Rational Elliptic Fibration without Section

Shigehiro Ushiki
Dec. 14, 2022

Abstract

There exist rational elliptic surfaces which don't admit sections. In [DM](2022), possible multiple fibers for rational elliptic fibrations are described.

We construct concrete examples of rational elliptic surfaces, whose generic fibers are elliptic curves representing cohomology class $-m K, m>1$.

Contents

0. Introduction
1. Elliptic Surface
2. Elliptic curve
3. Orbit data $(1,4,4)$ cyclic
4. Configuration
5. Multiple fibration

0 . Introduction

0 . Introduction

Elliptic surface

Let S be a complex manifold of complex dimension 2 .
Suppose there is an elliptic fibration onto \mathbb{P}^{1} :

$$
\psi: S \rightarrow \mathbb{P}^{1}
$$

If there is a cross section

$$
\sigma: \mathbb{P}^{1} \rightarrow S, \quad \psi \circ \sigma=i d
$$

we can define Mordell-Weil group $M W(S)$ as the set of all sections.

However, there are elliptic surfaces which don't admit sections.

Picture of a section (QLc135t2BB)

Theorem of Gizatullin

Let $F: S \rightarrow S$ be an automorphism of rational surface S.
The dynamical degree λ_{1} of F is defined as

$$
\lambda_{1}=\lim _{n \rightarrow \infty}\left\|\left(F^{n}\right)^{*}\right\|^{1 / n}
$$

Theorem(Gizatullin [1980], Cantat [1999])
Assume $F \in \operatorname{Aut}(S), \lambda_{1}=1$, and $\left\{\left\|\left(F^{n}\right)^{*}\right\|\right\}_{n \in \mathbb{N}}$ is unbounded. Then F preserves an elliptic fibration.

Elliptic fibration

Proposition(Gizatullin[Gi],1980). Let S be a minimal rational elliptic surface. Then for m large enough, we have $\operatorname{dim}\left|-m K_{S}\right| \geq 1$. For m minimal with this property, $\left|-m K_{S}\right|$ is a pencil without base point whose generic fiber is a smooth and reduced elliptic curve.

Remark(Grivaux[Gr], 2019). The elliptic fibration $S \rightarrow\left|-m K_{S}\right|^{*}$ doesn't have a rational section if $m \geq 2$. Indeed, the existence of multiple fibers $(m \mathcal{D})$ is an obstruction for the existence of a section.

An elliptic surface

We consider a surface automorphism with invariant elliptic curve of modulus i for orbit data $(1,4,4)$, cyclic, choosing multiplier i.

The configuration of the singular fibers is IV I_{1}^{8}.
By choosing extra parameters, we find surface automorphisms with

$$
\operatorname{dim}|-K|=0, \quad \operatorname{dim}|-2 K|=1
$$

REM. This seems to be the case (b) of theorem 3.3 in [DM] with

$$
m=2, n=4, p=0
$$

A (double) section ? (Elc144a10b12B)

Another elliptic surface

Consider a surface automorphism with invariant elliptic curve of modulus $\epsilon=\exp \left(\frac{\pi i}{3}\right)$ for orbit data (3,3,3), cyclic, choosing multiplier $\omega=\exp \left(\frac{2 \pi i}{3}\right)$.

The configuration of the singular fibers is III I_{1}^{9}.
By choosing extra parameters, we find surface automorphisms with

$$
\operatorname{dim}|-K|=0, \quad \operatorname{dim}|-2 K|=0, \quad \operatorname{dim}|-3 K|=1
$$

REM. This seems to be the case (a) of theorem3.3 in [DM] with

$$
m=n=3, p=0
$$

A (triple) section ? (EWc333b20BB)

There exist ...

TheOrem. There exist automorphisms of elliptic surface, induced by quadratic Cremona transformations, such that the elliptic fibration don't admit sections.

1. Elliptic surface
2. Elliptic surface

Birational map

Let $f: \mathbb{P}^{2} \rightarrow \mathbb{P}^{2}$ be a birational map. Under certain conditions, birational map induces a holomorphic automorphism $F: S \rightarrow S$ of rational surface S, which is obtained by successive blowing ups of \mathbb{P}^{2}, with projection $\pi: S \rightarrow \mathbb{P}^{2}$.

$$
\begin{array}{lll}
S & \xrightarrow{F} & S \\
\downarrow \pi & & \downarrow \pi \\
\mathbb{P}^{2} & -\xrightarrow{f} & \mathbb{P}^{2} .
\end{array}
$$

Elliptic fibration

A surjective holomorphic map $\psi: S \rightarrow \mathbb{P}^{1}$ is an elliptic fibration if almost all fibers, $\psi^{-1}(\xi)$, are smooth curves of genus 1 , and no fiber contains an exceptional (-1)-curve.

An elliptic surface S over \mathbb{P}^{1} is a smooth projective surface with an elliptic fibration over \mathbb{P}^{1}.

For fixed S, fibration $\psi: S \rightarrow \mathbb{P}^{1}$ is unique (up to Möbius transformation).

Kodaira names

Singular fibers are classified by Kodaira. (smooth fiber is indicated by I_{0})

$$
\mathrm{I}_{n}, n \geq 1, \quad \mathrm{II}, \quad \mathrm{III}, \quad \mathrm{IV}, \quad \mathrm{I}_{n}^{*}, n \geq 0, \mathrm{IV}^{*}, \quad \mathrm{III}^{*}, \quad \mathrm{II}^{*}
$$

Euler number:

$$
\begin{array}{clll}
e\left(\mathrm{I}_{n}\right)=n, & e(\mathrm{II})=2, & e(\mathrm{III})=3, & e(\mathrm{IV})=4, \\
e\left(\mathrm{I}_{n}^{*}\right)=n+6, & e\left(\mathrm{IV}^{*}\right)=8, & e(\mathrm{III})=9, & e\left(\mathrm{II}^{*}\right)=10 .
\end{array}
$$

$$
\sum_{F_{v}: \text { singular fiber }} e\left(F_{v}\right)=12 .
$$

Preservation of elliptic fibration

We say that automorphism $F: S \rightarrow S$ preserves elliptic fibration $\psi: S \rightarrow \mathbb{P}^{1}$, if commutative diagram

$$
\begin{array}{lll}
S & \xrightarrow{F} & S \\
\downarrow \psi & & \downarrow \psi \\
\mathbb{P}^{1} & \xrightarrow{\Omega} & \mathbb{P}^{1} .
\end{array}
$$

holds for some Möbius transformation $\Omega: \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$.
S can have other automorphisms. Every automorphism of S preserves the fibration.
2. Elliptic curve
2. Elliptic curve

Weierstraß \wp-function

We use Weierstraß \wp-function as parametrization of invariant smooth cubic curve.

Let $\tau \in \mathbb{C} \backslash \mathbb{R}$ and $\Lambda_{\tau}=\mathbb{Z}+\tau \mathbb{Z}$ be a lattice.
Weierstraß \wp-function $\wp: \mathbb{C} / \Lambda_{\tau} \rightarrow \mathbb{P}$ is defined by

$$
\wp(z)=\frac{1}{z^{2}}+\sum_{\omega \in \Lambda_{\tau}^{\prime}}\left(\frac{1}{(z-\omega)^{2}}-\frac{1}{\omega^{2}}\right)
$$

where $\Lambda_{\tau}^{\prime}=\Lambda_{\tau} \backslash\{0\}$.
Theorem The Weierstraß \wp-function satisfies a Weierstraß equation

$$
\begin{gathered}
\left(\wp^{\prime}\right)^{2}=4 \wp^{3}-g_{2} \wp-g_{3} \\
\text { with } g_{2}=60 \sum_{\omega \in \Lambda_{\tau}^{\prime}} \omega^{-4}, \quad \text { and } g_{3}=140 \sum_{\omega \in \Lambda_{\tau}^{\prime}} \omega^{-6} .
\end{gathered}
$$

Parametrization

The parametrization of elliptic curve $\left\{y^{2}=4 x^{3}-g_{2} x-g_{3}\right\}$ is given by

$$
p(t)=\left(\wp(t), \wp^{\prime}(t)\right), \quad t \in \mathbb{C} / \Lambda_{\tau}
$$

Theorem(Diller, 2011) Let $X \subset \mathbb{P}^{2}$ be an irreducible cubic curve. Suppose we are given points $p\left(p_{1}^{+}\right), p\left(p_{2}^{+}\right), p\left(p_{3}^{+}\right) \in X_{\text {reg }}$, a multiplier $a \in \mathbb{C}^{\times}$, and a translation $b \in \mathbb{C} / \Lambda$. Then there exists at most one quadratic transformation f properly fixing X with $I(f)=\left\{p\left(p_{1}^{+}\right), p\left(p_{2}^{+}\right), p\left(p_{3}^{+}\right)\right\}$and $f(p(t))=p(a t+b)$. This f exists if and only if the following hold.

$$
p_{1}^{+}+p_{2}^{+}+p_{3}^{+} \not \equiv 0
$$

a is a multiplier for $X_{r e g}$;

$$
a\left(p_{1}^{+}+p_{2}^{+}+p_{3}^{+}\right) \equiv 3 b .
$$

Finally, the points of indeterminacy for f^{-1} are given by
$p_{j}^{-}=a p_{j}^{+}-2 b, j=1,2,3$.

Elliptic curve

Diller [D] stated the existence of surface automorphisms with positive entropy preserving a smooth cubic curve.

Proposition(Diller, 2011). Suppose that f is a quadratic transformation properly fixing a smooth cubic curve X. If f has positive entropy and lifts to an automorphism of some modification $S \rightarrow \mathbb{P}^{2}$, then either
$X \cong \mathbb{C} /(\mathbb{Z}+i \mathbb{Z})$ and the multiplier for $\left.f\right|_{X}$ is $\pm i$; or
$X \cong \mathbb{C} /\left(\mathbb{Z}+e^{\pi i / 3} \mathbb{Z}\right)$ and the multiplier for $\left.f\right|_{X}$ is a prime cube root of -1 .

Rem. In the case of zero entropy, similar construction is possible. In the latter case, also with a prime cube root of 1 as multiplier. There are surface automorphisms with 1 as multiplier.

Cremona transformation

The most basic non-linear birational transformation $J: \mathbb{P}^{2} \rightarrow \mathbb{P}^{2}$ (Cremona involution) can be expressed as

$$
[x: y: z] \mapsto[y z: z x: x y] .
$$

J acts by blowing up points $e_{1}=[1: 0: 0]$, $e_{2}=[0: 1: 0], e_{3}=[0: 0: 1]$ and then collasping the lines $\{x=0\},\{y=0\},\{z=0\}$ to e_{1}, e_{2}, e_{3} respectively.

A generic quadratic Cremona transformation can be obtained from J by pre- and post- composing with linear transformations $f=L_{1} \circ J \circ L_{2}^{-1}$.

Conditions

We see that

$$
I(f)=\left\{L_{2}\left(e_{1}\right), L_{2}\left(e_{2}\right), L_{2}\left(e_{3}\right)\right\}, \quad I\left(f^{-1}\right)=\left\{L_{1}\left(e_{1}\right), L_{1}\left(e_{2}\right), L_{1}\left(e_{3}\right)\right\}
$$

The choice of L_{1} and L_{2} is not unique, since specification of three points does not determine a linear transformation uniquely. We need a supplementary condition to determine the transformation with uniqueness.

A unique biquadratic transformation $f=L_{1} \circ K \circ J \circ L_{2}^{-1}$ is obtained by specifying a linear transformation $K: \mathbb{P}^{2} \rightarrow \mathbb{P}^{2}$, which fixes e_{1}, e_{2}, e_{3}, and setting

$$
\tilde{K}=\left(\begin{array}{ccc}
k_{1} & 0 & 0 \\
0 & k_{2} & 0 \\
0 & 0 & k_{3}
\end{array}\right)
$$

$$
\begin{aligned}
& \tilde{L}_{1}=\left(\begin{array}{ccc}
\wp\left(p_{1}^{-}\right) & \wp\left(p_{2}^{-}\right) & \wp\left(p_{3}^{-}\right) \\
\wp^{\prime}\left(p_{1}^{-}\right) & \wp^{\prime}\left(p_{2}^{-}\right) & \wp^{\prime}\left(p_{3}^{-}\right) \\
1 & 1 & 1
\end{array}\right), \\
& \tilde{L}_{2}=\left(\begin{array}{ccc}
\wp\left(p_{1}^{+}\right) & \wp\left(p_{2}^{+}\right) & \wp\left(p_{3}^{+}\right) \\
\wp^{\prime}\left(p_{1}^{+}\right) & \wp^{\prime}\left(p_{2}^{+}\right) & \wp^{\prime}\left(p_{3}^{+}\right) \\
1 & 1 & 1
\end{array}\right) .
\end{aligned}
$$

Take a fixed point t_{0} of the inner dynamics $t \mapsto a t+b$. Then point $p\left(t_{0}\right)$ must be a fixed point of f. We can choose \tilde{K} by

$$
\tilde{L}_{1}^{-1}\left(p\left(t_{0}\right)\right)=\tilde{K} \circ \tilde{J} \circ \tilde{L}_{2}^{-1}\left(p\left(t_{0}\right)\right)
$$

Obtained biquadratic transformation $f=L_{1} \circ K \circ J \circ L_{2}^{-1}$ is the unique one satisfying

$$
I(f)=\left\{p\left(p_{1}^{+}\right), p\left(p_{2}^{+}\right), p\left(p_{3}^{+}\right)\right\}, \quad I\left(f^{-1}\right)=\left\{p\left(p_{1}^{-}\right), p\left(p_{2}^{-}\right), p\left(p_{3}^{-}\right)\right\}
$$

$$
\text { and } \quad f\left(p\left(t_{0}\right)\right)=p\left(t_{0}\right)
$$

As at most one quadratic transformation properly fixing X, this f is the quadratic transformation described in the above theorem.

Surface with elliptic curve (Elc144a10b10RR)

3. Orbit data
3. Orbit data $(1,4,4)$, cyclic

From orbit data to Cremona transformation

$$
\text { Let } \Lambda_{i}=\mathbb{Z}+i \mathbb{Z} \text {. }
$$

Let us construct a surface automorphism with

$$
\begin{aligned}
& \text { orbit data : }(1,4,4), \text { cyclic, } \\
& \qquad X \cong \mathbb{C} / \Lambda_{i}
\end{aligned}
$$

and the multiplier for $\left.f\right|_{X}$ is i.
Suppose the translation of the inner dynamics is $b \in \mathbb{C} / \Lambda_{i}$.
And the inner dynamics $t \mapsto i t+b$.
Conditions for orbit data $\left(n_{1}, n_{2}, n_{3}\right), \sigma$ are as follows ($\left.\bmod \Lambda_{i}\right)$.

$$
\begin{gathered}
p_{1}^{+}+p_{2}^{+}+p_{3}^{+} \equiv-3 i b \neq 0 \\
p_{j}^{-} \equiv i p_{j}^{+}-2 b, \quad j=1,2,3 \\
p_{\sigma(j)}^{+} \equiv i^{n_{j}-1}\left(p_{j}^{-}-\frac{1+i}{2} b\right)+\frac{1+i}{2} b, \quad j=1,2,3
\end{gathered}
$$

$X \cong \mathbb{C} /(\mathbb{Z}+i \mathbb{Z})$

Conditions for orbit data $(1,4,4), \sigma=(1,2,3)$ are as follows $\left(\bmod \Lambda_{i}\right)$.

$$
\begin{gathered}
p_{1}^{+}+p_{2}^{+}+p_{3}^{+} \equiv-3 i b \neq 0 \\
p_{1}^{-} \equiv i p_{1}^{+}-2 b, \quad p_{2}^{-} \equiv i p_{2}^{+}-2 b, \quad p_{3}^{-} \equiv i p_{3}^{+}-2 b, \\
p_{2}^{+} \equiv i p_{1}^{+}-2 b, \quad p_{3}^{+} \equiv p_{2}^{+}+3 i b, \quad p_{1}^{+} \equiv p_{3}^{+}+3 i b
\end{gathered}
$$

From the last three equations, we get

$$
(1-i) p_{1}^{+} \equiv(-2+6 i) b
$$

We put

$$
(1-i) p_{1}^{+}=(-2+6 i) b+\alpha, \quad \alpha \in \Lambda_{i} .
$$

And we get

$$
p_{1}^{+}+p_{2}^{+}+p_{3}^{+}=(-12-3 i) b+\frac{-1+3 i}{2} \alpha \equiv-3 i b
$$

We put

$$
-12 b+\frac{-1+3 i}{2} \alpha=\beta, \quad \beta \in \Lambda_{i}
$$

to obtain

$$
b=-\frac{1}{12} \beta+\frac{-1+3 i}{24} \alpha
$$

If $-3 i b \neq 0$, then we get solutions:

$$
\begin{aligned}
p_{1}^{+} & \equiv \frac{4-2 i}{12} \beta+\frac{-14-2 i}{24} \alpha, \quad p_{1}^{-} \equiv \frac{4+4 i}{12} \beta+\frac{4+4 i}{24} \alpha, \\
p_{2}^{+} & \equiv \frac{4+4 i}{12} \beta+\frac{4+4 i}{24} \alpha, \quad p_{2}^{-} \equiv \frac{-2+4 i}{12} \beta+\frac{-2-2 i}{24} \alpha, \\
p_{3}^{+} & \equiv \frac{4+i}{12} \beta+\frac{-5+i}{24} \alpha, \quad p_{3}^{-} \equiv \frac{1+4 i}{12} \beta+\frac{1-11 i}{24} \alpha .
\end{aligned}
$$

Let $F_{\alpha, \beta}: S_{\alpha, \beta} \rightarrow S_{\alpha, \beta}$ denote our surface automorphism.

Eigenvalues for orbit data $(1,4,4)$ cyclic

The characteristic polynomial for orbit data $(1,4,4)$, cyclic is

$$
P(\lambda)=(\lambda-1)\left(\lambda^{2}-1\right)\left(\lambda^{3}-1\right)\left(\lambda^{4}+1\right)
$$

and i is not an eigenvalue.

Base points for $\alpha=\beta=1$

4. Configuration

4. Configuration

Singular fibers

Numerical observations suggest the existence of invariant curves other than the invariant elliptic curve $X \cong \mathbb{C} / \Lambda$.

And the surface $S_{\alpha, \beta}$ seems to have an elliptic fibration, invariant under $F_{\alpha, \beta}: S_{\alpha, \beta} \rightarrow S_{\alpha, \beta}$.

By numerical observations, we guess the configuration of this fibration is

$$
\operatorname{IV} \mathrm{I}_{1}^{8}
$$

In the following, we verify it by finding the effective divisors.

Nodal root

For Rational surface, following commutative diagram holds.

$$
\begin{aligned}
0 \longrightarrow & \operatorname{Pic}(S) \xrightarrow{c_{1}} H^{2}(S, \mathbb{Z}) \longrightarrow 0 \\
\downarrow r & \downarrow \iota^{*} \\
0 \rightarrow \operatorname{Pic}_{0}(X) \longrightarrow & \operatorname{Pic}(X) \xrightarrow{\operatorname{deg}} H^{2}(X, \mathbb{Z}) \longrightarrow 0 .
\end{aligned}
$$

X: cuspidal cubic, three lines through a point, quadric with a tangent line

$$
\operatorname{Pic}_{0}(X) \simeq \mathbb{C}
$$

X : nodal cubic (one, two, or three nodes)

$$
\operatorname{Pic}_{0}(X) \simeq \mathbb{C} / \mathbb{Z}
$$

X : elliptic cubic

$$
\operatorname{Pic}_{0}(X) \simeq \mathbb{C} / \Lambda
$$

Nodality

If $\mathcal{P} \in H^{2}(S, Z)$ is a cohomology class of a (strict transform of) curve $C \subset \mathbb{P}^{2}$, then

$$
\iota^{*}(\mathcal{P})=0 \text { and } r \circ c_{1}^{-1}(\mathcal{P})=0
$$

With our choice of Picard coordinates, we have the following fact.

Theorem. 3d (not necessarily distinct) points
$p_{1}, \cdots, p_{3 d} \in X_{\text {reg }}$ comprise the intersection of X with a curve of degree d if and only if
each irreducible $V \subset X$ contains $d \cdot \operatorname{deg} V$ of the points; and $\sum p_{j} \sim 0$.

Genus formula

If $\mathcal{R} \in H^{2}(S, \mathbb{Z})$ is a cohomology class of an irreducible component of a reducible singular fiber of the fibration, then

$$
\mathcal{R}^{2}=-2, \quad \text { and } \quad r \circ c_{1}^{-1}(\mathcal{R})=0
$$

The condition $r \circ c_{1}^{-1}(\mathcal{R})=0$ implies \mathcal{R} is nodal, i.e. it represents the class of a curve.

And $\mathcal{R}^{2}=-2$ implies the curve is isomorphic to a Riemann sphere.

The arithmetic genus of a curve C representing class \mathcal{R} is

$$
g(C)=\frac{1}{2} \mathcal{R} \cdot\left(\mathcal{R}+K_{S}\right)+1
$$

Our map case with orbit data $(1,4,4)$, cyclic

Now, let $A_{1} \in H^{2}(S, \mathbb{Z})$ denote the cohomology class of the exceptional fiber $\left[\pi^{-1}\left(p\left(p_{1}^{-}\right)\right)\right]$. Let $B_{i}=\left[\pi^{-1}\left(f^{i-1}\left(p\left(p_{2}^{-}\right)\right)\right)\right]$, $i=1,2,3,4$, and $C_{i}=\left[\pi^{-1}\left(f^{i-1}\left(p\left(p_{3}^{-}\right)\right)\right)\right], i=1,2,3,4$.

Let $H \in H^{2}(S, \mathbb{Z})$ denote the class of a generic line $\left[\pi^{-1}(L)\right]$. A basis of $H^{2}(S, \mathbb{Z})$ is given by classes

$$
H, A_{1}, B_{1}, B_{2}, B_{3}, B_{4}, C_{1}, C_{2}, C_{3}, C_{4} .
$$

Automorphism $F^{*}: H^{2}(S, \mathbb{Z}) \rightarrow H^{2}(S, \mathbb{Z})$ acts as follows.

$$
\begin{gathered}
H \mapsto 2 H-A_{1}-B_{4}-C_{4}, \\
A_{1} \mapsto H-A_{1}-B_{4}, \\
B_{4} \mapsto B_{3} \mapsto B_{2} \mapsto B_{1} \mapsto H-B_{4}-C_{4}, \\
C_{4} \mapsto C_{3} \mapsto C_{2} \mapsto C_{1} \mapsto H-A_{1}-C_{4} .
\end{gathered}
$$

Periodic roots

Let

$$
\mathcal{X}=3 H-A_{1}-B_{1}-B_{2}-B_{3}-B_{4}-C_{1}-C_{2}-C_{3}-C_{4}
$$

denote the class of anticanonical curve, represented by our invariant elliptic curve $X \cong \mathbb{C} /(\mathbb{Z}+i \mathbb{Z})$.

A class $\mathcal{R} \in H^{2}(S, \mathbb{Z})$ is said to be a root of positive degree if

$$
\mathcal{R} \cdot \mathcal{X}=0, \quad \mathcal{R}^{2}=-2, \quad \mathcal{R} \cdot H \geq 0
$$

The characteristic polynomial for orbit data $(1,4,4)$, cyclic is

$$
P(\lambda)=(\lambda-1)\left(\lambda^{2}-1\right)\left(\lambda^{3}-1\right)\left(\lambda^{4}+1\right) .
$$

If there is a periodic root the period is $1,2,3$, or 8 .

Period 1 and 2

We have

$$
\begin{aligned}
\operatorname{Ker}\left(F^{*}-i d\right) & =<\mathcal{X}> \\
\operatorname{Ker}\left(F^{* 2}-i d\right) & =<\mathcal{E}_{1}, \mathcal{E}_{2}>
\end{aligned}
$$

where

$$
\begin{aligned}
& \mathcal{E}_{1}=2 H-2 A_{1}-B_{2}-B_{4}-C_{1}-C_{3}, \\
& \mathcal{E}_{2}=H+A_{1}-B_{1}-B_{3}-C_{2}-C_{4} .
\end{aligned}
$$

Then

$$
\begin{gathered}
F^{*} \mathcal{E}_{1}=\mathcal{E}_{2}, \quad F^{*} \mathcal{E}_{2}=\mathcal{E}_{1}, \quad F^{*} \mathcal{X}=\mathcal{X}, \quad \mathcal{X}^{2}=0, \\
\mathcal{E}_{1}^{2}=\mathcal{E}_{2}^{2}=-4, \quad \mathcal{E}_{1} \cdot \mathcal{E}_{2}=4, \quad \quad \mathcal{E}_{1} \cdot \mathcal{X}=\mathcal{E}_{2} \cdot \mathcal{X}=0
\end{gathered}
$$

There are no roots in these subspaces.

Period 3

We have

$$
\operatorname{Ker}\left(F^{* 3}-i d\right)=<\mathcal{L}_{1}, \mathcal{L}_{2}, \mathcal{L}_{3}>
$$

where

$$
\begin{aligned}
\mathcal{L}_{1} & =H-A_{1}-B_{3}-C_{2}, \\
\mathcal{L}_{2} & =H-B_{1}-B_{4}-C_{3}, \\
\mathcal{L}_{3} & =H-B_{2}-C_{1}-C_{4} .
\end{aligned}
$$

And

$$
\begin{gathered}
F^{*} \mathcal{L}_{1}=\mathcal{L}_{3}, \quad F^{*} \mathcal{L}_{2}=\mathcal{L}_{1}, \quad F^{*} \mathcal{L}_{3}=\mathcal{L}_{2} \\
\mathcal{L}_{1}^{2}=\mathcal{L}_{2}^{2}=\mathcal{L}_{3}^{2}=-2 \\
\mathcal{L}_{1} \cdot \mathcal{L}_{2}=\mathcal{L}_{2} \cdot \mathcal{L}_{3}=\mathcal{L}_{3} \cdot \mathcal{L}_{1}=1
\end{gathered}
$$

Moreover,

$$
\mathcal{L}_{1}+\mathcal{L}_{2}+\mathcal{L}_{3}=\mathcal{X}
$$

Another periodic root

There exists another 3-cycle of roots of positive degree.

$$
\begin{aligned}
& \mathcal{Q}_{1}=\mathcal{L}_{2}+\mathcal{L}_{3}, \\
& \mathcal{Q}_{2}=\mathcal{L}_{3}+\mathcal{L}_{1}, \\
& \mathcal{Q}_{3}=\mathcal{L}_{1}+\mathcal{L}_{2} .
\end{aligned}
$$

with

$$
\begin{gathered}
F^{*} \mathcal{Q}_{1}=\mathcal{Q}_{3}, \quad F^{*} \mathcal{Q}_{2}=\mathcal{Q}_{1}, \quad F^{*} \mathcal{Q}_{3}=\mathcal{Q}_{2} \\
\mathcal{Q}_{1}^{2}=\mathcal{Q}_{2}^{2}=\mathcal{Q}_{3}^{2}=-2 \\
\mathcal{Q}_{1} \cdot \mathcal{Q}_{2}=\mathcal{Q}_{2} \cdot \mathcal{Q}_{3}=\mathcal{Q}_{3} \cdot \mathcal{Q}_{1}=1
\end{gathered}
$$

Moreover,

$$
\mathcal{Q}_{1}+\mathcal{Q}_{2}+\mathcal{Q}_{3}=2 \mathcal{X}
$$

Singular fiber

If these roots are nodal and there exist three lines (or three quadrics) representing these classes, they form a singular fiber of type I_{3} or IV.

To decide the type, recall the Lefschetz formula:

$$
\sum_{f(p)=p} \operatorname{sign}\left(\operatorname{det}\left(D f_{p}-I\right)\right)=\sum_{i=0}^{\operatorname{dim} M}(-1)^{i} \operatorname{trace}\left(\left.f_{*}\right|_{H_{i}(M, \mathbb{R})}\right)
$$

To describe periodic cycles in terms of Lefschetz index, for $m \in \mathbb{N}$ and $k \in \mathbb{Z}$, let

$$
\mathbf{m}(k)=\left\{\begin{array}{cc}
m & k \equiv 0(\bmod m) \\
0 & \text { otherwise }
\end{array}\right.
$$

Periodic points

Recall the characteristic polynomial for orbit data $(1,4,4)$, cyclic :

$$
P(\lambda)=(\lambda-1)\left(\lambda^{2}-1\right)\left(\lambda^{3}-1\right)\left(\lambda^{4}+1\right)
$$

The Lefschetz number $\Lambda\left(F^{k}\right)$ is expressed as

$$
\Lambda\left(F^{k}\right)=\mathbf{1}+\mathbf{3}+\mathbf{1}+\mathbf{1}+\mathbf{2}-\mathbf{4}+\mathbf{8}
$$

The invariant elliptic curve $X \cong \mathbb{C} /(\mathbb{Z}+i \mathbb{Z})$, with inner dynamics $t \mapsto i t+b$, has two fixed points and a cycle of period two. The inner dynamics is period four, and the periodic points are not counted in the Lefschetz number if $k \equiv 0(\bmod 4)$.

So, the periodic points in X is given by $\mathbf{1 + 1}+\mathbf{2} \mathbf{- 4}$. cycle 8 of period 8 comes from singular fiber I_{1}^{8}, obtained later.

The periodic points in the cycle of period three is described by $\mathbf{1 + 3}$, that is, a singular fiber of type IV.

Picard projection

For Rational surface, following commutative diagram holds.

$$
\begin{aligned}
0 \longrightarrow & \operatorname{Pic}(S) \xrightarrow{c_{1}} H^{2}(S, \mathbb{Z}) \longrightarrow 0 \\
\downarrow r & \downarrow \iota^{*} \\
0 \rightarrow \operatorname{Pic}_{0}(X) \longrightarrow & \operatorname{Pic}(X) \xrightarrow{\operatorname{deg}} H^{2}(X, \mathbb{Z}) \longrightarrow 0 .
\end{aligned}
$$

In our case, $X \cong \mathbb{C} /(\mathbb{Z}+i \mathbb{Z})$ is an elliptic cubic curve,

$$
\operatorname{Pic}_{0}(X) \simeq \mathbb{C} / \Lambda_{i}
$$

For $\mathcal{P} \in H^{2}(S, \mathbb{Z})$, with $\iota^{*}(\mathcal{P})=0$, we denote

$$
\widetilde{\mathcal{P}}=r \circ c_{1}^{-1}(\mathcal{P}) \in \operatorname{Pic}_{0}(X)
$$

We say $\widetilde{\mathcal{P}}$ is the Picard projection of \mathcal{P}.

Nodal periodic roots

For our automorphism $F_{\alpha, \beta}: S_{\alpha, \beta} \rightarrow S_{\alpha, \beta}$, the Picard projections of periodic roots of positive degree can be computed as follows $\left(\bmod \Lambda_{i}\right)$.

$$
\begin{gathered}
b=-\frac{1}{12} \beta+\frac{-1+3 i}{24} \alpha, \quad \alpha, \beta \in \Lambda_{i}, \\
\widetilde{\mathcal{L}_{1}} \equiv \widetilde{\mathcal{L}_{2}} \equiv \widetilde{\mathcal{L}_{3}} \equiv \widetilde{\mathcal{X}} \equiv \frac{1+i}{2} \alpha, \\
\widetilde{\mathcal{Q}_{1}} \equiv \widetilde{\mathcal{Q}_{2}} \equiv \widetilde{\mathcal{Q}_{3}} \equiv \widetilde{2 \mathcal{X}} \equiv 0 .
\end{gathered}
$$

So, we conclude that if $\frac{1+i}{2} \alpha \equiv 0$ then singular fiber of type IV is a cubic curve consisting of three lines passing through a point.

And if $\frac{1+i}{2} \alpha \neq 0$, then singular fiber of type IV comprises three conics passing through a point. In this case \mathcal{X} cannot be the class of generic fibers.

Roots of period 8

$$
\begin{aligned}
& \operatorname{Ker}\left(F^{* 8}-i d\right)=<\mathcal{U}_{1}, \mathcal{U}_{2}, \mathcal{U}_{3}, \mathcal{U}_{4}, \mathcal{U}_{5}, \mathcal{U}_{6}, \mathcal{U}_{7}, \mathcal{U}_{8}>, \\
& \mathcal{U}_{1}=H-A_{1}-B_{4}-C_{1} \\
& \mathcal{U}_{2}=H-A_{1}-C_{2} \\
& \mathcal{U}_{3}=H-A_{1}-C_{1}-C_{3} \\
& \mathcal{U}_{4}=H-B_{1}-C_{2}-C_{4} \\
& \mathcal{U}_{5}=H-A_{1}-B_{2}-C_{3} \\
& \mathcal{U}_{6}=H-B_{1}-B_{3}-C_{4} \\
& \mathcal{U}_{7}=H-A_{1}-B_{2}-B_{4} \\
& \mathcal{U}_{8}=A_{1}-B_{3}
\end{aligned}
$$

$\mathcal{U}_{1}, \cdots, \mathcal{U}_{8}$ are all roots of positive (non-negative) degree, cyclically mapped, and

$$
\sum_{k=1}^{8} \mathcal{U}_{k}=2 \mathcal{X}
$$

Picard projections

The Picard projections of these roots are as follows.

$$
\widetilde{\mathcal{U}_{k}} \equiv \frac{i^{k}}{4}((1-i) \beta+\alpha), \quad k=1, \cdots, 8
$$

So, if $\frac{1}{4}((1-i) \beta+\alpha) \notin \Lambda_{i}$, then roots $\mathcal{U}_{1}, \cdots, \mathcal{U}_{8}$ are not nodal. Other roots in this subspace are not nodal, neither.

On the other hand, Lefschetz formula tells the existence of 8 -cycle of (saddle) periodic points.

In the list of possible configurations of singular fibers ([P],[K]), only one configuration is compatible with the above observations:

$$
\text { IV I } \mathrm{I}_{1}^{8} .
$$

Persson's list of configurations

In the list of configurations of singular fibers given by Persson([P],1990), those containing I_{8} or I_{1}^{8} are :

$$
\begin{gathered}
\mathrm{IV} \mathrm{I}_{1}^{8}, \\
\mathrm{II}^{2} \mathrm{I}_{8}, \quad \mathrm{II}_{8} \mathrm{I}_{1}^{2}, \\
\mathrm{II}_{2} \mathrm{I}_{1} \mathrm{I}_{1}^{2}, \\
\mathrm{I}_{8} \mathrm{I}_{1}^{4}, \quad \mathrm{I}_{4} \mathrm{I}_{1}^{8}, \\
\mathrm{I}_{2}^{2} \mathrm{I}_{1}^{8}
\end{gathered}
$$

5. Multiple fiber

5. Multiple fibration

Parameters

In this section, we construct a surface automorphism with invariant elliptic fibration of $|-2 K|$ type.

Choose $\alpha, \beta \in \Lambda_{i}$, satisfying

$$
\begin{array}{lr}
\frac{3+i}{8} \alpha+\frac{i}{4} \beta \notin \Lambda_{i}, & (-3 i b \neq 0), \\
\frac{1}{2}(1+i) \alpha \notin \Lambda_{i}, & \left(\text { per. } 3, \widetilde{\mathcal{L}}_{i} \neq 0, \widetilde{\mathcal{Q}}_{i} \equiv 0\right), \\
\frac{1}{4}(\alpha+(1-i) \beta) \notin \Lambda_{i}, & (\text { per.8, } \\
\left.\widetilde{\mathcal{U}}_{i} \equiv 0\right) .
\end{array}
$$

Such α, β exist. For example, $\alpha=1, \beta=1$.

Base points for $\alpha=\beta=1$

Surface automorphism

Theorem(Diller, 2011) Let $X \subset \mathbb{P}^{2}$ be an irreducible cubic curve. Suppose we are given points $p\left(p_{1}^{+}\right), p\left(p_{2}^{+}\right), p\left(p_{3}^{+}\right) \in X_{\text {reg }}$, a multiplier $a \in \mathbb{C}^{\times}$, and a translation $b \in \mathbb{C} / \Lambda$. Then there exists at most one quadratic transformation f properly fixing X with $I(f)=\left\{p\left(p_{1}^{+}\right), p\left(p_{2}^{+}\right), p\left(p_{3}^{+}\right)\right\}$and $f(p(t))=p(a t+b)$. This f exists if and only if the following hold.

$$
p_{1}^{+}+p_{2}^{+}+p_{3}^{+} \not \equiv 0
$$

a is a multiplier for $X_{\text {reg }}$;

$$
a\left(p_{1}^{+}+p_{2}^{+}+p_{3}^{+}\right) \equiv 3 b
$$

Finally, the points of indeterminacy for f^{-1} are given by $p_{j}^{-}=a p_{j}^{+}-2 b, j=1,2,3$.

Orbit data

As we have constructed, we set

$$
\begin{aligned}
a=i & \in \mathbb{C}^{\times}, \quad b=\frac{-1+3 i}{24} \alpha-\frac{1}{12} \beta \in \mathbb{C} / \Lambda_{i} \\
p_{1}^{+} & \equiv \frac{4-2 i}{12} \beta+\frac{-14-2 i}{24} \alpha, \\
p_{2}^{+} & \equiv \frac{4+4 i}{12} \beta+\frac{4+4 i}{24} \alpha, \\
p_{3}^{+} & \equiv \frac{4+i}{12} \beta+\frac{-5+i}{24} \alpha .
\end{aligned}
$$

And apply the theorem above.
The obtained quadratic automorphism satisfies orbit data $(1,4,4)$ cyclic. And it lifts to an automorphism of a surface.

Multiple fibration

Under the conditions for our α, β, the obtained surface automorphism has a singular fiber of type IV, consisting of three quadrics intersecting at a point.

And periodic singular fiber of type I_{1} of period 8 , which is a sextic curve with a node, representing class $2 \mathcal{X}$.

The configuration of singular fibers is

$$
\text { IV I } \mathrm{I}_{1}^{8}
$$

The fibration corresponds to linear system $|-2 K|$.
And $|-K|$ is generated by the invariant elliptic curve $X \cong \mathbb{C} / \Lambda_{i}$ representing \mathcal{X}.

The elliptic curve X should support a multiple fiber ${ }_{2} \mathrm{I}_{0}$.

Elc144a10b10BC

Elc144a10b10BC

Elc144a10b10S8

Elc144a10b10DD

Elc144a10b10RR

Elc144a10b10Dx

Elc144a10b10Dy

EWc333b10DD

Thank you !

Elc144a10b10W

$$
\begin{array}{cccccc}
F_{v} & J & d & r & e & p \\
2 \mathrm{I}_{0} & 1 & 8 & 7 & 0 & \mathbf{1}+\mathbf{1}+\mathbf{2}-\mathbf{4} \\
\mathrm{IV} & 0 & 8 & 7 & 4 & \mathbf{1}+\mathbf{3} \\
\mathrm{I}_{1}^{8} & \infty & 8 \times 1 & 0 & 8 \times 1 & \mathbf{8}
\end{array}
$$

Elc144a00b01BC

Multiple fiber

Theorem. (Dolgachev-Martin,[DM]2022) Let $f: X \rightarrow B$ be a genus one surface with jacobian $J(f): J(X) \rightarrow B$ and let $\operatorname{Aut}_{f}(X)$ be the group of automorphisms of X preserving f. Assume that f is cohomologically flat. Then there is a homomorphism $\varphi: \operatorname{Aut}_{f}(X) \rightarrow \operatorname{Aut}_{J(f)}(J(f))$ satisfying the following properties, where $g \in \operatorname{Aut}_{f}(X)$:
(1) Both g and $\varphi(g)$ induce the same automorphism of B.
(2) $\operatorname{Ker}(\varphi) \cong \operatorname{MW}(J(f))$.
(3) $\varphi(g)$ preserves the zero section of $J(f): J(X) \rightarrow B$.
(4) If g acts trivially on $\operatorname{Num}(X)$, then $\varphi(g)$ acts trivially on $\operatorname{Num}(J(X))$.
(5) Let $m F_{0}$ be a fiber of f of multiplicity m and let $\left(J_{0}^{\sharp}\right)^{0}$ be the identity component of the smooth part $J_{0}^{\#}$ of the corresponding fiber J_{0} of $J(f)$, then either $\varphi(g)$ acts trivially on $\left(J_{0}^{\sharp}\right)^{0}$ or one of the following holds, where $n=\operatorname{ord}\left(\left.\varphi(g)\right|_{\left(J_{0}^{\mu}\right)}\right)$:
(a) F_{0} is smooth, $m=n=3, p \neq 3$.
(b) F_{0} is smooth, $m=2, n \in\{2,4\}, p \neq 2$.
(c) F_{0} is smooth and ordinary, $m=n=p=2$.
(d) F_{0} is an irreducible nodal curve, $m=n=2, p \neq 2$.
(e) F_{0} is of type $\tilde{A}_{1}, m=n=2, p \neq 2$.

References

[BK1] E. Bedford and K. Kim. Dynamics of Rational Surface Automorphisms: Linear Fractional Recurrences. J. Geomet. Anal. 19(2009), 553-583.
[BK2] E. Bedford and K. Kim. Dynamics of rational surface automorphisms: rotation domains. Amer. J. Math. 134(2012), no. 2, 379-405.

References

[C1] S. Cantat. Dynamique des automorphisms des surfaces projectives complexes. C.R. Acad. Sci. Paris Sér I Math., 328(10):901-906, 1999.
[C2] S. Cantat. Dynamics of automorphisms of compact complex surfaces. "Frontiers in Complex Dynamics - In Celebration of John Milnor's 80th birthday", Eds. A.Bonifant, M. Lyubich, S.
Sutherland, Prinston University Press, Princeton and Oxford, pp. 463-509, 2014
[D] J. Diller. Cremona transformations, surface automorphisms, and plane cubics. Michigan Math. J. 60(2011), no. 2, pp409-440, with an appendix by Igor Dolgachev.
[DM] I. Dolgachev, G. Martin. Automorphism groups of rational elliptic and quasi-elliptic surfaces in all characteristics. Advances in Mathemaics 400(2022).

References

[Gi] M. H. Gizatullin. Rational G-surfaces. Izv. Akad. Nauk SSSR Ser. Mat. 44(1980), 110-144, 239.
[Gr] J. Grivaux. Parabolic automorphisms of projective surfaces (after M. H. Gizatullin). Moscow Mthematical Journal, Independent University of Moscow 2016, 16(2), pp.275-298. hal-01301468. https://hal.archives-ouvertes.fr/hal-01301468 [HL] B. Harbourne, W. Lang, Multiple fibers on rational elliptic surfaces, Trans. Am. Math. Soc. bf 307 (1) (1988) 205-223. [K] T. Karayayla. The Classification of Automorphism Groups of Rational Elliptic Surface With Section. Publicly Accessible Penn Dissertations 988, Spring 2011.
https://repository.upenn.edu/edissertations/988

References

[L] R. C. Lyness. Notes 1581, 1847, and 2952. Math. Gaz. 26, 62
(1942), 29, 231 (1945), and 45, 201 (1961).
[M] C. T. McMullen. Dynamics on blowups of the projective plane.
Publ. Sci. IHES, 105, 49-89(2007).
[N] M. Nagata. On rational surfaces. II. Mem. Coll. Sci. Univ.
Kyoto Ser. A Math., 33:271-293, 1960/1961.
[OS] K. Oguiso and T. Shioda. The Mordell-Weil Lattice of a Rational Elliptic Surface. Commentarii Mathematici Universitatis Sancti Pauli 40 (1991), 83-99.
[P] Persson, Ulf. "Configurations of Kodaira Fibers on Rational
Elliptic Surfaces", Mathematische Zeitschrift vol. 205, no. 1
(1990), 1-47.

References

[S] T. Shioda. On the Mordell-Weil latticses, Comment. Math. Univ. St. Pauli, 39 (1990), 211-240.
[SS] M. Schütt, T. Shioda. Elliptic surfaces, Algebraic Geometry in East Asia - Seoul 2008, pp.51-160, Advanced Strudies in Pure Mathematics 60, 2010.
[U1] T. Uehara. Rational surface automorphisms preserving cuspidal anticanonical curves. Mathematische Annalen, Band 362, Heft 3-4, 2015.
[U2] T. Uehara. Rational surface automorphisms with positive entropy. Ann. Inst. Fourier (Grenoble) 66(2016), 377-432.

