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Abstract

In the area preserving real Hénon maps, pair of a
cycle of saddle type and a cycle of center type
appears from a parabolic fixed point whose
eigenvalues are prime fifth roots of unity.



1. Area-preserving complex Hénon map

Hα : C2 → C2, α ∈ C,

Hα(x , y) = (y , y 2 + α− x).

detDHα = 1

If α ∈ R, then Hα is a diffeomorphism of R2.



Fixed point

Fixed point P∗ = (y∗, y∗) given by

y 2∗ − 2y∗ + α = 0.

DHα P∗ =

(
0 1
−1 2y∗

)
,

trace DHα P∗ = 2y∗, det DHα = 1.



Parabolic fixed point of order 5

Ω = e
2πi
5 or Ω = e

4πi
5

Suppose eigenvalues at the fixed point P∗ are

Ω, Ω̄.

ω1 = Ω + Ω̄ =
±
√

5− 1

2
,

ω2 = Ω2 + Ω̄2 =
∓
√

5− 1

2
,

ω1ω2 = ω1 + ω2 = −1.

y∗ =
Ω + Ω̄

2
, α0 = 2y∗ − y 2∗ =

−7±
√

5

8
.



Main Theorem

Theorem A A pair of cycles of period 5
bifurcates from the fixed point P∗ for α < α0 near
α0. One of the cycles is saddle type and the other is
center type.



Island of period 5



Island of period 5



Notations

Let γ = ω2 − ω1 = ∓
√

5 and

ρ1(n) = Ωn + Ω̄n =


2 (n ≡ 0, mod 5)
ω1 (n ≡ 1 or 4)
ω2 (n ≡ 2 or 3)

,

ρ2(n) = Ω2n + Ω̄2n =


2 (n ≡ 0, mod 5)
ω2 (n ≡ 1 or 4)
ω1 (n ≡ 2 or 3)

.



Bifurcation Theorem

Theorem B There exists a function

α(ε) = α0 + γω1ε
2 + γε3 + · · ·

and a family of periodic sequences

yn(ε) = y∗ −
γ

5
ε2 + ρ1(n)(ε− γ

4
ε2 + · · · )

+ ρ2(n)(
γ

5
ε2 − 1

10
ε3 + · · · )

holomorphic in ε near 0 ∈ C, such that for each ε,
Hα(ε) has a cycle {Pn(ε) = (yn(ε), yn+1(ε))} of
period 5.



Trace Theorem

Theorem C The trace function of the cycle

τ(ε) = trace DH◦5α(ε)(y0,y1)

is holomorphic in ε and not constant near ε = 0,
with τ(0) = 2. Moreover, if ε ∈ R, then α(ε) ∈ R
and τ(ε) ∈ R.



Discrete Fourier expansion

yn = u0 + Ωnu1 + Ω2nu2 + Ω̄2nu3 + Ω̄nu4,

yn+1 + yn−1 = y 2n + α.

We get a system of equations:

(F0) 2u0 = u20 + 2u1u4 + 2u2u3 + α,

(F1) ω1u1 = 2u0u1 + u23 + 2u2u4,

(F2) ω2u2 = 2u0u2 + u21 + 2u3u4,

(F3) ω2u3 = 2u0u3 + u24 + 2u1u2,

(F4) ω1u4 = 2u0u4 + u22 + 2u1u3.



Introduction of ε

α appears only in (F0).
Constant : δ ( to be fixed as δ = 2

γ later).

u0 = y∗ −
δ

2
ε2 =

ω1

2
− δ

2
ε2.

System of algebraic equations parametrized by ε:

(Fε,1) δε2u1 = u23 + 2u2u4,

(Fε,2) (γ + δε2)u2 = u21 + 2u3u4,

(Fε,3) (γ + δε2)u3 = u24 + 2u1u2,

(Fε,4) δε2u4 = u22 + 2u1u3.



Algebraic variety

Family of polynomial mappings parametrized by ε :

Fε : C4 → C4.

Family of algebraic varieties parametrized by ε :

Fε(u) = 0, u = (u1, u2, u3, u4).

u = 0 is a solution for all ε near 0.
Solving process is essentially a resolution of

singularities.



Weighted scaling

u1 = εv1, u2 = ε2v2, u3 = ε2v3, u4 = εv4,

and assuming ε 6= 0 :

(Gε,1) δv1 = 2v2v4 + εv 23 ,

(Gε,2) (γ + δε2)v2 = v 21 + 2εv3v4,

(Gε,3) (γ + δε2)v3 = v 24 + 2εv1v2,

(Gε,4) δv4 = 2v1v3 + εv 22 .

Equation Gε(v) = 0, with v(ε) = (v1, v2, v3, v4).



Principal part

Let a = v(0).

(G0,1) δa1 = 2a2a4,

(G0,2) γa2 = a21,

(G0,3) γa3 = a24,

(G0,1) δa4 = 2a1a3.



constant δ

Now, determine the constant δ = 2
γ , as noticed

above, to obtain non-trivial solutions in a simple
form. Suppose a1 6= 0. then we have

a2 =
a21
γ
, a3 =

a−21

γ
, a4 = a−11 .

Here, a is not uniquely determined.



Second jet

a was not uniquely determined. Let a1 = σ, and

a = a(σ) = (σ,
σ2

γ
,
σ−2

γ
, σ−1).

G0(a(σ)) = 0 holds for σ ∈ C \ {0}.
Let

v(ε) = a + εw(ε), vi(ε) = ai + εwi(ε),

and rewrite the equation (Gε).



Equation (M)

(Mε,1)
2

γ
w1 =

σ−4

γ2
+

2σ2

γ
w4+2σ−1w2+ε(

2σ−2

γ
w3+2w2w4)+ε

2w2
3 ,

(Mε,2) γw2 + ε(
2σ2

γ2
+

2ε

γ
w2) = 2σw1 +

2σ−3

γ

+ ε(w2
1 +

2σ−2

γ
w4 + 2σ−1w3) + 2ε2w3w4,

(Mε,3) γw3 + ε(
2σ−2

γ2
+

2ε

γ
w3) = 2σ−1w4 +

2σ3

γ

+ ε(w2
4 +

2σ2

γ
w1 + 2σw2) + 2ε2w1w2,

(Mε,4)
2

γ
w4 =

σ4

γ2
+

2σ−2

γ
w1 +2σw3 + ε(

2σ2

γ
w2 +2w1w3)+ ε2w2

2 .



Principal part

Here, w is supposed to be an analytic function
of ε, and let w = b + O(ε), b = (b1, b2, b3, b4),
with wi = bi + O(ε). The principal part of (Mε) is
obtained by letting ε→ 0.

(M0,1)
2

γ
b1 =

σ−4

γ2
+

2σ2

γ
b4 + 2σ−1b2,

(M0,2) γb2 = 2σb1 +
2σ−3

γ
,

(M0,3) γb3 = 2σ−1b4 +
2σ3

γ
,

(M0,4)
2

γ
b4 =

σ4

γ2
+

2σ−2

γ
b1 + 2σb3.



Equation for b

Rewrite this system of equations as follows.
− 2
γ

2σ−1 0 2σ2

γ

2σ −γ 0 0
0 0 −γ 2σ−1

2σ−2

γ
0 2σ − 2

γ




b1
b2
b3
b4

 =


−σ−4

γ2

−2σ−3

γ

−2σ3

γ

−σ4

γ2

 .

rank A = 3,

rank A = rank (A b) ⇒ σ5 − σ−5 = 0.

b is not uniquely determined, here.



σ = 1

Proposition. Without loss of generalities, we can choose
σ = 1. Other choices of σ give the same family of cycles.

Proof. a1 → Ωka1 : choice of initial point of the
periodic orbit.

Let σ′ = −σ, ε′ = −ε, and

w ′1(ε′) = w1(−ε′), w ′2(ε′) = −w2(−ε′),

w ′3(ε′) = −w3(−ε′), w ′4(ε′) = w4(−ε′).

Equations (Mσ
ε ) and (Mσ′

ε′ ) give same solutions for u.
In the following, we treat only the case of σ = 1.



Equations with σ = 1

(M ′1) 0 =
1

γ2
− 2

γ
w1 + 2w2 +

2

γ
w4 + ε(

2

γ
w3 + 2w2w4) + ε2w2

3 ,

(M ′2) 0 =
2

γ
+ 2w1 − γw2 + ε(− 2

γ2
+ w2

1 + 2w3 +
2

γ
w4)

+ ε2(− 2

γ
w2 + 2w3w4),

(M ′3) 0 =
2

γ
− γw3 + 2w4 + ε(− 2

γ2
+

2

γ
w1 + 2w2 + w2

4 )

+ ε2(− 2

γ
w3 + 2w1w2),

(M ′4) 0 =
1

γ2
+

2

γ
w1 + 2w3 −

2

γ
w4 + ε(

2

γ
w2 + 2w1w3) + ε2w2

2 .



Change of variables and equations

p = w1 + w4, q = w2 + w3, r = w2 − w3, s = w1 − w4,

(P) = (M ′1) + (M ′4), (Q) = (M ′2) + (M ′3),

(R) = (M ′2)− (M ′3), (S) = (M ′1)− (M ′4),

(P)
2

γ2
+ 2q + O(ε) = 0,

(Q)
4

γ
+ 2p − γq + O(ε) = 0,

(R) 2s − γr + ε(ps − 2r − 2

γ
s) + O(ε2) = 0,

(S) − 4

γ
s + 2r + ε(− 2

γ
r + pr − qs) + O(ε2) = 0.



Principal part

Now, let ε→ 0, to have:

2

γ2
+ 2q0 = 0,

4

γ
+ 2p0 − γq0 = 0,

2s0 − γr0 = 0, − 4

γ
s0 + 2r0 = 0.

We have:

q0 = − 1

γ2
, p0 = − 5

2γ
, and 2s0 − γr0 = 0.

Here, s0 and r0 are not uniquely determined. Remember that
b1, · · · , b4 were not uniquely determined.

p0 = b1 + b4, q0 = b2 + b3, r0 = b2 − b3, s0 = b1 − b4.



Cokernel equation

From (U) = (2(R) + γ(S))/ε, we have

(U) (γp − 6)r + (2p − γq − 4

γ
)s + O(ε) = 0.

We suppose, by letting ε→ 0,

(γp0 − 6)r0 + (2p0 − γq0 −
4

γ
)s0 = 0

holds,i.e.,

−17

2
r0 −

8

γ
s0 = 0.

Together with 2s0 − γr0 = 0, we determine
r0 = s0 = 0.



Regularization

System of algebraic equations
{(P), (Q), (R), (U)}, in variables (p, q, r , s) and
analytically parametrized by ε, has a solution

(p0, q0, r0, s0) = (− 5

2γ
,− 1

γ2
, 0, 0), for ε = 0.

Jacobian at (p0, q0, r0, s0):

det


0 2 0 0
2 −γ 0 0
0 0 −γ 2
0 0 −17

2 −
8
γ

 = −100 6= 0.



Analytic family of solutions

Proposition System of equations {(P), (Q), (R), (S)}
has a family of solutions (p(ε), q(ε), r(ε), s(ε)), analytic near
ε = 0, satisfying p(0) = p0, q(0) = q0, and r(ε) ≡ 0,
s(ε) ≡ 0.

Proof System of equations {(P), (Q), (R), (S)} is
equivalent to the system of equations {(P), (Q), (R), (U)},
which has the solution. System of equations
{(P), (Q), (R), (U)} has a family of solutions
(p(ε), q(ε), r(ε), s(ε)), analytic near ε = 0, satisfying
p(0) = p0, q(0) = q0, r(0) = 0, s(0) = 0. The terms
O(ε2) in equations (R) and (S) are computed as follows.

−ε2(pr + qs +
1

γ
r), − ε2(qr).

Hence, (R) and (S) always hold if r = s = 0.



...

By assuming r = s = 0, we see our system of equations
reduces to the following system of equation in p and q only.

(P0)
2

γ2
+ 2q + ε(

2

γ
q + pq) + ε2

q2

2
= 0,

(Q0)
4

γ
+2p− γq+ ε(

1

2
p2 +

2

γ
p+2q− 4

γ2
) + ε2(pq− 1

γ
q) = 0,

which has a family of solutions p(ε) and q(ε), near ε = 0,
satisfying p(0) = p0 and q(0) = q0.

By the uniqueness of the solutions given by the implicit
function theorem, these solutions are the same.



Proof of theorem B

As stated in the above, our system of equations has a
family of solutions parametrized by ε. Obviously, our solutions
give the followings.

a1 = a4 = 1, a2 = a3 =
1

γ
,

b1 = b4 = − 5

4γ
, b2 = b3 = − 1

2γ2
.

u0 = y∗ −
ε2

γ
,

u1 = u4 = ε− 5

4γ
ε2 + · · · ,

u2 = u3 =
1

γ
ε2 − 1

2γ2
ε3 + · · · .



...

Hence, we have

yn = y∗−
1

γ
ε2+ρ1(n)(ε− 5

4γ
ε2+· · · )+ρ2(n)(

1

γ
ε2− 1

2γ2
ε3+· · · ).

Furthermore, from (F0),

α(ε)− α0 = (
ω1

γ
− 2

γ
− 2)ε2 +

5

γ
ε3 + · · · ,

with ω1 − 2− 2γ = ω1 − 2− 2ω2 + 2ω1 = 5ω1, we get

α(ε) = α0 +
5

γ
ω1ε

2 +
5

γ
ε3 + · · · .

Note that if ω1 = Ω + Ω̄ > 0, then
γ = Ω2 + Ω̄2 − (Ω + Ω̄) < 0. And if Ω + Ω̄ < 0, then γ > 0.
So, 5

γ
ω1 < 0. These, with γ2 = 5, prove Theorem B.



Proof of Theorem C

The system of equations {(P0), (Q0)}, with conditions
p(0) = p0 and q(0) = q0, can be regarded as a real analytic
family of systems of real analytic equations. So, for sufficiently
small real values of ε, p(ε) and q(ε) are real. With real values
of a and b, the corresponding parameter α(ε) and periodic
points are real and real analytic with respect to ε, near ε = 0.

The trace of the Jacobian matrix along the cycle is also
real analytic in ε and takes real values. It is also holomorphic
in ε, considered as a complex variable, near ε = 0. As
α(0) = α0, and the eigenvalues of the fixed point P∗ are Ω
and Ω̄, we see that τ(0) = 2. On the other hand, the
coordinates of the periodic cycle is algebraic with respect to
complex parameter α. For sufficiently large value of α, the
periodic cycle become hyperbolic, i.e., the absolute value of
the analytic continuation of the trace function is larger than 2.
Therefore, the trace function is not constant as an algebraic
function of α. Hence τ(ε) is not constant near ε = 0.



Proof of Theorem A

As is shown in the proof of Theorem B, ω1

γ
< 0 holds in

both cases of Ω. Parameter α is related to ε by a real analytic
function

α(ε) = α0 +
5

γ
ω1ε

2 +
5

γ
ε3 + · · · .

If α < α0 and α is sufficiently near α0, there exist real
values ε− and ε+ near ε = 0, such that

α = α(ε−) = α(ε+), ε− < 0 < ε+,

with
τ(ε−) 6= 2, τ(ε+) 6= 2.

If α > α0 and sufficiently near α0, then α = α(ε) does not
have real solutions near ε = 0.



...

Index of a fixed point P ∈ R2 of mapping f : R2 → R2 is
defined as follows. Let U denote a small neighborhood of the
fixed point. Define a mapping ϕ : U \ {P} → R2 \ {O} by
ϕ(X ) = f (X )− X . By an appropriate choice of the
neighborhood U , the induced homomorphism,
ϕ∗ : π1(U \ {P})→ π1(R2 \ {O}), of the fundamental groups
defines an integer. This integer is called the local index of
fixed point P .

By Poincaré’s index theorem, the sum of the local indices
of the fixed points is invariant under continuous perturbations
of the mapping f . In the case of area preserving
diffeomorphism, the local index of a saddle is −1, and the
local index of a center is +1. So, the created two cycles
cannot be the same type. This proves Theorem A.


