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Abstract

There exists a real two-parameter family of complex Hénon maps
such that the number of coexisting cycles of Siegel balls is
unbounded in the subfamily of any open set of parameters.



Complex Hénon map

parameters (o, §) € C2

Ha’ﬁ : Cz — Cz
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Fixed point

Fixed point P, = < Y > is given by
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Fixed point

Fixed point P, = ( Y > is given by

Vx
Y = 5()/*2"‘04)_/82)/*,

or
v —(B+B8 Yy +a =0

The Jacobian matrix at the fixed point is as follows.

= (e an ) =o( 5 5 )
Pe ™ =82 28y ) —B 2y )

trace DH, 3 = 28y., det DH,p5 = f2

DH, s




Our family

We specify the eigenvalues at the fixed point.
For eigenvalues Su, Su~t, we have
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For eigenvalues Su, Su~t, we have
= bt !
: 2
and
_ -1 2
a = (B+8 )y — s

Our family is given by
B8 = cosf+isinf,

§ = cosy +isin.



Our family

We specify the eigenvalues at the fixed point.

For eigenvalues Su, Su~t, we have
= bt !
: 2
and
_ -1 2
a = (B+8 )y — s

Our family is given by
B8 = cosf+isinf,

§ = cosy +isin.

with
Y« =COSp, « = 2cosfcosp — coszgo.



Abundance of Siegel balls

THEOREM

For any open set U C (R/27Z)? and any integer N > 1, there
exists a point (O, pn) € U such that the Hénon map H, g for this
parameter has more than N cycles of Siegel balls.



Elliptic-Parabolic fixed point

Let p > 1 be an integer, and let v be a prime p-th root of unity.
vK#£1 (k=1,---,p—1),

vP = 1.



Elliptic-Parabolic fixed point

Let p > 1 be an integer, and let v be a prime p-th root of unity.

vK#£1 (k=1,---,p—1),

v = 1.
If v is an eigenvalue of DH, g|p,, then
= -1
trace DH, glp, = v+ %7, Vi = %’

ap = (B + /871)}/* - )/f‘



Periodic orbit

Suppose {P,} = {< ;" >} is p-periodic. From

Xn+1 = Yn, Yn+1 = /B(y3+a)—ﬁ2xn,

we have
5_1Yn+1 = ys +oa— BYn—l-



Elliptic-parabolic bifurcation
Recall

_ o1
Yo = w’ 040:(5+5_1)Y*_y>k2'

THEOREM

For prime p-th root v of 1, and for all 5 € C, except for a finite
number of values, there exists a constant a; # 0 and a family
yn(€) of p-cycles for parameter aw = a(eP), such that

a(eP) = ag + a1eP? + O(e),  yn(e) = yu + e + O(c%),

holds for € € C near € = 0.



PROPOSITION
The constant s in the previous theorem depends upon 5 and is a
non trivial rational function of 5.



Self-anti-conjugate cycles

Recall

aeP) = ag + a1eP + O(?P),  yn(e) = yu + 1" + O(£2).

THEOREM

In the previous theorem, if |3| =1 then ap € R and a3 € R.
Moreover, if a € R, near ag, then

Yn=Y-n or Yn = Y1-n

for some «.



Self-anti-conjugate jacobian matrix

THEOREM
If p-periodic orbit is self-anti-conjugate, i.e.

Yn=Y-n or Yn = Y1-n,
then the jacobian matrix along the orbit is of the form
D(Hgf)ﬁ)LDO = BPA’

with det A =1 and trace A € R.



Trace function

Let
7(B,a) = B7P trace D(HZ{’B)|pO.

PROPOSITION
7(p, «) is holomorphic near (5o, ap), and non-constant with
respect to «.

PROPOSITION
If |8 =1 and a € R, then 7(5, ) € R near (5, a0(p)), and
—2 < 7(B,a0(B)) < 2. (Except for finitely many values of 3.)



Discrete Fourier expansion

Recall the equation of p-periodic point. (ynip = ¥n)

B_lny*l = yr%_‘_a_ﬁyn*la nZO)"'vp_l'

Discrete Fourier expansion

Yo = U+ v u 12wy 4 Uy 4Py

p—1
= E an Uk
k=0

gives rise to the following equation.

1



Equation (F)

p—1
(Fo) (B+BNuw = wg+ Y uupo+a
/=1
p—1
(F) (Br+ ﬁ_lu)ul = 2upuy + Z Uplpy1—g
(=2
k—1 p—1
(Fk) (/Bljk—l-ﬁilyk)uk = 2U0Uk+ZU€Uk—Z+ Z Uplp i k—g-
/=1 l=k+1

k=2, ,p—1.



Equation (F)

p—1
(Fo) (B+BNuw = wg+ Y uupo+a
/=1
p—1
(F) (Br+ ﬁ_lu)ul = 2upuy + Z Uplpy1—g
(=2
k—1 p—1
(Fx) (/Bﬂk-l-ﬁ*ll/k)uk = 2uouk+ZUguk_z+ Z UpUpy k—p-
/=1 l=k+1

k=2---,p—1.
This equation has a solution, corresponding to the
elliptic-parabolic fixed point Pi.

Up = ys, U=t =---=u, 1=0, a=ap.



Equation (F')

Rewite (F) as follows.

p—1
(F) (B+B Yuo = g+ > utpr+a
=1
p—1
(F{) (BD+5_1V_2UO)U1 = ZUgUp+1_g
(=2
k—1 p—1
(Fo)  (BP*+ BN = 2up)uy = Uplg_p + Z Uglp 4 k—g-
(=1 l=k+1

k=2,---,p—1.



Emanating branch of periodic points

Parameter a appears only in (Fp).

For each 3, let ¢ € C be a small parameter and let 6 € C be a
constant to be determined. Dependence upon 3 will be considered

later.

Suppose g = yi — 75”, and u; = evy.

From equation (F’), we may suppose, inductively, uy = &Xvj,
(k=2,---,p—1).

Here, vi, v, -+, vp_1 are functions of . (Later, we see they are

functions of eP.)



Emanating branch of periodic points

Parameter a appears only in (Fp).

For each 3, let ¢ € C be a small parameter and let 6 € C be a
constant to be determined. Dependence upon 3 will be considered

later.

Suppose g = yi — 75”, and u; = evy.

From equation (F’), we may suppose, inductively, uy = &Xvj,
(k=2,---,p—1).

Here, vi, v, -+, vp_1 are functions of . (Later, we see they are

functions of eP.)

1)
(Eo) up = Y« — 78')7

(Ex) ue = vy, k=1,--- ,p—1.



Equation (G)

= -1
Rewrite equation (F) using (E), with y, = % to get the
following equation.
p—1
(G)  6vi = > Ve,
(=2
(G (BE* =)+ 7" —v) + 6P vk
k—1 p—1
= VeVk—e + €P Z VeVptk—0s
/=1 l=k+1

k=2, ,p—1.

Note that a will be computed by (Fp), afterwards.



Principal part equation (L)

Let vi = ax+0O(e), k=1,--- ,p—1. And let
W= B —0)+ T~ ),

fork=2,--- ,p—1
Equation (G), as € — 0, yields the following equation.



Principal part equation (L)

Let vi = ax+0O(e), k=1,--- ,p—1. And let

W= B =)+ BT ),

fork=2,--- ,p—1
Equation (G), as € — 0, yields the following equation.

(L1) day = Za£3p+1—e,

(Lk) Ykdk = Zagak 2 k=2---,p—1.



Constant o
Inductively from (Lp),- - ,(Lp—1), we have
=
= — > aaq = niar,
Tk 73

with g = nk(B) rational function of 3, for k =2,---  p—1.
Or



Constant &

Inductively from (Lp),- - ,(Lp—1), we have

k—1

1 K

ax = — § agdk—¢ = MNkay,
Yk —

with g = nk(B) rational function of 3, for k =2,---  p—1.
Or

From (L;),

with a rational function ®(f).



Non-triviality

PROPOSITION.
®(3) is a non-trivial rational function of 3.



Non-triviality

PROPOSITION.
®(3) is a non-trivial rational function of 3.

PROOF.

Obviously, ®(3) is a rational function of 5. We show that
d(—v) > 0.

If B = —v, then

v = 2—(FF P40, k=2, p—1,
Therefore, 0 < w(-v) <4, k=2,--- ,p—1.

This imply nx(-v) >0, k=2,---,p—1.
And  ®(—v) > 0, since

T
L

®(B) = ne(B)np+1-¢(B).

~
Il
N



Reality of solutions
If |B] =1, then
’YkE]Rﬂ (kzza)p_1)7

ne€R, (k=1,---,p—1),
and ®(B) € R.

These are non-zero except for a finite number of values of 5.

Now, we determine the constant § by
5= o(8).
Equation (L) has a solution
aa=1ax=m(B), k=2,---,p—1

If || =1, then ay,--- ,ap—1 are all real.
Other solutions give the same periodic orbit.



Equation (G)

Now, we go back to equation (G).

p—1
(G)  dvi = > vivppis,
=2

k—1 p—1
(G (w+0eP)vie = > viviee + €% > Vivpyk—ss
=1 (=k+1

k=2, ,p—1.

Observe that ¢ appears only as P in this equation.
Let x = P and rewrite the equation as follows.



Equation (')

p—1
(M) w1 = > vivpp1¢— 6w,
=2
k—1 p—1
(M) we = Y Vv e — vk + 5| D Vievprk—r— 6w |,
=1 (=k+1

k=2, ,p—1.

These define a map



Equation (')

p—1
(M) w1 = > vivpp1¢— 6w,
=2
k—1 p—1
(M) we = Y Vv e — vk + 5| D Vievprk—r— 6w |,
=1 (=k+1

k=2,---,p—1.
These define a map
MCxCxcrt—cert
by
F(B, kv, oy Vpo1) = (Wi, -+, Wp_1).

I is a quadratic polynomial in vy, -+, v,_1, with coefficients
rational in 3, and affine in k.



Matrix Ag
Except for a finite number of values of 3,

r(ﬁ,O,alj... 7ap*1) = (0’ ’O)

w:
holds. The jacobian matrix Ag = (OWI) at (8,0,a1,--- ,ap-1)
vj
is as follows.
-0 2ap_1 2ap_2 e e 232
2a; — 0 e 0
2a 2a1 -3 0 . 0
AB - 233 232 231 —Y4 ' :
: . 0
2ap_2 2ap_3 cee 282 231 —Vp-1

All components of Ag are rational functions of 3.



Regularity of Ag

ProOPOSITION
If p > 3, the matrix Ag is regular except for a finite number of
values of 3.



Regularity of Ag

ProOPOSITION
If p > 3, the matrix Ag is regular except for a finite number of
values of 3.

PRrROOF
Obviously, the determinant of Ag is a rational function of 3. We
show that it is non-trivial. Let

_6 apfl apiz oo DY 82

a1 -y 0 e 0

a2 a -y 0 - 0

My = a3 a a1 - ;
0

ap—2 dp-3 T ap ar —Vp-1



Equation (L) is equivalent to

Mﬂ = 0.

As we have non-trivial solutions for all values of /3, except for a
finite number of values,

detMz = 0

holds as a rational function of 3.



Observe the sweeping-out process of Mg. To sweep out the
off-diagonal components of the first line, other lines of Mg are
used with diagonal components 7>, -+ ,7,_1 as pivots. These
pivots are non-trivial rational functions of 5.

To suppress a term in (1, k)-component of Mg, say t, we add the
k-th line multiplied by tx/~x to the first line. Then the

(1, j)-component, say ¢j, becomes

ak—j .
G+—2tg, j=1, k-1

Tk
In this process, all the components of the first line, except for —4,
are sums of terms of the form

1
m my *
fykll PR ’ykz

When all the off-diagonal components of the first line are swept
out, the first line vanishes.



Next, let us compute det Ag in a similar way. To compare the
sweeping-out process, let by = a, and rewrite the off-diagonal
components fof Ag as

2a = ak + by, k=1,--- ,p—1.

Sweep-out the off-diagonal components of the first line of Ag to
get a lower triangle matrix. The terms without by's are exactly
same as in the sweep-out procedure of Mg. The terms without
ak's contribute exactly same. There are other terms consisting of
ak's and by's. Anyway, all the terms are always sums of terms of

the form
1

ml .« .. me :
Viy Vi,



After the sweeping-out, in the (1,1)-component of the triangle
matrix, —d cancells the ai-only terms. And bg-only terms gives 4.
The remaining terms are a sum of terms of the form

1
my . my
Viy Yk,

with positive coefficients.

The (1,1)-component of the triangle matrix is obviously a rational
function of 3. To prove the non-triviality of the rational function,
we show that it does not vanish for 5 = —v. As

W(B) = BEK =)+ B —v),

(=v) = 2—@Wt+oF ) >0, k=2,---,p—1.



These imply the positivity of a1, -+ ,ap—1 and . Furthermore,

terms of the form )

m my
t’)/kll o .. F}/I(Z
are all positive. Hence the (1,1)-cpmponent of the triangle matrix
is strictly positive and greater than §.

We conclude that
detA_, # 0.



Equation (I')

Now, we go back to equation (I').

p—1
(M) w1 = > vivpp1¢— 6w,
(=2
k—1 p—1
M) we = ) vevker— vk + K| D VeVpyk—e — vk |
=1 =k+1

k=2, ,p—1.

r(ﬂa’ﬁ Vi,* an—l) — (Wla"' 7Wp—1)-



PROPOSITION
For any By € C, except for a finite number of values, there exists a
neighborhood, U, of (f3y,0) € C?, such that implicit functions

Vl(ﬂa /i)v V2(57 5)7 ) Vp—1(57 H)
defined by
r(ﬁ?’%a Vi, 7Vp71) = (07 70)
with
Vk(ﬁ070) = ak(/@O)a k = 17' P 1’

exist and holomorphic in U.



ProoF
Except for a finite number of values of 3,

r(,B,O,aL... 7ap_]_) = (O7 7O)

holds. p
The jacobian matrix Ag = av‘l/' at (B,0,a1,--- ,ap-1) is

j
regular. Apply the implicit function theorem.



Parameter «

Functions vy, - -+, vp_1, with kK = P give solutions of equation (G).

Next, let us go back to equation (F).

We introduced redundant parameters ¢ and §. Parameter § is
determined as a rational function of 8. The redundant parameter
k = eP is related to the remaining parameter a by equation (Fp).
From equation (Fp), we have

J

(K) o = (B+87)0 —ar)— (e o~ 13 W,
(=1

2

which is a function of 8 and k.



As

v+ p v _
=L 26 ;o ao=(B+ BNy — i,
s 5 52
a—qy = —K (; VeVp—p — yx0 + 7(ﬁ + 5_1)> — Tkaz

= —K (Z agap_¢ + %(5(1 —v)+ ﬁ_l(l — I/))) + o(k).
(=1

By setting

o

we have

[ay

i)

avap e+ 5 (B 7) + HH1 - u))) ,

~
Il

1

a = ap+ a1k + o(k).



Recall

ap = — <i adp—¢ + %(5(1 — D)+ N1~ V))) :
(=1

PROPOSITION

a1 is a non-trivial rational function of 3, and takes real value if

18] = 1.



Recall

ap = — <i adp—¢ + %(5(1 — D)+ N1~ V))) :
(=1

PROPOSITION

a1 is a non-trivial rational function of 3, and takes real value if
18] = 1.

PRrROOF

If 3 = —v, then, as in the preceeding proposition, a,--- ,ap_1
and ¢ are real and positive.

Moreover, (1 — )+ B~ Y1 —v) = 2—(v+7) > 0.

Hence, a1(—v) < 0, which shows «j is non-trivial.

If || =1, then 371 = 3. The reality of v1,--- ,Vp_1,

ai, -+ ,ap—1, and 4 is obvious.



Parameters o and &

Recall
1 -1,
w(B) = TV (8) = (B4 87 — n(B)e(5).

J

(K) o= (545700~ 9m) — (e — 2h V=5 D wavpr
/=1

a = o+ a1k + o(k).

PROPOSITION

For all 5y € C, except for a finite number of values, there exists a
neighborhood, U, of (5o, ao(B0)) € €2, such that the implicit
function k = k(f3, a) satisfying k(50, @0(Bo)) = 0 defined by
equation (K) exists and holomorphic in U.



Choice of initial point

Now, fix 8o with |8o| = 1, and set g = (o) € R.
If @ € R, and |a — ag| is sufficiently small, then (5o, ) is real,
since the preceeding procedure keeps the realities.

We choose a p-th root, ¢, of k(f, ) as wollows.

CcASE I If pis odd or x(fo, ) > 0, then the equation
eP = k(fo, @) has a real root.

CASE II If pis even and x(fp, ) < 0, then take a solution of
eP = k(po, a) satisfying € = DE.



Choice of initial point

Now, fix 8o with |8o| = 1, and set g = (o) € R.
If @ € R, and |a — ag| is sufficiently small, then (5o, ) is real,
since the preceeding procedure keeps the realities.

We choose a p-th root, ¢, of k(f, ) as wollows.

CcASE I If pis odd or x(fo, ) > 0, then the equation
eP = k(fo, @) has a real root.

CASE II If pis even and x(fp, ) < 0, then take a solution of
eP = k(po, a) satisfying € = DE.

Choice of € determines the chice of the initial point of the cycle.



Self-anti-conjugate cycle

CASE 1
Real ¢ gives real solutions vy, - - -, vp_1 of equation (G), and real
solutions ug, - - - , up—1 of equations (F) and (E).

These give rise to a periodic orbit
Yn = ug+ ynul + -+ V(P_l)”upib

with real yp. We see that y_, = y,.
Yo y-1
= H, .
(yl > "’5< Yo )
P = <y°> and Py = (y—1>
4t Yo

are swap-conjugate to each other.



The obtained periodic orbit is self-anti-conjugate
matrix along the orbit is of the form

D(HS,PB)|PO = 5PA7

with det A =1 and trace A € R.

. The jacobian



Self-anti-conjugate cycle

CcAsE II
We took ¢ satisfying ¢ = € and P = &P = k(fo, ) € R.

Solutions vy, - -+, vp_1 of equation (G) are real, since (S, @) € R.
The solutions of equation (F) are as follows.

1)
Uozy*—7€p, u = v, (k=1,---,p—1).

As ug is real, we have



k=0 k=1 k=1
p—1 p—1

= Uo-f-ZV_k(n_l)Eka = E vk=n)y, = y—,.
k=1 k=0

The obtained periodic orbit is self-anti-conjugate. The jacobian
matrix along the orbit is of the form

D(Hgf)/j)LDO = BPA,

with det A =1 and trace A € R.



Trace function

Let
T = B P trace D(HZf’ﬁ)|p0.

T is an algebraic function of (a, 3).

Note that 7 does not depend on the choice of € among the p-th
root of k, sice the choice of € corresponds to the choice of the
initial point in the periodic orbit.

7 is locally univalent and continuous near (g, ag). Hence 7 is
holomorphic in (3, &) near (5o, ).



As we saw, if |3] =1 and a € R, then 7(5, @) € R near (So, ap),
and -2 < T(ﬁo,ao) < 2.

ProPOSITION
7(5, ) is holomorphic and non-constant near (5o, ap).

PRrROOF

Consider the analytic continuation of 7. As 7 is algebraic,
continuation along the real axis of « exists by avoiding branch
points choosing some branch. If |« is sufficiently large, then all
the periodic points of the Hénon map are hyperbolic, and
|7(Bo, )| > 2 there.



Trace function

(0 B! (0 0
w5 (0 ) e v (92,

T = 7P trace D(Hgfﬁ)h:0

mweee (5 g ) (D5 5 )
=trace ((B+ Yp-1)---(B+ Y0)).

(5]

knp—2k
T = (-1)"2° > YiYia, " Yip ok
k=0 0< i1 <ip<-<ip_ok<p
Here sum in the parenthes is taken over iy, - - -, ip_ox with some

extra condition.

Coefficients of 7(k) are rational functions of f.



Family of Hénon maps

For (0,¢) € (R/27Z)?, let
B = cosf+isin, « = 2cosbcosyp — cos’ p,

which defines a family of self-anti-conjugate Hénon maps

Hoa () = (e )

with |[5| =1 and o € R.



Abundance of Siegel balls

THEOREM

For any open set U C (R/27Z)? and any integer N > 1, there
exists a point (O, pn) € U such that the Hénon map H, g for this
parameter has more than N cycles of Siegel balls.



ProoOF
Recall

B = cosf+isinf, o = 2cosbcosy — cos’ .
Fixed points of H, g are given by
yx = cosf + (cosf — cos p).

We choose
Y« = COS(p

and set
W = cosw +isine.



Eigenvalues of jacobian matrix at the fixed point

_ o g
DHo.s _B< —B 2cos¢p >

are Su and Bji.
The arguements of these eigenvalues are

0+¢ and 6O—¢ (mod 2m).

By Siegel's theorem (or Brjuno's theorem), there is a subset
Wi C (R/27Z)? of full measure, such that the fixed point of the
corresponding Hénon map has a Siegel ball.



We set
Ui = U, pr=1, and Vi = UiNnW,.

Inductively, we assume U, is an open subset of U and V,, is a full
measure subset of Up, such that H, 3 for any (6, ¢) € Vi, has m
cycles of Siegel balls of periods p1,--- , pm-



In open set Up, there is a point (0, ) € Up, such that
%(6—1— ) = % is rational with p > p,, and, p and g are mutally
prime.

Then perturb (0, ¢) keeping 6 +¢ = 2”7‘7, so that 5 = cosf +isinf

avoids the values of 3 forbidden in the preceeding propositions.

There is an open set of parameters containing such a parameter,
such that the Hénon map H,, g has a neutral cycle of period p,
which is self-anti-conjugate with eigenvalues of the form SP)\ and
BP, with —2 < 7(B,a) < 2.



The trace function 7(3, ) is a non-trivial analytic function with
respect to a.. Determinant of Hpﬂ is 32P. Hence, the eigenvalues
of the neutral p cycle varies effevtively.

Note that 7(3,a) € R, if « € R, and —2 < 7(3, ao(f)) < 2.

This implies that there is an open subset U;,+1 C Uy, and a full
measure set W, C Upny1 of parameters, such that the Hénon map
has a Siegel ball of period p.

Set Vinp1 = Vin N W, C Umt1, and ppmy1 = p. Vgt is a full
measure subset of Upyy1.



Continue this procedure until m = N.

Vi is a set of positive measure. Hence, we can find a parameter
(Onson) € Vy C U.



