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Abstract

In the area preserving real Hénon maps, cycles
bifurcate from a parabolic fixed point whose
eigenvalues are prime roots of unity. Cases of
3-cycles and 4-cycles are studied.



1. Area-preserving complex Hénon map

H, : C? — €2, a € C,

Ha(va) - (y,y2—|—Oé—X).
detDH, =1

If & € R, then H, is a diffeomorphism of R2.



Fixed point

Fixed point P, = (¥, y:) given by

y2—2y,+a = 0.

0 1
DH,|p, = (_1 2y, ),

trace DHa|p* = 2y,, det DH, = 1.



Parabolic bifurcation of order 3
Let us consider the case where w = _1+T‘/§’ and

0= A_Tﬁ’ are the eigenvalues of DH,, at the fixed point P,.
Then,

1 1
y 5 (w+a) 5 and a Vv, — V- J
Let y, = ug + w"uy + @"u,, and suppose
Yni1 = Y2 + a — y,_1 holds.
2ug = U+ 2mw + o

(F) (WH+D)uy = 2wu; + U3
(O+wuy = 2uu + Ul



When o = a,, then we have a solution ug = y., u; = u, = 0.
We fix constants o, = —%, Ve = —% and set
Uy = tp(g) = ¥« — . The second and third equations of (F)

are rewritten as follows.

euy = u3
ey = Ui
We obtain u; = ew”, up = e@*, (k =0,1,2). The choice of k
corresponds to the choice of initial point in the periodic orbit.
We choose k = 0 and obtain the solution
€

7, u =g, U = ¢.

Up = Y« —



It follows that

3 9, 9 ,
—a, - —e— = (et )21
@ @ 28 46 4(8—1_3) I

1 3 1 3 1 3

YO:—7+757 nN=-5 58 =T 5E

The trace of the Jacobian matrix of the 3-cycle is given by:
7(e) = 8yayivo — 202 +y1+x) = 2+ 9e2 4 27¢3.

And
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Fig.1 {e | 7(¢) € [-2,2]} is drawn in red.



Fig.2

Fig.2 {a(e) | 7(¢) € [-2,2]} is drawn in red.



Fig.3

Fig.3. graph of 7(¢) for -1 <e < 1.
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Fig.4. Bifurcation diagram of cycles of period 3.



Parabolic bifurcation of order 4

Let us consider the case where +/ are the eigenvalues of
DH,, at the fixed point P,. Then y, =0 and a, = 0.
Recall the equation of 4-periodic point. (Vn14 = ¥n)

Ynt1 :yr%—i_a_yn*l? n:07"'73'

Discrete Fourier expansion
VYo = Up+i"up+(=1)"up 4+ (—1)"u3
gives rise to the following system of equations.

(Fo) 2uy = u(z) + u§ + 2 uz +

(Fl) 0 = 2UOU1+2U2U3,
()  —2uy = 2upup + Ui + u3,
(F3) 0 = 2UOU3 -+ 2U1U2.



Necessary condition

From (F1) and (F3), we have

Up Up n —- 0
u» U us o ’
2

To have a non-trivial 4-cycle, it is necessary to have u3 = u3.



Case |

Case | up = up, = 0.
In this case, from (F,) and (Fp), we have two sub-cases

uz =iy, o= 2iuf,
and
us = —iuy, o= —2/'uf7

They give the same 4-cycle. And the trace of the 4-cycle is
given by
T=2- 64uf.

In this case, real cycles for real « are all saddles.
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Fig.5. {u1 | 7(v1) € [-2,2]} is drawn in red in u; space
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Fig.6. « space for CASE 1.



Case II,111

Case Il U = — U and us = uy.
From (F2), up = £/ u3 + wo.

Yo=2u1, y1=2uy, Yy»=—2u, y3=12up.

Case Il Ug = up and u3 = —uy.
From (F2), up = +/—u3 — wo.

Yo =2ug, y1=2iuy, Yyo=12uy, y3= —2iuy.

This gives the same orbit as in CAsE 1L



Trace function

In these cases the trace of the 4-cycle is given
by 7 =2 — 256u3(1 + wp). And o = —4u3. For real
up, the trace 7 is real and plotted in Fig.7.
Location of the uy values with 7(ug) € [—2,2] is
plotted in Fig.8.

And the corresponding values of « are plotted in
Fig.9 and Fig.10.

In Figs 9 and 10, segment [+, 1] of CASE I is
plotted,too.



Fig.7

Fig.7. Graph of 7(ug) for real up.



center locus
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Fig.8. {uo | 7(uo) € [-2,2]} is drawn in red.
Observe that a short interval near —1 is in red.




« space

Fig.9. {a(e) | 7(e) € [-2,2]} is drawn in red.
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Fig.10. Enlargement of fig.9.



Real Bifurcation diagram
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Fig.11. Bifurcation diagram of real 4-cycles for real a.



