Abundance of Siegel balls in a family of Hénon maps

Shigehiro Ushiki Graduate School of Human and Environmental Studies Kyoto University

January 9, 2016

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Abstract

There exists a real two-parameter family of complex Hénon maps such that the number of coexisting cycles of Siegel balls is unbounded in the subfamily of any open set of parameters.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Complex Hénon map

parameters
$$(\alpha, \beta) \in \mathbb{C}^2$$

 $H_{\alpha,\beta} : \mathbb{C}^2 \to \mathbb{C}^2$
 $H_{\alpha,\beta} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} y \\ \beta(y^2 + \alpha) - \beta^2 x \end{pmatrix}$

<□ > < @ > < E > < E > E のQ @

Complex Hénon map

parameters
$$(\alpha, \beta) \in \mathbb{C}^2$$

 $H_{\alpha,\beta} : \mathbb{C}^2 \to \mathbb{C}^2$
 $H_{\alpha,\beta} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} y \\ \beta(y^2 + \alpha) - \beta^2 x \end{pmatrix}$
 $h_{b,c} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x^2 + c + by \\ x \end{pmatrix}$

<□ > < @ > < E > < E > E のQ @

Complex Hénon map

parameters
$$(\alpha, \beta) \in \mathbb{C}^2$$

 $H_{\alpha,\beta} : \mathbb{C}^2 \to \mathbb{C}^2$
 $H_{\alpha,\beta} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} y \\ \beta(y^2 + \alpha) - \beta^2 x \end{pmatrix}$
 $h_{b,c} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x^2 + c + by \\ x \end{pmatrix}$
 $\phi \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \beta y \\ \beta x \end{pmatrix}, \quad b = -\beta^2, \quad c = -\alpha b$
 $\phi \circ H_{\alpha,\beta} \circ \phi^{-1} = h_{b,c}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Siegel ball

Siegel ball

Fixed point

Fixed point
$$P_* = \begin{pmatrix} y_* \\ y_* \end{pmatrix}$$
 is given by
 $y_* = \beta(y_*^2 + \alpha) - \beta^2 y_*,$ or

$$y_*^2 - (\beta + \beta^{-1})y_* + \alpha = 0.$$

Fixed point

Fixed point
$$P_* = \begin{pmatrix} y_* \\ y_* \end{pmatrix}$$
 is given by
 $y_* = \beta(y_*^2 + \alpha) - \beta^2 y_*,$

or

$$y_*^2 - (\beta + \beta^{-1})y_* + \alpha = 0.$$

The Jacobian matrix at the fixed point is as follows.

$$DH_{\alpha,\beta}|_{P_*} = \begin{pmatrix} 0 & 1 \\ -\beta^2 & 2\beta y_* \end{pmatrix} = \beta \begin{pmatrix} 0 & \beta^{-1} \\ -\beta & 2y_* \end{pmatrix}.$$

trace $DH_{\alpha,\beta} = 2\beta y_*$, det $DH_{\alpha,\beta} = \beta^2$.

Our family

We specify the eigenvalues at the fixed point. For eigenvalues $\beta\mu, \beta\mu^{-1}$, we have

$$y_* = \frac{\mu + \mu^{-1}}{2}$$

and

$$\alpha = (\beta + \beta^{-1})y_* - y_*^2.$$

Our family is given by

Our family

We specify the eigenvalues at the fixed point. For eigenvalues $\beta\mu, \beta\mu^{-1}$, we have

$$y_* = \frac{\mu + \mu^{-1}}{2}$$

and

$$\alpha = (\beta + \beta^{-1})y_* - y_*^2.$$

Our family is given by

$$\beta = \cos \theta + i \sin \theta,$$

$$\mu = \cos \varphi + i \sin \varphi.$$

Our family

We specify the eigenvalues at the fixed point. For eigenvalues $\beta\mu,\beta\mu^{-1},$ we have

$$y_* = \frac{\mu + \mu^{-1}}{2}$$

and

$$\alpha = (\beta + \beta^{-1})y_* - y_*^2.$$

Our family is given by

$$\beta = \cos \theta + i \sin \theta,$$

$$\mu = \cos \varphi + i \sin \varphi.$$

with

$$y_* = \cos \varphi, \ \ \alpha = 2 \cos \theta \cos \varphi - \cos^2 \varphi.$$

Abundance of Siegel balls

Theorem

For any open set $U \subset (\mathbb{R}/2\pi\mathbb{Z})^2$ and any integer N > 1, there exists a point $(\theta_N, \varphi_N) \in U$ such that the Hénon map $H_{\alpha,\beta}$ for this parameter has more than N cycles of Siegel balls.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Elliptic-Parabolic fixed point

Let p>1 be an integer, and let ν be a prime p-th root of unity.

$$u^k \neq 1 \quad (k = 1, \cdots, p - 1),$$
 $u^p = 1.$

(ロ)、(型)、(E)、(E)、 E) の(の)

Elliptic-Parabolic fixed point

Let p>1 be an integer, and let ν be a prime p-th root of unity.

$$u^k \neq 1 \quad (k = 1, \cdots, p - 1),$$
 $u^p = 1.$

If ν is an eigenvalue of $DH_{\alpha,\beta}|_{P_*}$, then

trace
$$DH_{\alpha,\beta}|_{P_*} = \nu + \beta^2 \overline{\nu}, \quad y_* = \frac{\beta \overline{\nu} + \beta^{-1} \nu}{2},$$

$$\alpha_0 = (\beta + \beta^{-1})y_* - y_*^2.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Periodic orbit

Suppose
$$\{P_n\} = \left\{ \begin{pmatrix} x_n \\ y_n \end{pmatrix} \right\}$$
 is *p*-periodic. From
 $x_{n+1} = y_n, \quad y_{n+1} = \beta(y_n^2 + \alpha) - \beta^2 x_n,$

we have

$$\beta^{-1}y_{n+1} = y_n^2 + \alpha - \beta y_{n-1}.$$

Elliptic-parabolic bifurcation

Recall

$$y_* = \frac{\beta \bar{\nu} + \beta^{-1} \nu}{2}, \qquad \alpha_0 = (\beta + \beta^{-1}) y_* - y_*^2.$$

Theorem

For prime *p*-th root ν of 1, and for all $\beta \in \mathbb{C}$, except for a finite number of values, there exists a constant $\alpha_1 \neq 0$ and a family $y_n(\varepsilon)$ of *p*-cycles for parameter $\alpha = \alpha(\varepsilon^p)$, such that

$$\alpha(\varepsilon^{p}) = \alpha_{0} + \alpha_{1}\varepsilon^{p} + O(\varepsilon^{2p}), \qquad y_{n}(\varepsilon) = y_{*} + \nu^{n}\varepsilon + O(\varepsilon^{2}),$$

holds for $\varepsilon \in \mathbb{C}$ near $\varepsilon = 0$.

PROPOSITION The constant α_1 in the previous theorem depends upon β and is a non trivial rational function of β .

Self-anti-conjugate cycles

Recall

$$\alpha(\varepsilon^{p}) = \alpha_{0} + \alpha_{1}\varepsilon^{p} + O(\varepsilon^{2p}), \qquad y_{n}(\varepsilon) = y_{*} + \nu^{n}\varepsilon + O(\varepsilon^{2}).$$

Theorem

In the previous theorem, if $|\beta| = 1$ then $\alpha_0 \in \mathbb{R}$ and $\alpha_1 \in \mathbb{R}$. Moreover, if $\alpha \in \mathbb{R}$, near α_0 , then

$$y_n = \overline{y_{-n}}$$
 or $y_n = \overline{y_{1-n}}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

for some ε .

Self-anti-conjugate jacobian matrix

THEOREM If *p*-periodic orbit is self-anti-conjugate, *i.e.*

$$y_n = \overline{y_{-n}}$$
 or $y_n = \overline{y_{1-n}}$,

then the jacobian matrix along the orbit is of the form

$$D(H^{\circ p}_{\alpha,\beta})|_{P_0} = \beta^p A,$$

with det A = 1 and trace $A \in \mathbb{R}$.

Trace function

Let

$$\tau(\beta, \alpha) = \beta^{-p} \operatorname{trace} D(H_{\alpha, \beta}^{\circ p})|_{P_0}.$$

PROPOSITION

 $\tau(\beta, \alpha)$ is holomorphic near (β_0, α_0) , and non-constant with respect to α .

PROPOSITION If $|\beta| = 1$ and $\alpha \in \mathbb{R}$, then $\tau(\beta, \alpha) \in \mathbb{R}$ near $(\beta, \alpha_0(\beta))$, and $-2 < \tau(\beta, \alpha_0(\beta)) < 2$. (Except for finitely many values of β .)

Discrete Fourier expansion

Recall the equation of *p*-periodic point. $(y_{n+p} = y_n)$

$$\beta^{-1}y_{n+1} = y_n^2 + \alpha - \beta y_{n-1}, \quad n = 0, \cdots, p-1.$$

Discrete Fourier expansion

$$y_n = u_0 + \nu^n u_1 + \nu^{2n} u_2 + \dots + \nu^{kn} u_k + \dots + \nu^{(p-1)n} u_{p-1}$$
$$= \sum_{k=0}^{p-1} \nu^{kn} u_k$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

gives rise to the following equation.

Equation (F)

$$(F_0) \quad (\beta + \beta^{-1})u_0 = u_0^2 + \sum_{\ell=1}^{p-1} u_\ell u_{p-\ell} + \alpha$$
$$(F_1) \quad (\beta \bar{\nu} + \beta^{-1} \nu)u_1 = 2u_0 u_1 + \sum_{\ell=2}^{p-1} u_\ell u_{p+1-\ell}$$

$$(F_k) \quad (\beta \bar{\nu}^k + \beta^{-1} \nu^k) u_k = 2u_0 u_k + \sum_{\ell=1}^{k-1} u_\ell u_{k-\ell} + \sum_{\ell=k+1}^{p-1} u_\ell u_{p+k-\ell}.$$

$$k = 2, \cdots, p-1.$$

Equation (F)

$$(F_0) \quad (\beta + \beta^{-1})u_0 = u_0^2 + \sum_{\ell=1}^{p-1} u_\ell u_{p-\ell} + \alpha$$
$$(F_1) \quad (\beta \bar{\nu} + \beta^{-1} \nu)u_1 = 2u_0 u_1 + \sum_{\ell=2}^{p-1} u_\ell u_{p+1-\ell}$$

$$(F_k) \quad (\beta \bar{\nu}^k + \beta^{-1} \nu^k) u_k = 2u_0 u_k + \sum_{\ell=1}^{k-1} u_\ell u_{k-\ell} + \sum_{\ell=k+1}^{p-1} u_\ell u_{p+k-\ell}.$$

$$k=2,\cdots,p-1.$$

This equation has a solution, corresponding to the elliptic-parabolic fixed point P_* .

$$u_0 = y_*, \quad u_1 = u_2 = \cdots = u_{p-1} = 0, \quad \alpha = \alpha_0.$$

◆□ > ◆□ > ◆□ > ◆□ > ◆□ > ○ < ○

Equation (F')

Rewite (F) as follows.

$$(F_0) \quad (\beta + \beta^{-1})u_0 = u_0^2 + \sum_{\ell=1}^{p-1} u_\ell u_{p-\ell} + \alpha$$
$$(F_1') \quad (\beta \bar{\nu} + \beta^{-1} \nu - 2u_0)u_1 = \sum_{\ell=2}^{p-1} u_\ell u_{p+1-\ell}$$

$$(F'_k) \quad (\beta \bar{\nu}^k + \beta^{-1} \nu^k - 2u_0)u_k = \sum_{\ell=1}^{k-1} u_\ell u_{k-\ell} + \sum_{\ell=k+1}^{p-1} u_\ell u_{p+k-\ell}.$$

$$k = 2, \cdots, p-1.$$

Emanating branch of periodic points

Parameter α appears only in (F_0).

For each β , let $\varepsilon \in \mathbb{C}$ be a small parameter and let $\delta \in \mathbb{C}$ be a constant to be determined. Dependence upon β will be considered later.

Suppose $u_0 = y_* - \frac{\delta}{2} \varepsilon^p$, and $u_1 = \varepsilon v_1$. From equation (*F'*), we may suppose, inductively, $u_k = \varepsilon^k v_k$, ($k = 2, \dots, p-1$). Here, v_1, v_2, \dots, v_{p-1} are functions of ε . (Later, we see they are functions of ε^p .)

Emanating branch of periodic points

Parameter α appears only in (F_0).

For each β , let $\varepsilon \in \mathbb{C}$ be a small parameter and let $\delta \in \mathbb{C}$ be a constant to be determined. Dependence upon β will be considered later.

Suppose $u_0 = y_* - \frac{\delta}{2} \varepsilon^p$, and $u_1 = \varepsilon v_1$. From equation (*F'*), we may suppose, inductively, $u_k = \varepsilon^k v_k$, $(k = 2, \dots, p-1)$. Here, v_1, v_2, \dots, v_{p-1} are functions of ε . (Later, we see they are functions of ε^p .)

$$(E_0) \qquad u_0 = y_* - \frac{\delta}{2} \varepsilon^p,$$

$$(E_k)$$
 $u_k = \varepsilon^k v_k, \quad k = 1, \cdots, p-1.$

Equation (G)

Rewrite equation (*F*) using (*E*), with $y_* = \frac{\beta \bar{\nu} + \beta^{-1} \nu}{2}$, to get the following equation.

$$(G_{1}) \qquad \delta v_{1} = \sum_{\ell=2}^{p-1} v_{\ell} v_{p+1-\ell},$$

$$(G_{k}) \qquad (\beta(\bar{\nu}^{k} - \bar{\nu}) + \beta^{-1}(\nu^{k} - \nu) + \delta \varepsilon^{p}) v_{k}$$

$$= \sum_{\ell=1}^{k-1} v_{\ell} v_{k-\ell} + \varepsilon^{p} \sum_{\ell=k+1}^{p-1} v_{\ell} v_{p+k-\ell},$$

$$k = 2, \cdots, p-1.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Note that α will be computed by (F_0), afterwards.

Principal part equation (L)

Let
$$v_k = a_k + O(\varepsilon)$$
, $k = 1, \cdots, p - 1$. And let
 $\gamma_k = \beta(\overline{\nu}^k - \overline{\nu}) + \beta^{-1}(\nu^k - \nu)$,

for $k = 2, \dots, p-1$. Equation (G), as $\varepsilon \to 0$, yields the following equation.

Principal part equation (L)

Let
$$v_k = a_k + O(\varepsilon)$$
, $k = 1, \cdots, p-1$. And let
 $\gamma_k = \beta(\overline{\nu}^k - \overline{\nu}) + \beta^{-1}(\nu^k - \nu)$,

for $k = 2, \dots, p-1$. Equation (G), as $\varepsilon \to 0$, yields the following equation.

$$(L_1) \qquad \delta a_1 = \sum_{\ell=2}^{p-1} a_{\ell} a_{p+1-\ell},$$

$$(L_k) \qquad \gamma_k a_k = \sum_{\ell=1}^{k-1} a_{\ell} a_{k-\ell}, \quad k = 2, \cdots, p-1.$$

Constant δ

Inductively from $(L_2), \cdots, (L_{p-1})$, we have

$$a_k = \frac{1}{\gamma_k} \sum_{\ell=1}^{k-1} a_\ell a_{k-\ell} = \eta_k a_1^k,$$

with $\eta_k = \eta_k(\beta)$ rational function of β , for $k = 2, \dots, p-1$. Or

$$\eta_1 = 1, \quad \eta_k = \frac{1}{\gamma_k} \sum_{\ell=1}^{k-1} \eta_\ell \eta_{k-\ell}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

Constant δ

Inductively from $(L_2), \cdots, (L_{p-1})$, we have

$$a_k = \frac{1}{\gamma_k} \sum_{\ell=1}^{k-1} a_\ell a_{k-\ell} = \eta_k a_1^k,$$

with $\eta_k = \eta_k(\beta)$ rational function of β , for $k = 2, \dots, p-1$. Or

$$\eta_1 = 1, \quad \eta_k = \frac{1}{\gamma_k} \sum_{\ell=1}^{k-1} \eta_\ell \eta_{k-\ell}.$$

From (L_1) ,

$$\delta a_1 = \Phi(\beta) a_1^{p+1}$$

with a rational function $\Phi(\beta)$.

Non-triviality

PROPOSITION.

 $\Phi(\beta)$ is a non-trivial rational function of β .

Non-triviality

PROPOSITION.

 $\Phi(\beta)$ is a non-trivial rational function of β .

PROOF. Obviously, $\Phi(\beta)$ is a rational function of β . We show that $\Phi(-\nu) > 0$. If $\beta = -\nu$, then

$$\gamma_k = 2 - (\bar{\nu}^{k-1} + \nu^{k-1}), \quad k = 2, \cdots, p - 1.$$

Therefore, $0 < \gamma_k(-\nu) \le 4$, $k = 2, \cdots, p-1$. This imply $\eta_k(-\nu) > 0$, $k = 2, \cdots, p-1$. And $\Phi(-\nu) > 0$, since

$$\Phi(\beta) = \sum_{\ell=2}^{p-1} \eta_{\ell}(\beta) \eta_{p+1-\ell}(\beta).$$

Reality of solutions

If $|\beta| = 1$, then

and $\Phi(\beta) \in \mathbb{R}$. These are non-zero except for a finite number of values of β .

Now, we determine the constant δ by

$$\delta = \Phi(\beta).$$

Equation (L) has a solution

$$a_1 = 1, \quad a_k = \eta_k(\beta), \quad k = 2, \cdots, p - 1.$$

If $|\beta| = 1$, then a_1, \dots, a_{p-1} are all real. Other solutions give the same periodic orbit.

Equation (G)

Now, we go back to equation (G).

$$(G_1) \qquad \delta v_1 = \sum_{\ell=2}^{p-1} v_\ell v_{p+1-\ell},$$

$$(G_k) \qquad (\gamma_k + \delta \varepsilon^p) v_k = \sum_{\ell=1}^{k-1} v_\ell v_{k-\ell} + \varepsilon^p \sum_{\ell=k+1}^{p-1} v_\ell v_{p+k-\ell},$$

$$k = 2, \cdots, p-1.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Observe that ε appears only as ε^{ρ} in this equation. Let $\kappa = \varepsilon^{\rho}$ and rewrite the equation as follows.

Equation (Γ)

$$(\Gamma_1) \qquad w_1 = \sum_{\ell=2}^{p-1} v_{\ell} v_{p+1-\ell} - \delta v_1,$$

$$(\Gamma_k) \qquad w_k = \sum_{\ell=1}^{k-1} v_\ell v_{k-\ell} - \gamma_k v_k + \kappa \left(\sum_{\ell=k+1}^{p-1} v_\ell v_{p+k-\ell} - \delta v_k \right),$$

$$k = 2, \cdots, p-1.$$

These define a map

Equation (Γ)

$$(\Gamma_1)$$
 $w_1 = \sum_{\ell=2}^{p-1} v_\ell v_{p+1-\ell} - \delta v_1,$

$$(\Gamma_k) \qquad w_k = \sum_{\ell=1}^{k-1} v_\ell v_{k-\ell} - \gamma_k v_k + \kappa \left(\sum_{\ell=k+1}^{p-1} v_\ell v_{p+k-\ell} - \delta v_k \right),$$

$$k = 2, \cdots, p-1.$$

These define a map

$$\Gamma: \mathbb{C} \times \mathbb{C} \times \mathbb{C}^{p-1} \to \mathbb{C}^{p-1}$$

by

$$\Gamma(\beta, \kappa, v_1, \cdots, v_{p-1}) = (w_1, \cdots, w_{p-1}).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

 Γ is a quadratic polynomial in v_1, \dots, v_{p-1} , with coefficients rational in β , and affine in κ .

Matrix Λ_{β}

Except for a finite number of values of β ,

$$\Gamma(\beta,0,a_1,\cdots,a_{p-1}) = (0,\cdots,0)$$

holds. The jacobian matrix $\Lambda_{\beta} = \left(\frac{\partial w_i}{\partial v_j}\right)$ at $(\beta, 0, a_1, \cdots, a_{p-1})$ is as follows.

$$\Lambda_{\beta} = \begin{pmatrix} -\delta & 2a_{p-1} & 2a_{p-2} & \cdots & \cdots & 2a_{2} \\ 2a_{1} & -\gamma_{2} & 0 & \cdots & \cdots & 0 \\ 2a_{2} & 2a_{1} & -\gamma_{3} & 0 & \cdots & 0 \\ 2a_{3} & 2a_{2} & 2a_{1} & -\gamma_{4} & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & 0 \\ 2a_{p-2} & 2a_{p-3} & \cdots & 2a_{2} & 2a_{1} & -\gamma_{p-1} \end{pmatrix}$$

All components of Λ_{β} are rational functions of β .

.

Regularity of Λ_{β}

PROPOSITION If $p \geq 3$, the matrix Λ_{β} is regular except for a finite number of values of β .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Regularity of Λ_{β}

PROPOSITION

If $p \geq 3$, the matrix Λ_{β} is regular except for a finite number of values of β .

Proof

Obviously, the determinant of Λ_β is a rational function of $\beta.$ We show that it is non-trivial. Let

$$M_{\beta} = \begin{pmatrix} -\delta & a_{p-1} & a_{p-2} & \cdots & \cdots & a_{2} \\ a_{1} & -\gamma_{2} & 0 & \cdots & \cdots & 0 \\ a_{2} & a_{1} & -\gamma_{3} & 0 & \cdots & 0 \\ a_{3} & a_{2} & a_{1} & -\gamma_{4} & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & 0 \\ a_{p-2} & a_{p-3} & \cdots & a_{2} & a_{1} & -\gamma_{p-1} \end{pmatrix}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Equation (L) is equivalent to

$$M_{\beta}\left(egin{array}{c} a_1\ dots\ a_{p-1}\ \end{array}
ight) = \mathbf{0}.$$

As we have non-trivial solutions for all values of β , except for a finite number of values,

$$\det M_\beta = 0$$

holds as a rational function of β .

Observe the sweeping-out process of M_{β} . To sweep out the off-diagonal components of the first line, other lines of M_{β} are used with diagonal components $\gamma_2, \dots, \gamma_{p-1}$ as pivots. These pivots are non-trivial rational functions of β .

To suppress a term in (1, k)-component of M_β , say t_k , we add the k-th line multiplied by t_k/γ_k to the first line. Then the (1, j)-component, say c_j , becomes

$$c_j + rac{a_{k-j}}{\gamma_k}t_k, \quad j=1,\cdots,k-1.$$

In this process, all the components of the first line, except for $-\delta$, are sums of terms of the form

$$\frac{1}{\gamma_{k_1}^{m_1}\cdots\gamma_{k_\ell}^{m_\ell}}.$$

When all the off-diagonal components of the first line are swept out, the first line vanishes.

Next, let us compute det Λ_{β} in a similar way. To compare the sweeping-out process, let $b_k = a_k$ and rewrite the off-diagonal components fof Λ_{β} as

$$2a_k = a_k + b_k, \quad k = 1, \cdots, p - 1.$$

Sweep-out the off-diagonal components of the first line of Λ_{β} to get a lower triangle matrix. The terms without b_k 's are exactly same as in the sweep-out procedure of M_{β} . The terms without a_k 's contribute exactly same. There are other terms consisting of a_k 's and b_k 's. Anyway, all the terms are always sums of terms of the form

$$\frac{1}{\gamma_{k_1}^{m_1}\cdots\gamma_{k_\ell}^{m_\ell}}$$

After the sweeping-out, in the (1, 1)-component of the triangle matrix, $-\delta$ cancells the a_k -only terms. And b_k -only terms gives δ . The remaining terms are a sum of terms of the form

$$rac{1}{\gamma_{k_1}^{m_1}\cdots\gamma_{k_\ell}^{m_\ell}},$$

with positive coefficients.

The (1, 1)-component of the triangle matrix is obviously a rational function of β . To prove the non-triviality of the rational function, we show that it does not vanish for $\beta = -\nu$. As

$$\begin{split} \gamma_k(\beta) &= \beta(\bar{\nu}^k - \bar{\nu}) + \beta^{-1}(\nu^k - \nu), \\ \gamma_k(-\nu) &= 2 - (\nu^{k-1} + \bar{\nu}^{k-1}) > 0, \quad k = 2, \cdots, p-1. \end{split}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

These imply the positivity of a_1, \dots, a_{p-1} and δ . Furthermore, terms of the form

$$\frac{1}{\gamma_{k_1}^{m_1}\cdots\gamma_{k_\ell}^{m_\ell}}$$

are all positive. Hence the (1, 1)-cpmponent of the triangle matrix is strictly positive and greater than δ . We conclude that

 $\det \Lambda_{-\nu} \neq 0.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ のへで

Equation (Γ)

Now, we go back to equation (Γ).

$$(\Gamma_1)$$
 $w_1 = \sum_{\ell=2}^{p-1} v_\ell v_{p+1-\ell} - \delta v_1,$

$$(\Gamma_k) \qquad w_k = \sum_{\ell=1}^{k-1} v_\ell v_{k-\ell} - \gamma_k v_k + \kappa \left(\sum_{\ell=k+1}^{p-1} v_\ell v_{p+k-\ell} - \delta v_k \right),$$
$$k = 2, \cdots, p-1.$$

$$\Gamma(\beta,\kappa,v_1,\cdots,v_{p-1}) = (w_1,\cdots,w_{p-1}).$$

PROPOSITION

For any $\beta_0 \in \mathbb{C}$, except for a finite number of values, there exists a neighborhood, U, of $(\beta_0, 0) \in \mathbb{C}^2$, such that implicit functions

$$v_1(\beta,\kappa), v_2(\beta,\kappa), \cdots, v_{p-1}(\beta,\kappa)$$

defined by

$$\Gamma(\beta,\kappa,v_1,\cdots,v_{p-1}) = (0,\cdots,0)$$

with

$$v_k(\beta_0, 0) = a_k(\beta_0), \quad k = 1, \cdots, p-1,$$

exist and holomorphic in U.

PROOF Except for a finite number of values of β ,

$$\Gamma(\beta,0,a_1,\cdots,a_{p-1}) = (0,\cdots,0)$$

holds.

The jacobian matrix $\Lambda_{\beta} = \left(\frac{\partial w_i}{\partial v_j}\right)$ at $(\beta, 0, a_1, \dots, a_{p-1})$ is regular. Apply the implicit function theorem.

Parameter α

Functions v_1, \dots, v_{p-1} , with $\kappa = \varepsilon^p$ give solutions of equation (G).

Next, let us go back to equation (*F*). We introduced redundant parameters ε and δ . Parameter δ is determined as a rational function of β . The redundant parameter $\kappa = \varepsilon^p$ is related to the remaining parameter α by equation (*F*₀). From equation (*F*₀), we have

$$(K) \quad \alpha = (\beta + \beta^{-1})(y_* - \frac{\delta}{2}\kappa) - (y_* - \frac{\delta}{2}\kappa)^2 - \kappa \sum_{\ell=1}^{p-1} v_\ell v_{p-\ell},$$

which is a function of β and κ .

As

$$y_* = rac{eta ar
u + eta^{-1}
u}{2}, \qquad lpha_0 = (eta + eta^{-1}) y_* - y_*^2,$$

$$\alpha - \alpha_0 = -\kappa \left(\sum_{\ell=1}^{p-1} v_\ell v_{p-\ell} - y_* \delta + \frac{\delta}{2} (\beta + \beta^{-1}) \right) - \frac{\delta^2}{4} \kappa^2$$

$$= -\kappa \left(\sum_{\ell=1}^{p-1} a_\ell a_{p-\ell} + \frac{\delta}{2} (\beta(1-\bar{\nu}) + \beta^{-1}(1-\nu))\right) + o(\kappa).$$

By setting

$$\alpha_1 = -\left(\sum_{\ell=1}^{p-1} a_\ell a_{p-\ell} + \frac{\delta}{2} (\beta(1-\bar{\nu}) + \beta^{-1}(1-\nu))\right),$$

we have

$$\alpha = \alpha_0 + \alpha_1 \kappa + o(\kappa).$$

Recall

$$\alpha_1 = -\left(\sum_{\ell=1}^{p-1} a_\ell a_{p-\ell} + \frac{\delta}{2} (\beta(1-\bar{\nu}) + \beta^{-1}(1-\nu))\right).$$

PROPOSITION

 α_1 is a non-trivial rational function of $\beta,$ and takes real value if $|\beta|=1.$

Recall

$$\alpha_1 = -\left(\sum_{\ell=1}^{p-1} a_\ell a_{p-\ell} + \frac{\delta}{2} (\beta(1-\bar{\nu}) + \beta^{-1}(1-\nu))\right)$$

PROPOSITION

 α_1 is a non-trivial rational function of $\beta,$ and takes real value if $|\beta|=1.$

Proof

If $\beta = -\nu$, then, as in the preceeding proposition, a_1, \dots, a_{p-1} and δ are real and positive. Moreover, $\beta(1-\bar{\nu}) + \beta^{-1}(1-\nu) = 2 - (\nu + \bar{\nu}) > 0$. Hence, $\alpha_1(-\nu) < 0$, which shows α_1 is non-trivial. If $|\beta| = 1$, then $\beta^{-1} = \bar{\beta}$. The reality of $\gamma_1, \dots, \gamma_{p-1}$, a_1, \dots, a_{p-1} , and δ is obvious.

Parameters α and κ

Recall

$$y_*(\beta) = \frac{\beta \bar{\nu} + \beta^{-1} \nu}{2}, \quad \alpha_0(\beta) = ((\beta + \beta^{-1}) - y_*(\beta))y_*(\beta).$$

$$(K) \quad \alpha = (\beta + \beta^{-1})(y_* - \frac{\delta}{2}\kappa) - (y_* - \frac{\delta}{2}\kappa)^2 - \kappa \sum_{\ell=1}^{p-1} v_\ell v_{p-\ell}.$$
$$\alpha = \alpha_0 + \alpha_1 \kappa + o(\kappa).$$

PROPOSITION

For all $\beta_0 \in \mathbb{C}$, except for a finite number of values, there exists a neighborhood, U, of $(\beta_0, \alpha_0(\beta_0)) \in \mathbb{C}^2$, such that the implicit function $\kappa = \kappa(\beta, \alpha)$ satisfying $\kappa(\beta_0, \alpha_0(\beta_0)) = 0$ defined by equation (K) exists and holomorphic in U.

Choice of initial point

Now, fix β_0 with $|\beta_0| = 1$, and set $\alpha_0 = \alpha_0(\beta_0) \in \mathbb{R}$. If $\alpha \in \mathbb{R}$, and $|\alpha - \alpha_0|$ is sufficiently small, then $\kappa(\beta_0, \alpha)$ is real, since the preceding procedure keeps the realities.

We choose a *p*-th root, ε , of $\kappa(\beta_0, \alpha)$ as wollows.

CASE I If p is odd or $\kappa(\beta_0, \alpha) > 0$, then the equation $\varepsilon^p = \kappa(\beta_0, \alpha)$ has a real root.

CASE II If p is even and $\kappa(\beta_0, \alpha) < 0$, then take a solution of $\varepsilon^p = \kappa(\beta_0, \alpha)$ satisfying $\varepsilon = \bar{\nu}\bar{\varepsilon}$.

Choice of initial point

Now, fix β_0 with $|\beta_0| = 1$, and set $\alpha_0 = \alpha_0(\beta_0) \in \mathbb{R}$. If $\alpha \in \mathbb{R}$, and $|\alpha - \alpha_0|$ is sufficiently small, then $\kappa(\beta_0, \alpha)$ is real, since the preceding procedure keeps the realities.

We choose a *p*-th root, ε , of $\kappa(\beta_0, \alpha)$ as wollows.

CASE I If p is odd or $\kappa(\beta_0, \alpha) > 0$, then the equation $\varepsilon^p = \kappa(\beta_0, \alpha)$ has a real root.

CASE II If p is even and $\kappa(\beta_0, \alpha) < 0$, then take a solution of $\varepsilon^p = \kappa(\beta_0, \alpha)$ satisfying $\varepsilon = \bar{\nu}\bar{\varepsilon}$.

Choice of ε determines the chice of the initial point of the cycle.

Self-anti-conjugate cycle

CASE I Real ε gives real solutions v_1, \dots, v_{p-1} of equation (G), and real solutions u_0, \dots, u_{p-1} of equations (F) and (E).

These give rise to a periodic orbit

$$y_n = u_0 + \nu^n u_1 + \cdots + \nu^{(p-1)n} u_{p-1},$$

with real y_0 . We see that $y_{-n} = \bar{y_n}$.

$$\begin{pmatrix} y_0 \\ y_1 \end{pmatrix} = H_{\alpha,\beta} \begin{pmatrix} y_{-1} \\ y_0 \end{pmatrix}.$$
$$P_1 = \begin{pmatrix} y_0 \\ y_1 \end{pmatrix} \text{ and } P_0 = \begin{pmatrix} y_{-1} \\ y_0 \end{pmatrix}.$$

are swap-conjugate to each other.

The obtained periodic orbit is self-anti-conjugate. The jacobian matrix along the orbit is of the form

$$D(H_{\alpha,\beta}^{\circ p})|_{P_0} = \beta^p A,$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

with det A = 1 and trace $A \in \mathbb{R}$.

Self-anti-conjugate cycle

CASE II We took ε satisfying $\varepsilon = \overline{\nu}\overline{\varepsilon}$ and $\varepsilon^p = \overline{\varepsilon}^p = \kappa(\beta_0, \alpha) \in \mathbb{R}$. Solutions v_1, \dots, v_{p-1} of equation (G) are real, since $\kappa(\beta_0, \alpha) \in \mathbb{R}$. The solutions of equation (F) are as follows.

$$u_0 = y_* - \frac{\delta}{2} \varepsilon^p, \quad u_k = \varepsilon^k v_k, \quad (k = 1, \cdots, p-1).$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

As u_0 is real, we have

$$y_n = \sum_{k=0}^{p-1} \nu^{kn} u_k = u_0 + \sum_{k=1}^{p-1} \nu^{kn} \varepsilon^k v_k = u_0 + \sum_{k=1}^{p-1} \nu^{k(n-1)} \overline{\varepsilon}^k v_k$$
$$= u_0 + \overline{\sum_{k=1}^{p-1} \nu^{-k(n-1)} \varepsilon^k v_k} = \overline{\sum_{k=0}^{p-1} \nu^{k(1-n)} u_k} = \overline{y_{1-n}}.$$

The obtained periodic orbit is self-anti-conjugate. The jacobian matrix along the orbit is of the form

$$D(H^{\circ p}_{\alpha,\beta})|_{P_0} = \beta^p A,$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

with det A = 1 and trace $A \in \mathbb{R}$.

Trace function

Let

$$\tau = \beta^{-p}$$
 trace $D(H_{\alpha,\beta}^{\circ p})|_{P_0}$.

 τ is an algebraic function of (α, β) .

Note that τ does not depend on the choice of ε among the *p*-th root of κ , sice the choice of ε corresponds to the choice of the initial point in the periodic orbit.

 τ is locally univalent and continuous near (β_0, α_0). Hence τ is holomorphic in (β, α) near (β_0, α_0).

As we saw, if $|\beta| = 1$ and $\alpha \in \mathbb{R}$, then $\tau(\beta, \alpha) \in \mathbb{R}$ near (β_0, α_0) , and $-2 < \tau(\beta_0, \alpha_0) < 2$.

PROPOSITION $\tau(\beta, \alpha)$ is holomorphic and non-constant near (β_0, α_0) .

Proof

Consider the analytic continuation of τ . As τ is algebraic, continuation along the real axis of α exists by avoiding branch points choosing some branch. If $|\alpha|$ is sufficiently large, then all the periodic points of the Hénon map are hyperbolic, and $|\tau(\beta_0, \alpha)| > 2$ there.

Trace function

Let
$$B = \begin{pmatrix} 0 & \beta^{-1} \\ -\beta & 0 \end{pmatrix}$$
 and $Y_k = \begin{pmatrix} 0 & 0 \\ 0 & 2y_k \end{pmatrix}$.
 $\tau = \beta^{-p} \operatorname{trace} D(H_{\alpha,\beta}^{\circ p})|_{P_0}$
 $= \operatorname{trace} \left(\begin{pmatrix} 0 & \beta^{-1} \\ -\beta & 2y_{p-1} \end{pmatrix} \cdots \begin{pmatrix} 0 & \beta^{-1} \\ -\beta & 2y_0 \end{pmatrix} \right)$
 $= \operatorname{trace} \left((B + Y_{p-1}) \cdots (B + Y_0) \right).$
 $\tau = \sum_{k=0}^{\left\lfloor \frac{p}{2} \right\rfloor} (-1)^k 2^{p-2k} \left(\sum_{0 \le i_1 < i_2 < \cdots < i_{p-2k} < p} y_{i_1} y_{i_2}, \cdots y_{i_{p-2k}} \right).$

Here sum in the parenthes is taken over i_1, \cdots, i_{p-2k} with some extra condition.

Coefficients of $\tau(\kappa)$ are rational functions of β .

Family of Hénon maps

For
$$(\theta, \varphi) \in (\mathbb{R}/2\pi\mathbb{Z})^2$$
, let
 $\beta = \cos \theta + i \sin \theta$, $\alpha = 2\cos \theta \cos \varphi - \cos^2 \varphi$,
which defines a family of self-anti-conjugate Hénon maps

$$H_{\alpha,\beta}\left(egin{array}{c} x \ y \end{array}
ight) \;\;=\;\; \left(egin{array}{c} y \ eta(y^2+lpha)-eta^2x \end{array}
ight),$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

with $|\beta| = 1$ and $\alpha \in \mathbb{R}$.

Abundance of Siegel balls

Theorem

For any open set $U \subset (\mathbb{R}/2\pi\mathbb{Z})^2$ and any integer N > 1, there exists a point $(\theta_N, \varphi_N) \in U$ such that the Hénon map $H_{\alpha,\beta}$ for this parameter has more than N cycles of Siegel balls.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

$\begin{array}{l} PROOF\\ \text{Recall} \end{array}$

$$\beta = \cos \theta + i \sin \theta$$
, $\alpha = 2 \cos \theta \cos \varphi - \cos^2 \varphi$.

Fixed points of $H_{\alpha.\beta}$ are given by

$$y_* = \cos \theta \pm (\cos \theta - \cos \varphi).$$

We choose

$$y_* = \cos \varphi$$

and set

$$\mu = \cos \varphi + i \sin \varphi.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Eigenvalues of jacobian matrix at the fixed point

$$DH_{\alpha,\beta} = \beta \left(\begin{array}{cc} 0 & \beta^{-1} \\ -\beta & 2\cos\varphi \end{array} \right)$$

are $\beta\mu$ and $\beta\bar{\mu}$. The arguements of these eigenvalues are

$$\theta + \varphi$$
 and $\theta - \varphi$ (mod 2π).

By Siegel's theorem (or Brjuno's theorem), there is a subset $W_1 \subset (\mathbb{R}/2\pi\mathbb{Z})^2$ of full measure, such that the fixed point of the corresponding Hénon map has a Siegel ball.

We set

$$U_1 = U, \quad p_1 = 1, \quad \text{and} \quad V_1 = U_1 \cap W_{p_1}.$$

Inductively, we assume U_m is an open subset of U and V_m is a full measure subset of U_m , such that $H_{\alpha,\beta}$ for any $(\theta,\varphi) \in V_m$ has m cycles of Siegel balls of periods p_1, \dots, p_m .

In open set U_m , there is a point $(\theta, \varphi) \in U_m$, such that $\frac{1}{2\pi}(\theta + \varphi) = \frac{q}{p}$ is rational with $p > p_m$ and, p and q are mutally prime.

Then perturb (θ, φ) keeping $\theta + \varphi = \frac{2\pi q}{p}$, so that $\beta = \cos \theta + i \sin \theta$ avoids the values of β forbidden in the preceeding propositions.

There is an open set of parameters containing such a parameter, such that the Hénon map $H_{\alpha,\beta}$ has a neutral cycle of period p, which is self-anti-conjugate with eigenvalues of the form $\beta^p \lambda$ and $\beta^p \overline{\lambda}$, with $-2 < \tau(\beta, \alpha) < 2$.

(日) (同) (三) (三) (三) (○) (○)

The trace function $\tau(\beta, \alpha)$ is a non-trivial analytic function with respect to α . Determinant of $H^{p}_{\alpha,\beta}$ is β^{2p} . Hence, the eigenvalues of the neutral p cycle varies effectively.

Note that $\tau(\beta, \alpha) \in \mathbb{R}$, if $\alpha \in \mathbb{R}$, and $-2 < \tau(\beta, \alpha_0(\beta)) < 2$.

This implies that there is an open subset $U_{m+1} \subset U_m$ and a full measure set $W_p \subset U_{m+1}$ of parameters, such that the Hénon map has a Siegel ball of period p.

Set $V_{m+1} = V_m \cap W_p \subset U_{m+1}$, and $p_{m+1} = p$. V_{m+1} is a full measure subset of U_{m+1} .

Continue this procedure until m = N.

 V_N is a set of positive measure. Hence, we can find a parameter $(\theta_N, \varphi_N) \in V_N \subset U$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?