A =
λ− λ̄
b

(2a− 1 + b2 − b).



Eliminate a by using 1− a = bλ̄
λ−λ̄ . And by setting

λ = cos θ + i sin θ, we get

trace A = −2 cos θ + 2i sin θ (b +
1

b
).

As eigenvalues of A are µ and µ̄, we require the trace to be real.
We conclude that b is pure imaginary.

Let b = 2iβ. Then

a = 1− bλ̄

λ− λ̄
= 1− 2iβ(cos θ − i sin θ)

2i sin θ
= 1− cos θ

sin θ
β + iβ.

Let α = 1− cos θ
sin θ β, and get a = α + iβ.

Conjugacy to self-anti-conjugate map is same as in the case of
Siegel ball around a fixed point.



Self-swap-conjugate periodic point

Proposition
If self-swap-conjugate point, z0 = (x0, y0), is a peiodic point, of

period p, of a self-anti-conjugate map g , then the Jacobian matrix
of the cycle is of the following form.

D(gp)z0 = λA,

where, |λ| = 1, det(A) = 1, and trace(A) ∈ R.



Proof

As g is self-anti-conjugate,

T ◦ gp ◦ T = g−p.

And as z0 is self-swap-conjugate,

T (z0) = z0.

Hence
T ◦ D(gp)T (z0) ◦ T = D(g−p)z0 .

We have
T ◦ D(gp)z0 ◦ T = (D(gp)z0)−1.



Proof continued

Set

D(gp)z0 =

(
a b
c d

)
.

Then we have(
d̄ c̄
b̄ ā

)
=

1

ad − bc

(
d −b
−c a

)
.

And

ad − bc =
d

d̄
=

a

ā
.

Set a = rλ and d = sλ with r , s ∈ R and |λ| = 1. Then(
a b
c d

)
= λ

(
r −bλ̄
−cλ̄ s

)
.
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