Visual dynamics in \mathbb{C}^2

Shigehiro Ushiki Graduate School of Human and Environmental Studies Kyoto University

July 10, 2013

Abstract

Abstract

The Hénon map can have three attracting cycles for certain values of parameters.

Abstract

Abstract

The Hénon map can have three attracting cycles for certain values of parameters.

A rigorous proof is given for some parameter values having attracting cycles of periods 1,3 and 4.

Abstract

Abstract

The Hénon map can have three attracting cycles for certain values of parameters.

A rigorous proof is given for some parameter values having attracting cycles of periods 1,3 and 4.

Formula for periodic points of period upto five are obtained.

Introduction

Hénon map
$$H_{b,c}:(x,y)\mapsto (X,Y)$$
:
$$\begin{cases} X = x^2 + c + by \\ Y = x \end{cases}$$

Introduction

Hénon map
$$H_{b,c}: (x,y) \mapsto (X,Y)$$
:
$$\begin{cases} X = x^2 + c + by \\ Y = x \end{cases}$$

A variable will be called a **cycle variable**, if a cycle can be computed from the variable, and the value can be computed from a cycle.

Equation of cycle variable and parameters will be called a **cycle equation**.

Three basins

A portion of unstable manifold of a saddle fixed point.

Real slice of the parameter space

Fixed points

Fixed point is of the form (x_0, x_0) with x_0 given as a root of **cycle equation**:

(CE1)
$$x_0^2 - (1-b)x_0 + c = 0.$$

 x_0 is a cycle variable.

Let $\{(x_n, x_{n-1})\}$ be the periodic orbit of period 2, and set

$$x_n = \alpha_0 + (-1)^n \alpha_1.$$

Let $\{(x_n, x_{n-1})\}$ be the periodic orbit of period 2, and set

$$x_n = \alpha_0 + (-1)^n \alpha_1.$$

 α_0 can be regarded as a **cycle variable** of period 2, and the **cycle equation** is

(CE2)
$$2\alpha_0 + 1 - b = 0.$$

 α_1 is obtained from $\alpha_1^2 = -\frac{3}{4}(1-b)^2 - c$.

For 3-cycle
$$\{(x_n, x_{n-1})\}$$
, let

$$x_n = u_0 + \omega^n u_1 + \omega^{2n} u_2.$$

Here, ω denotes a cubic root of unity. Assume $(u_1, u_2) \neq (0, 0)$.

For 3-cycle $\{(x_n, x_{n-1})\}$, let

$$x_n = u_0 + \omega^n u_1 + \omega^{2n} u_2.$$

Here, ω denotes a cubic root of unity. Assume $(u_1, u_2) \neq (0, 0)$.

It is an orbit of $H_{b,c}$ if

$$x_{n+1} - bx_{n-1} = (x_n)^2 + c.$$

We obtain:

$$\begin{cases} (1-b)u_0 &= u_0^2 + 2u_1u_2 + c, \\ (\omega - b\omega^2)u_1 &= u_2^2 + 2u_0u_1, \\ (\omega^2 - \omega b)u_2 &= u_1^2 + 2u_0u_2. \end{cases}$$

These yield

$$\begin{split} u_1 u_2 &= 4u_0^2 + 2(1-b)u_0 + b^2 + b + 1, \\ \frac{u_1^3 + u_2^3}{u_1 u_2} &= -(1-b) - 4u_0. \end{split}$$

We obtain:

$$\begin{cases} (1-b)u_0 &= u_0^2 + 2u_1u_2 + c, \\ (\omega - b\omega^2)u_1 &= u_2^2 + 2u_0u_1, \\ (\omega^2 - \omega b)u_2 &= u_1^2 + 2u_0u_2. \end{cases}$$

These yield

$$u_1u_2 = 4u_0^2 + 2(1-b)u_0 + b^2 + b + 1,$$

$$\frac{u_1^3 + u_2^3}{u_1u_2} = -(1-b) - 4u_0.$$

The **cycle equation** of period 3 is :

(CE3)
$$9u_0^2 + 3(1-b)u_0 + 2(b^2+b+1) + c = 0.$$

 u_0 is the **cycle variable** of 3-cycle.

Saddle-node of period 3

Each solution u_0 corresponds to a 3-cycle. Saddle-node cycle corresponds to double root.

Saddle-node of period 3

Each solution u_0 corresponds to a 3-cycle. Saddle-node cycle corresponds to double root. The **saddle-node locus equation**:

(SN3_L)
$$c = -\frac{1}{4}(7b^2 + 10b + 7).$$

And the **saddle-node cycle equation**:

(SN3_C)
$$u_0 = -\frac{1}{6}(1-b).$$

Trace function

Let $\tilde{\Gamma}_3 = \{((b,c), u_0) \in \mathbb{C}^2 \times \mathbb{C} \mid (CE3)\}$ denote the **cycle space** of period 3.

Trace function

Let $\tilde{\Gamma}_3 = \{((b,c), u_0) \in \mathbb{C}^2 \times \mathbb{C} \mid (CE3)\}$ denote the **cycle space** of period 3.

The trace $\tau_3: \tilde{\Gamma}_3 \to \mathbb{C}$, is called the **trace** function.

We use (b, u_0) as a coordinate of $\tilde{\Gamma}_3$. $c = c(b, u_0)$.

Trace function

Let $\tilde{\Gamma}_3 = \{((b,c),u_0) \in \mathbb{C}^2 \times \mathbb{C} \mid (CE3)\}$ denote the **cycle space** of period 3.

The trace $\tau_3: \tilde{\Gamma}_3 \to \mathbb{C}$, is called the **trace** function.

We use (b, u_0) as a coordinate of $\tilde{\Gamma}_3$. $c = c(b, u_0)$.

$$au_3 = -8\left(27u_0^3 + 18(1-b)u_0^2 + 9(b^2 + \frac{b}{4} + 1)u_0 + 1 - b^3\right).$$

Regurarity of trace function

Trace function $au_3: \tilde{\Gamma}_3 \to \mathbb{C}$ is regular near the saddle-node locus if |b| < 1.

Regurarity of trace function

Trace function $\tau_3: \tilde{\Gamma}_3 \to \mathbb{C}$ is regular near the saddle-node locus if |b| < 1.

Proof. Partial derivative (in $\tilde{\Gamma}_3$) at saddle-node cycle is given by

$$\frac{\partial \tau_3}{\partial u_0}\bigg|_{u_0=-\frac{(1-b)}{6}} = -6(7b^2+13b+7).$$

Note that |b| = 1 if $7b^2 + 13b + 7 = 0$.

Cusps at saddle-node locus

For each parameter b with |b| < 1, locus of attracting 3-cycles has a cusp point at saddle-node locus $c = -\frac{1}{4}(7b^2 + 10b + 7)$.

Cusps at saddle-node locus

For each parameter b with |b| < 1, locus of attracting 3-cycles has a cusp point at saddle-node locus $c = -\frac{1}{4}(7b^2 + 10b + 7)$.

Saddle-node locus of 3-cycle and period-doubling locus of fixed point intersect at two points $(b,c)=(-2\pm\sqrt{3},9(1\mp\frac{1}{2}\sqrt{3})).$

Real slice of the parameter space

Let

$$x_n = v_0 + i^n v_1 + (-1)^n v_2 + (-i)^n v_3.$$

Let

$$x_n = v_0 + i^n v_1 + (-1)^n v_2 + (-i)^n v_3.$$

It is an orbit of $H_{b,c}$ if and only if

$$x_{n+1} - bx_{n-1} = (x_n)^2 + c.$$

Let

$$x_n = v_0 + i^n v_1 + (-1)^n v_2 + (-i)^n v_3.$$

It is an orbit of $H_{b,c}$ if and only if

$$x_{n+1} - bx_{n-1} = (x_n)^2 + c.$$

In terms of Fourier coefficients:

(EF4)
$$\begin{cases} (1-b)v_0 &= v_0^2 + v_2^2 + 2v_1v_3 + c \\ i(1+b)v_1 &= 2(v_0v_1 + v_2v_3) \\ -(1-b)v_2 &= v_1^2 + v_3^2 + 2v_0v_2 \\ -i(1+b)v_3 &= 2(v_1v_2 + v_0v_3) \end{cases}$$

Cycle equation of 4-cycles

The **cycle equation** of period four:

(CE4)
$$v_0^3 + \frac{1}{4}(c + \frac{3}{4}(b+1)^2)v_0 - \frac{1}{16}(b^2 - 1)(b+1) = 0.$$

 v_0 is a **cycle variable** of 4-cycles.

Trace function of 4-cycle

Let $\tau_4 = \text{tr } DH_{b,c}^4$ denote the trace of the derivative along the cycle.

We have

(TF4)
$$au_4 = 16(-16b_1v_0^3 + 8cv_0^2 + 2b_1(6b_2^2 - 2c)v_0 + 4b_2^4 + b_1^2b_2^2 + c^2 - 4b_2^2c) + 16bb_2^2 + 2b^2.$$

Trace function is a function on the surface defined by (CE4).

Saddle-node locus of 4-cycle

The discriminant of the cycle equation gives the saddle-node-locus equation:

$$(SN4L) (c - 3b22)3 = -27b12b24.$$

The cycle variable of the saddle-node v_0 is the double root of the cycle equation.

Saddle-node-cycle equation is

(SN4_C)
$$v_0^3 = -\frac{1}{8} b_1 b_2^2$$
.

Regularity of trace

Trace function $\tau_4: \tilde{\Gamma}_4 \to \mathbb{C}$ is regular on saddle-node locus (SN4_L) for 0 < |b| < 1.

For each parameter b with |b| < 1, the locus of attracting cycles $\Omega_4 \cap (\{b\} \times \mathbb{C})$ has cusp points at saddle-node loci.

Coexistence of attractive cycles

The intersection $\Omega_1 \cap \Omega_3 \cap \Omega_4$ is not empty.

Complex slice

b = -0.3946, c = -1.0362.

Let κ denote a quintic root of unity and let

$$x_n = \sum_{k=0}^4 a_k \kappa^{nk}.$$

From our difference scheme

$$x_{n+1} - bx_{n-1} = x_n^2 + c,$$

(EF5)
$$\begin{cases} (1-b)a_0 &= a_0^2 + 2a_1a_4 + 2a_2a_3 + c \\ (\kappa - b\kappa^4)a_1 &= 2a_0a_1 + 2a_2a_4 + a_3^2 \\ (\kappa^2 - b\kappa^3)a_2 &= 2a_0a_2 + 2a_3a_4 + a_1^2 \\ (\kappa^3 - b\kappa^2)a_3 &= 2a_0a_3 + 2a_1a_2 + a_4^2 \\ (\kappa^4 - b\kappa)a_4 &= 2a_0a_4 + 2a_1a_3 + a_2^2 \end{cases}$$

Variable ρ

Now, we introduce a new variable ρ by

$$\rho = \frac{a_1 a_4}{a_2 a_3}.$$

Then, we get a cubic equation of ρ , with coefficients being polynomial functions of b and a_0 .

$$W(b,a_0,\rho)=0.$$

This equation is of degree 2 in b, of degree 3 in ρ and of degree 2 in a_0 .

Cycle equation

Our "cycle equation" is given by a system of equations.

(CE5)
$$\begin{cases} W(b, a_0, \rho) = 0, \\ c = b_1 a_0 - a_0^2 - Q(\rho). \end{cases}$$

where, $Q(\rho)$ is a rational function of ρ of degree 2 with coefficients being polynomial functions of b and a_0 . One equation to determine the cycle variable, and the other to describe the relation to parameter c.

Complex slice of parameter space

b = 0.15

Real slice of the parameter space

Enlargement of the swallow's tail region

Coexisting attracting cycles of periods 1, 3, and 5.

Attracting cycles of periods 1, 4, and 5.

References

- [1] H. Poincaré : Sur une classe nouvelle des transcendantes uniformes, Journal de Mathématiques, 4^e série, tôme VI, Fasc. IV(1890).
- [2] M. Hénon : A two-dimensional mapping with a strange attractor, Comm. Math. Phys. 50(1976), pp69-77.
- [3] S. Ushiki: Unstable manifolds of analytic dynamical systems, Journal of Mathematics of Kyoto University, Vol. 21, No. 4(1981), pp763-785.
- [4] H. E. Hamouly et C. Mira: Lien entre les propriété d'un endomorphisme de dimension un et celles d'un diffémorphisme de dimension deux, C. R. Acad. Sc. Paris, t. 293(1981), Série I, pp525-528.