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Abstract

The Hénon map can have three attracting cycles
for certain values of parameters.

A rigorous proof is given for some parameter
values having attracting cycles of periods 1,3 and 4.

Formula for periodic points of period upto five are
obtained.
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Introduction

Hénon map Hp . : (x,y) — (X, Y):

X = x>+ c+by
Y = X
A variable will be called a cycle variable, if a

cycle can be computed from the variable, and the

value can be computed from a cycle.
Equation of cycle variable and parameters will be

called a cycle equation.



Three basins

A portion of unstable manifold of a saddle fixed point.

DA



Real slice of the parameter space




Fixed points

Fixed point is of the form (xg, xp) with xg given as
a root of cycle equation :

(CE1) - (1—-bxg+c=0.

Xp is a cycle variable.



Cycles of period 2

Let {(xn, X,—1)} be the periodic orbit of period 2,
and set
xp = ap + (—1)"ay.



Cycles of period 2

Let {(xn, X,—1)} be the periodic orbit of period 2,
and set
xp = ag + (—=1)"ay.

« can be regarded as a cycle variable of period 2,
and the cycle equation is

(CEQ) 200+ 1—b=0.

ay is obtained from o = —3(1 — b)? — c.



Cycles of period 3

For 3-cycle {(xn, Xp—1)}, let
X, = Uy + "ty + w? .

Here, w denotes a cubic root of unity. Assume

(ula u2) 7& (07 0)'



Cycles of period 3

For 3-cycle {(xn, x,_1)}, let
X, = Up + w"uy + w?us.

Here, w denotes a cubic root of unity. Assume

(u17 Uz) 7é (07 O)

It is an orbit of Hp . if

Xn+1 — bXn—l = (Xn)2 + c.



Cycles of period 3

We obtain :
(1—-buy = wd+2uu+ec,
(w—bw?)u; = u3 + 2uguy,
(W? —wb)u, = u? + 2ugus.
These yield

uiuy = 403 +2(1 — b)ug + b*> + b + 1,
uf—i—ug

— —(1—b)— 4u.
i ( ) — 4uo



Cycles of period 3

We obtain :
(1-bug = wvd+2uu+ec,
(w—bw?)u; = u3 + 2ugus,
(W? —wb)u, = u? + 2ugus.
These yield
uruy = 403 +2(1 — b)ug + b*> + b + 1,
3., ,3
WY (1 b)— au
uyur

The cycle equation of period 3 is :
(CE3) 9uf +3(1 — b)ug +2(b* + b+1)+c=0.

up is the cycle variable of 3-cycle.



Saddle-node of period 3

Each solution ug corresponds to a 3-cycle.
Saddle-node cycle corresponds to double root.



Saddle-node of period 3

Each solution ug corresponds to a 3-cycle.
Saddle-node cycle corresponds to double root.
The saddle-node locus equation:

(SN3,) c:—%4m2+mb+n.

And the saddle-node cycle equation:

(SN3¢) m:—%a_m



Trace function

Let T3 = {((b, ), up) € C? x C | (CE3)} denote
the cycle space of period 3.



Trace function

Let '3 = {((b, ¢), up) € C* x C | (CE3)} denote
the cycle space of period 3.

The trace 73 : I3 — €, is called the trace
function.

We use (b, 1) as a coordinate of [3. ¢ = c(b, up).



Trace function

Let T3 = {((b, ), up) € €C*> x C | (CE3)} denote
the cycle space of period 3.

The trace 73 : I~_3 — (, is called the trace
function.

We use (b, 1) as a coordinate of ['3. ¢ = c(b, up).

T3 = —8 (27u3 +18(1 — b)ug +9(b* + % +Dup +1— b3> .



Regurarity of trace function

Trace function 73 : T3 — C is regular near the
saddle-node locus if |b| < 1.



Regurarity of trace function

Trace function 73 : T3 — C is regular near the
saddle-node locus if |b| < 1.

PROOF. Partial derivative (in I'3) at saddle-node cycle is given by

873

- = —6(7H%> + 13b+ 7).
D0 (767 + +7)
ug

__(@-bh
=—==

Note that |b| = 1 if 76> + 13b+7 = 0.



Cusps at saddle-node locus

For each parameter b with |b| < 1, locus of
attracting 3-cycles has a cusp point at saddle-node
locus ¢ = —-+(7b% +10b + 7).



Cusps at saddle-node locus

For each parameter b with |b| < 1, locus of
attracting 3-cycles has a cusp point at saddle-node
locus ¢ = —-+(7b% +10b + 7).

Saddle-node locus of 3-cycle and period-doubling
locus of fixed point intersect at two points

(b,c) = (—2£V3,9(1 F +3)).



Real slice of the parameter space




Cycles of period 4

Let

Xp=Vo+i"vi +(=1)"vo + (—i)"va.



Cycles of period 4

Let
X, = v+ 1"vi + (—1)”V2 + (—i)nV3.
It is an orbit of Hp . if and only if

Xpi1 — bx,_1 = (x,,)2 +c.



Cycles of period 4

Let
Xp=w+i"vi + (=1)"va + (—1)"v3.
It is an orbit of Hp . if and only if

Xn+1 — bX,,fl = (Xn)2 + C.

In terms of Fourier coefficients:

(1-bvy = V¥+Vvi+2vinz+c
i(l4+bwv, = 2(vov1 + vav3)
(EF4) —(1 — b)V2 = V12 + V?? + 2VOV2

—I(1+b)V3 2(V]_V2+VOV3)



Cycle equation of 4-cycles

The cycle equation of period four:

(CE4) v + %(c + %(b+ D?)vp — %(b2 - 1)(b+1)=0.

vo is a cycle variable of 4-cycles.



Trace function of 4-cycle

Let 74 = tr DHﬁ,C denote the trace of the

derivative along the cycle.
We have

(TF4) 14 = 16(—16byv¢ + 8cvg + 2b1(653 — 2¢) v

+ 4b3 + b2b3 + ¢ — 4b3c) 4 16bb3 + 2b°.

Trace function is a function on the surface defined
by (CE4).



Saddle-node locus of 4-cycle

The discriminant of the cycle equation gives the
saddle-node-locus equation:

(SN4;)  (c —3b3)° = —27bb5.

The cycle variable of the saddle-node v is the
double root of the cycle equation.
Saddle-node-cycle equation is

1

(SN4c) Vg = 3

by bs.



Regularity of trace

Trace function 74 : f4 — C is regular on
saddle-node locus (SN4,) for 0 < |b| < 1.

For each parameter b with |b| < 1,the locus of
attracting cycles Q4 N ({b} x C) has cusp points at
saddle-node loci.



Coexistence of attractive cycles

The intersection 2; N Q3 N {24 is not empty.







Complex slice




b= —0.3946, c = —1.0362.

o F = E E DA



Cycles of period 5

Let x denote a quintic root of unity and let

4
Xy = E agk"™ .
k=0

From our difference scheme

2
Xn4+1 — bx, 1 = X, + ¢,

(1—b)ag a2 +2ajas + 2apaz + ¢
(k — br*)ay 2apa; + 2a2as + a3
(EF5) ¢ (k?—bk3)ay =  2apar +2azas + a3
(k3 — br?)as 2apas + 2a1ax + az
(k* —br)a, =  2apas +2aa3 + a3



Variable p

Now, we introduce a new variable p by

dida

aas

Then, we get a cubic equation of p, with coefficients being polynomial
functions of b and ag.
W (b, ag, p) = 0.
This equation is of degree 2 in b, of degree 3 in
p and of degree 2 in ap.



Cycle equation

Our “cycle equation” is given by a system of
equations.

W(ba 30710) = 07
(C59) { c = biag — a3 — Q(p)-

where, Q(p) is a rational function of p of degree 2 with coefficients being
polynomial functions of b and ag. One equation to determine
the cycle variable, and the other to describe the
relation to parameter c.



Complex slice of parameter space




b=0.15







Real slice of the parameter space




Enlargement of the swallow's tail region




Coexisting attracting cycles of periods 1, 3, and 5.




Attracting cycles of periods 1, 4, and 5.

o = E E z 9ace
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