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Abstract

There exists a real two-parameter family of complex Hénon maps
such that the number of coexisting cycles of Siegel balls is
unbounded in the subfamily of any open set of parameters.



Complex Hénon map

parameters (α, β) ∈ C2

Hα,β : C2 → C2

Hα,β

(
x
y

)
=

(
y

β(y2 + α)− β2x

)

hb,c

(
x
y

)
=

(
x2 + c + by

x

)

φ

(
x
y

)
=

(
βy
βx

)
, b = −β2, c = −αb

φ ◦ Hα,β ◦ φ−1 = hb,c
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Siegel ball



Siegel ball



Fixed point

Fixed point P∗ =

(
y∗
y∗

)
is given by

y∗ = β(y2∗ + α)− β2y∗,

or
y2∗ − (β + β−1)y∗ + α = 0.

The Jacobian matrix at the fixed point is as follows.

DHα,β P∗ =

(
0 1
−β2 2βy∗

)
= β

(
0 β−1

−β 2y∗

)
.

trace DHα,β = 2βy∗, det DHα,β = β2.
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Our family

We specify the eigenvalues at the fixed point.
For eigenvalues βµ, βµ−1, we have

y∗ =
µ+ µ−1

2

and
α = (β + β−1)y∗ − y2∗ .

Our family is given by

β = cos θ + i sin θ,

µ = cosϕ+ i sinϕ.

with
y∗ = cosϕ, α = 2 cos θ cosϕ− cos2 ϕ.
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Abundance of Siegel balls

Theorem
For any open set U ⊂ (R/2πZZ)2 and any integer N > 1, there
exists a point (θN , ϕN) ∈ U such that the Hénon map Hα,β for this
parameter has more than N cycles of Siegel balls.



Elliptic-Parabolic fixed point

Let p > 1 be an integer, and let ν be a prime p-th root of unity.

νk 6= 1 (k = 1, · · · , p − 1),

νp = 1.

If ν is an eigenvalue of DHα,β P∗ , then

trace DHα,β P∗ = ν + β2ν̄, y∗ =
βν̄ + β−1ν

2
,

α0 = (β + β−1)y∗ − y2∗ .
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2
,

α0 = (β + β−1)y∗ − y2∗ .



Periodic orbit

Suppose {Pn} =

{(
xn
yn

)}
is p-periodic. From

xn+1 = yn, yn+1 = β(y2n + α)− β2xn,

we have
β−1yn+1 = y2n + α− βyn−1.



Elliptic-parabolic bifurcation
Recall

y∗ =
βν̄ + β−1ν

2
, α0 = (β + β−1)y∗ − y2∗ .

Theorem
For prime p-th root ν of 1, and for all β ∈ C, except for a finite
number of values, there exists a constant α1 6= 0 and a family
yn(ε) of p-cycles for parameter α = α(εp), such that

α(εp) = α0 + α1ε
p + O(ε2p), yn(ε) = y∗ + νnε+ O(ε2),

holds for ε ∈ C near ε = 0.



Proposition
The constant α1 in the previous theorem depends upon β and is a
non trivial rational function of β.



Self-anti-conjugate cycles

Recall

α(εp) = α0 + α1ε
p + O(ε2p), yn(ε) = y∗ + νnε+ O(ε2).

Theorem
In the previous theorem, if |β| = 1 then α0 ∈ R and α1 ∈ R.
Moreover, if α ∈ R, near α0, then

yn = y−n or yn = y1−n

for some ε.



Self-anti-conjugate jacobian matrix

Theorem
If p-periodic orbit is self-anti-conjugate, i.e.

yn = y−n or yn = y1−n,

then the jacobian matrix along the orbit is of the form

D(H◦pα,β) P0 = βpA,

with detA = 1 and trace A ∈ R.



Trace function

Let
τ(β, α) = β−p trace D(H◦pα,β) P0 .

Proposition
τ(β, α) is holomorphic near (β0, α0), and non-constant with
respect to α.

Proposition
If |β| = 1 and α ∈ R, then τ(β, α) ∈ R near (β, α0(β)), and
−2 < τ(β, α0(β)) < 2. (Except for finitely many values of β.)



Discrete Fourier expansion

Recall the equation of p-periodic point. (yn+p = yn)

β−1yn+1 = y2n + α− βyn−1, n = 0, · · · , p − 1.

Discrete Fourier expansion

yn = u0 + νnu1 + ν2nu2 + · · ·+ νknuk + · · ·+ ν(p−1)nup−1

=

p−1∑
k=0

νknuk

gives rise to the following equation.



Equation (F )

(F0) (β + β−1)u0 = u20 +

p−1∑
`=1

u`up−` + α

(F1) (βν̄ + β−1ν)u1 = 2u0u1 +

p−1∑
`=2

u`up+1−`

(Fk) (βν̄k + β−1νk)uk = 2u0uk +
k−1∑
`=1

u`uk−` +

p−1∑
`=k+1

u`up+k−`.

k = 2, · · · , p − 1.

This equation has a solution, corresponding to the
elliptic-parabolic fixed point P∗.

u0 = y∗, u1 = u2 = · · · = up−1 = 0, α = α0.
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elliptic-parabolic fixed point P∗.
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Equation (F ′)

Rewite (F ) as follows.

(F0) (β + β−1)u0 = u20 +

p−1∑
`=1

u`up−` + α

(F ′1) (βν̄ + β−1ν − 2u0)u1 =

p−1∑
`=2

u`up+1−`

(F ′k) (βν̄k + β−1νk − 2u0)uk =
k−1∑
`=1

u`uk−` +

p−1∑
`=k+1

u`up+k−`.

k = 2, · · · , p − 1.



Emanating branch of periodic points

Parameter α appears only in (F0).

For each β, let ε ∈ C be a small parameter and let δ ∈ C be a
constant to be determined. Dependence upon β will be considered
later.

Suppose u0 = y∗ −
δ

2
εp, and u1 = εv1.

From equation (F ′), we may suppose, inductively, uk = εkvk ,
(k = 2, · · · , p − 1).
Here, v1, v2, · · · , vp−1 are functions of ε. (Later, we see they are
functions of εp.)

(E0) u0 = y∗ −
δ

2
εp,

(Ek) uk = εkvk , k = 1, · · · , p − 1.
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Equation (G )

Rewrite equation (F ) using (E ), with y∗ =
βν̄ + β−1ν

2
, to get the

following equation.

(G1) δv1 =

p−1∑
`=2

v`vp+1−`,

(Gk) (β(ν̄k − ν̄) + β−1(νk − ν) + δεp)vk

=
k−1∑
`=1

v`vk−` + εp
p−1∑
`=k+1

v`vp+k−`,

k = 2, · · · , p − 1.

Note that α will be computed by (F0), afterwards.



Principal part equation (L)

Let vk = ak + O(ε), k = 1, · · · , p − 1. And let

γk = β(ν̄k − ν̄) + β−1(νk − ν),

for k = 2, · · · , p − 1.
Equation (G ), as ε→ 0, yields the following equation.

(L1) δa1 =

p−1∑
`=2

a`ap+1−`,

(Lk) γkak =
k−1∑
`=1

a`ak−`, k = 2, · · · , p − 1.
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Constant δ

Inductively from (L2), · · · , (Lp−1), we have

ak =
1

γk

k−1∑
`=1

a`ak−` = ηka
k
1 ,

with ηk = ηk(β) rational function of β, for k = 2, · · · , p − 1.
Or

η1 = 1, ηk =
1

γk

k−1∑
`=1

η`ηk−`.

From (L1),

δa1 = Φ(β)ap+1
1

with a rational function Φ(β).
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Non-triviality

Proposition.
Φ(β) is a non-trivial rational function of β.

Proof.
Obviously, Φ(β) is a rational function of β. We show that
Φ(−ν) > 0.
If β = −ν, then

γk = 2− (ν̄k−1 + νk−1), k = 2, · · · , p − 1.

Therefore, 0 < γk(−ν) ≤ 4, k = 2, · · · , p − 1.
This imply ηk(−ν) > 0, k = 2, · · · , p − 1.
And Φ(−ν) > 0, since

Φ(β) =

p−1∑
`=2

η`(β)ηp+1−`(β).
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Reality of solutions

If |β| = 1, then

γk ∈ R, (k = 2, · · · , p − 1),

ηk ∈ R, (k = 1, · · · , p − 1),

and Φ(β) ∈ R.
These are non-zero except for a finite number of values of β.

Now, we determine the constant δ by

δ = Φ(β).

Equation (L) has a solution

a1 = 1, ak = ηk(β), k = 2, · · · , p − 1.

If |β| = 1, then a1, · · · , ap−1 are all real.
Other solutions give the same periodic orbit.



Equation (G )

Now, we go back to equation (G ).

(G1) δv1 =

p−1∑
`=2

v`vp+1−`,

(Gk) (γk + δεp)vk =
k−1∑
`=1

v`vk−` + εp
p−1∑
`=k+1

v`vp+k−`,

k = 2, · · · , p − 1.

Observe that ε appears only as εp in this equation.
Let κ = εp and rewrite the equation as follows.



Equation (Γ)

(Γ1) w1 =

p−1∑
`=2

v`vp+1−` − δv1,

(Γk) wk =
k−1∑
`=1

v`vk−` − γkvk + κ

(
p−1∑
`=k+1

v`vp+k−` − δvk

)
,

k = 2, · · · , p − 1.

These define a map

Γ : C× C× Cp−1 → Cp−1

by
Γ(β, κ, v1, · · · , vp−1) = (w1, · · · ,wp−1).

Γ is a quadratic polynomial in v1, · · · , vp−1, with coefficients
rational in β, and affine in κ.
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Matrix Λβ

Except for a finite number of values of β,

Γ(β, 0, a1, · · · , ap−1) = (0, · · · , 0)

holds.The jacobian matrix Λβ =

(
∂wi

∂vj

)
at (β, 0, a1, · · · , ap−1)

is as follows.

Λβ =



−δ 2ap−1 2ap−2 · · · · · · 2a2
2a1 −γ2 0 · · · · · · 0
2a2 2a1 −γ3 0 · · · 0

2a3 2a2 2a1 −γ4
. . .

...
...

. . .
. . .

. . .
. . . 0

2ap−2 2ap−3 · · · 2a2 2a1 −γp−1


.

All components of Λβ are rational functions of β.



Regularity of Λβ

Proposition
If p ≥ 3, the matrix Λβ is regular except for a finite number of
values of β.

Proof
Obviously, the determinant of Λβ is a rational function of β. We
show that it is non-trivial. Let

Mβ =



−δ ap−1 ap−2 · · · · · · a2
a1 −γ2 0 · · · · · · 0
a2 a1 −γ3 0 · · · 0

a3 a2 a1 −γ4
. . .

...
...

. . .
. . .

. . .
. . . 0

ap−2 ap−3 · · · a2 a1 −γp−1


.



Regularity of Λβ

Proposition
If p ≥ 3, the matrix Λβ is regular except for a finite number of
values of β.

Proof
Obviously, the determinant of Λβ is a rational function of β. We
show that it is non-trivial. Let

Mβ =



−δ ap−1 ap−2 · · · · · · a2
a1 −γ2 0 · · · · · · 0
a2 a1 −γ3 0 · · · 0

a3 a2 a1 −γ4
. . .

...
...

. . .
. . .

. . .
. . . 0

ap−2 ap−3 · · · a2 a1 −γp−1


.



Equation (L) is equivalent to

Mβ

 a1
...

ap−1

 = 0.

As we have non-trivial solutions for all values of β, except for a
finite number of values,

detMβ = 0

holds as a rational function of β.



Observe the sweeping-out process of Mβ. To sweep out the
off-diagonal components of the first line, other lines of Mβ are
used with diagonal components γ2, · · · , γp−1 as pivots. These
pivots are non-trivial rational functions of β.
To suppress a term in (1, k)-component of Mβ, say tk , we add the
k-th line multiplied by tk/γk to the first line. Then the
(1, j)-component, say cj , becomes

cj +
ak−j
γk

tk , j = 1, · · · , k − 1.

In this process, all the components of the first line, except for −δ,
are sums of terms of the form

1

γm1
k1
· · · γm`

k`

.

When all the off-diagonal components of the first line are swept
out, the first line vanishes.



Next, let us compute det Λβ in a similar way. To compare the
sweeping-out process, let bk = ak and rewrite the off-diagonal
components fof Λβ as

2ak = ak + bk , k = 1, · · · , p − 1.

Sweep-out the off-diagonal components of the first line of Λβ to
get a lower triangle matrix. The terms without bk ’s are exactly
same as in the sweep-out procedure of Mβ. The terms without
ak ’s contribute exactly same. There are other terms consisting of
ak ’s and bk ’s. Anyway, all the terms are always sums of terms of
the form

1

γm1
k1
· · · γm`

k`

.



After the sweeping-out, in the (1, 1)-component of the triangle
matrix, −δ cancells the ak -only terms. And bk -only terms gives δ.
The remaining terms are a sum of terms of the form

1

γm1
k1
· · · γm`

k`

,

with positive coefficients.
The (1, 1)-component of the triangle matrix is obviously a rational
function of β. To prove the non-triviality of the rational function,
we show that it does not vanish for β = −ν. As

γk(β) = β(ν̄k − ν̄) + β−1(νk − ν),

γk(−ν) = 2− (νk−1 + ν̄k−1) > 0, k = 2, · · · , p − 1.



These imply the positivity of a1, · · · , ap−1 and δ. Furthermore,
terms of the form

1

γm1
k1
· · · γm`

k`

are all positive. Hence the (1, 1)-cpmponent of the triangle matrix
is strictly positive and greater than δ.
We conclude that

det Λ−ν 6= 0.



Equation (Γ)

Now, we go back to equation (Γ).

(Γ1) w1 =

p−1∑
`=2

v`vp+1−` − δv1,

(Γk) wk =
k−1∑
`=1

v`vk−` − γkvk + κ

(
p−1∑
`=k+1

v`vp+k−` − δvk

)
,

k = 2, · · · , p − 1.

Γ(β, κ, v1, · · · , vp−1) = (w1, · · · ,wp−1).



Proposition
For any β0 ∈ C, except for a finite number of values, there exists a
neighborhood, U, of (β0, 0) ∈ C2, such that implicit functions

v1(β, κ), v2(β, κ), · · · , vp−1(β, κ)

defined by
Γ(β, κ, v1, · · · , vp−1) = (0, · · · , 0)

with
vk(β0, 0) = ak(β0), k = 1, · · · , p − 1,

exist and holomorphic in U.



Proof
Except for a finite number of values of β,

Γ(β, 0, a1, · · · , ap−1) = (0, · · · , 0)

holds.

The jacobian matrix Λβ =

(
∂wi

∂vj

)
at (β, 0, a1, · · · , ap−1) is

regular. Apply the implicit function theorem.



Parameter α

Functions v1, · · · , vp−1, with κ = εp give solutions of equation (G ).

Next, let us go back to equation (F ).
We introduced redundant parameters ε and δ. Parameter δ is
determined as a rational function of β. The redundant parameter
κ = εp is related to the remaining parameter α by equation (F0).
From equation (F0), we have

(K ) α = (β + β−1)(y∗ −
δ

2
κ)− (y∗ −

δ

2
κ)2 − κ

p−1∑
`=1

v`vp−`,

which is a function of β and κ.



As

y∗ =
βν̄ + β−1ν

2
, α0 = (β + β−1)y∗ − y2∗ ,

α− α0 = − κ

(
p−1∑
`=1

v`vp−` − y∗δ +
δ

2
(β + β−1)

)
− δ2

4
κ2

= − κ

(
p−1∑
`=1

a`ap−` +
δ

2
(β(1− ν̄) + β−1(1− ν))

)
+ o(κ).

By setting

α1 = −

(
p−1∑
`=1

a`ap−` +
δ

2
(β(1− ν̄) + β−1(1− ν))

)
,

we have
α = α0 + α1κ+ o(κ).



Recall

α1 = −

(
p−1∑
`=1

a`ap−` +
δ

2
(β(1− ν̄) + β−1(1− ν))

)
.

Proposition

α1 is a non-trivial rational function of β, and takes real value if
|β| = 1.

Proof
If β = −ν, then, as in the preceeding proposition, a1, · · · , ap−1
and δ are real and positive.
Moreover, β(1− ν̄) + β−1(1− ν) = 2− (ν + ν̄) > 0.
Hence, α1(−ν) < 0, which shows α1 is non-trivial.
If |β| = 1, then β−1 = β̄. The reality of γ1, · · · , γp−1,
a1, · · · , ap−1, and δ is obvious.



Recall

α1 = −

(
p−1∑
`=1

a`ap−` +
δ

2
(β(1− ν̄) + β−1(1− ν))

)
.

Proposition

α1 is a non-trivial rational function of β, and takes real value if
|β| = 1.

Proof
If β = −ν, then, as in the preceeding proposition, a1, · · · , ap−1
and δ are real and positive.
Moreover, β(1− ν̄) + β−1(1− ν) = 2− (ν + ν̄) > 0.
Hence, α1(−ν) < 0, which shows α1 is non-trivial.
If |β| = 1, then β−1 = β̄. The reality of γ1, · · · , γp−1,
a1, · · · , ap−1, and δ is obvious.



Parameters α and κ

Recall

y∗(β) =
βν̄ + β−1ν

2
, α0(β) = ((β + β−1)− y∗(β))y∗(β).

(K ) α = (β + β−1)(y∗ −
δ

2
κ)− (y∗ −

δ

2
κ)2 − κ

p−1∑
`=1

v`vp−`.

α = α0 + α1κ+ o(κ).

Proposition
For all β0 ∈ C, except for a finite number of values, there exists a
neighborhood, U, of (β0, α0(β0)) ∈ C2, such that the implicit
function κ = κ(β, α) satisfying κ(β0, α0(β0)) = 0 defined by
equation (K ) exists and holomorphic in U.



Choice of initial point

Now, fix β0 with |β0| = 1, and set α0 = α0(β0) ∈ R.
If α ∈ R, and |α− α0| is sufficiently small, then κ(β0, α) is real,
since the preceeding procedure keeps the realities.

We choose a p-th root, ε, of κ(β0, α) as wollows.

case I If p is odd or κ(β0, α) > 0, then the equation
εp = κ(β0, α) has a real root.

case II If p is even and κ(β0, α) < 0, then take a solution of
εp = κ(β0, α) satisfying ε = ν̄ε̄.

Choice of ε determines the chice of the initial point of the cycle.



Choice of initial point

Now, fix β0 with |β0| = 1, and set α0 = α0(β0) ∈ R.
If α ∈ R, and |α− α0| is sufficiently small, then κ(β0, α) is real,
since the preceeding procedure keeps the realities.

We choose a p-th root, ε, of κ(β0, α) as wollows.

case I If p is odd or κ(β0, α) > 0, then the equation
εp = κ(β0, α) has a real root.

case II If p is even and κ(β0, α) < 0, then take a solution of
εp = κ(β0, α) satisfying ε = ν̄ε̄.

Choice of ε determines the chice of the initial point of the cycle.



Self-anti-conjugate cycle

case I
Real ε gives real solutions v1, · · · , vp−1 of equation (G ), and real
solutions u0, · · · , up−1 of equations (F ) and (E ).

These give rise to a periodic orbit

yn = u0 + νnu1 + · · ·+ ν(p−1)nup−1,

with real y0. We see that y−n = ȳn.(
y0
y1

)
= Hα,β

(
y−1
y0

)
.

P1 =

(
y0
y1

)
and P0 =

(
y−1
y0

)
are swap-conjugate to each other.



The obtained periodic orbit is self-anti-conjugate. The jacobian
matrix along the orbit is of the form

D(H◦pα,β) P0 = βpA,

with detA = 1 and trace A ∈ R.



Self-anti-conjugate cycle

case II
We took ε satisfying ε = ν̄ε̄ and εp = ε̄p = κ(β0, α) ∈ R.

Solutions v1, · · · , vp−1 of equation (G ) are real, since κ(β0, α) ∈ R.

The solutions of equation (F ) are as follows.

u0 = y∗ −
δ

2
εp, uk = εkvk , (k = 1, · · · , p − 1).

As u0 is real, we have



yn =

p−1∑
k=0

νknuk = u0 +

p−1∑
k=1

νknεkvk = u0 +

p−1∑
k=1

νk(n−1)ε̄kvk

= u0 +

p−1∑
k=1

ν−k(n−1)εkvk =

p−1∑
k=0

νk(1−n)uk = y1−n.

The obtained periodic orbit is self-anti-conjugate. The jacobian
matrix along the orbit is of the form

D(H◦pα,β) P0 = βpA,

with detA = 1 and trace A ∈ R.



Trace function

Let
τ = β−p trace D(H◦pα,β) P0 .

τ is an algebraic function of (α, β).

Note that τ does not depend on the choice of ε among the p-th
root of κ, sice the choice of ε corresponds to the choice of the
initial point in the periodic orbit.

τ is locally univalent and continuous near (β0, α0). Hence τ is
holomorphic in (β, α) near (β0, α0).



As we saw, if |β| = 1 and α ∈ R, then τ(β, α) ∈ R near (β0, α0),
and −2 < τ(β0, α0) < 2.

Proposition
τ(β, α) is holomorphic and non-constant near (β0, α0).

Proof
Consider the analytic continuation of τ . As τ is algebraic,
continuation along the real axis of α exists by avoiding branch
points choosing some branch. If |α| is sufficiently large, then all
the periodic points of the Hénon map are hyperbolic, and
|τ(β0, α)| > 2 there.



Trace function

Let B =

(
0 β−1

−β 0

)
and Yk =

(
0 0
0 2yk

)
.

τ = β−p trace D(H◦pα,β) P0

= trace

((
0 β−1

−β 2yp−1

)
· · ·
(

0 β−1

−β 2y0

))
= trace ((B + Yp−1) · · · (B + Y0)) .

τ =

[ p
2

]∑
k=0

(−1)k2p−2k

 ∑
0≤i1<i2<···<ip−2k<p

yi1yi2, · · · yip−2k

 .

Here sum in the parenthes is taken over i1, · · · , ip−2k with some
extra condition.

Coefficients of τ(κ) are rational functions of β.



Family of Hénon maps

For (θ, ϕ) ∈ (R/2πZZ)2, let

β = cos θ + i sin θ, α = 2 cos θ cosϕ− cos2 ϕ,

which defines a family of self-anti-conjugate Hénon maps

Hα,β

(
x
y

)
=

(
y

β(y2 + α)− β2x

)
,

with |β| = 1 and α ∈ R.



Abundance of Siegel balls

Theorem
For any open set U ⊂ (R/2πZZ)2 and any integer N > 1, there
exists a point (θN , ϕN) ∈ U such that the Hénon map Hα,β for this
parameter has more than N cycles of Siegel balls.



Proof
Recall

β = cos θ + i sin θ, α = 2 cos θ cosϕ− cos2 ϕ.

Fixed points of Hα.β are given by

y∗ = cos θ ± (cos θ − cosϕ).

We choose
y∗ = cosϕ

and set
µ = cosϕ+ i sinϕ.



Eigenvalues of jacobian matrix at the fixed point

DHα,β = β

(
0 β−1

−β 2 cosϕ

)
are βµ and βµ̄.
The arguements of these eigenvalues are

θ + ϕ and θ − ϕ (mod 2π).

By Siegel’s theorem (or Brjuno’s theorem), there is a subset
W1 ⊂ (R/2πZZ)2 of full measure, such that the fixed point of the
corresponding Hénon map has a Siegel ball.



We set

U1 = U, p1 = 1, and V1 = U1 ∩Wp1 .

Inductively, we assume Um is an open subset of U and Vm is a full
measure subset of Um, such that Hα,β for any (θ, ϕ) ∈ Vm has m
cycles of Siegel balls of periods p1, · · · , pm.



In open set Um, there is a point (θ, ϕ) ∈ Um, such that
1
2π (θ + ϕ) = q

p is rational with p > pm and, p and q are mutally
prime.

Then perturb (θ, ϕ) keeping θ+ϕ = 2πq
p , so that β = cos θ+ i sin θ

avoids the values of β forbidden in the preceeding propositions.

There is an open set of parameters containing such a parameter,
such that the Hénon map Hα,β has a neutral cycle of period p,
which is self-anti-conjugate with eigenvalues of the form βpλ and
βpλ̄, with −2 < τ(β, α) < 2.



The trace function τ(β, α) is a non-trivial analytic function with
respect to α. Determinant of Hp

α,β is β2p. Hence, the eigenvalues
of the neutral p cycle varies effevtively.

Note that τ(β, α) ∈ R, if α ∈ R, and −2 < τ(β, α0(β)) < 2.

This implies that there is an open subset Um+1 ⊂ Um and a full
measure set Wp ⊂ Um+1 of parameters, such that the Hénon map
has a Siegel ball of period p.

Set Vm+1 = Vm ∩Wp ⊂ Um+1, and pm+1 = p. Vm+1 is a full
measure subset of Um+1.



Continue this procedure until m = N.

VN is a set of positive measure. Hence, we can find a parameter
(θN , ϕN) ∈ VN ⊂ U.


