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Abstract

There are many automorphisms of rational surfaces which have
Siegel balls or cycles of Siegel balls.

Such surface automorphisms are studied by E.Bedford, KH.Kim
and C.McMullen.

We prove that the standard Coxeter element w ∈Wn can be
realized by a surface automorphism with a cycle of Siegel balls, for
all n sufficiently large.



Coxeter element and Siegel ball

Theorem. For all n sufficiently large, the standard Coxeter
element w ∈Wn can be realized by a surface automorphism with a
cycle of Siegel balls.

Rem. McMullen proved the following.
Theorem(McMullen, 2005). For all n sufficiently large with

n 6= 2, 4 mod 6, the standard Coxeter element w ∈Wn can be
realized by a surface automorphism with a Siegel disk.



Minkowski lattice

Let ZZ1,n denote the lattice ZZn+1 equipped with the Minkowski
inner product

x · y = x0y0 − x1y1 − x2y2 − · · · − xnyn,

for basis e0, e1, · · · , en.



Blowup and (co)homology

Let π : S → CP2 be a blowup of CP2 at n distinct points
p1, p2, · · · , pn.

Ei = π−1(pi ) ⊂ S , exceptional fiber,
H ⊂ S , generic line.

A basis of H2(S ,ZZ) is given by [H] and [Ei ], i = 1, · · · , n .





Marking isomorphism

Define φ : ZZ1,n → H2(S ,ZZ) by

φ(e0) = [H], φ(ei ) = [Ei ], i = 1, · · · , n.

Minkowski inner product intersection pairing
e0 · e0 = 1 H · H = 1
ei · ej = −δij Ei · Ej = −δij
e0 · ei = 0 H · Ei = 0

φ is called a marking isomorphism, and (S , φ) is called a
marked blowup.



Reflections

For α ∈ ZZ1,n with α · α = −2,

reflection ρα : ZZ1,n → ZZ1,n is defined by

ρα(x) = x + (x · α)α.

As ρα(x) · ρα(y) = x · y , ρα ∈ O(ZZ1,n).

ρα(x) · ρα(y) = (x + (x · α)α) · (y + (y · α)α)

= x · y + (x · α)(α · y) + (y · α)(x · α) + (x · α)(y · α)(α · α)

= x · y .



Simple roots and canonical vector

Let α0 = e0 − e1 − e2 − e3,
and αi = ei − ei+1, i = 1, · · · , n − 1.
α0, α1, · · · , αn−1 are called simple roots. They define

reflections.
si = ραi ∈ O(ZZ1,n).

Vector
kn = (−3, 1, 1, · · · , 1) ∈ ZZ1,n

is called the canonical vector.

kn · αi = 0, i = 0, 1, · · · , n − 1.

si (kn) = kn, i = 0, 1, · · · , n − 1.

kn is orthogonal to simple roots. And kn is fixed by reflections si .



Weyl group

Let
Ln = {x ∈ ZZ1,n | x · kn = 0}

be the set of vectors orthogonal to the canonical vector kn.
The orthogonal group O(Ln) can be regarded as a subgroup of

O(ZZ1,n) and contains si , i = 0, · · · , n − 1.

The Weyl group Wn is the subgroup of O(Ln) generated by
s0, s1, · · · , sn−1.



Realization of elements of Wn

Theorem(Nagata,1961)
If F : S → S is an automorphism, then there exists a unique

element w ∈Wn, such that

ZZ1,n w−→ ZZ1,n

↓ φ ↓ φ
H2(S ,ZZ)

F∗−→ H2(S ,ZZ)

commutes.

We say w is realized by F .



Coxeter element

Element w ∈Wn is called a Coxeter element if it is a product
of generators s0, · · · , sn−1, taken one at a time in any order.

All Coxeter elements are conjugate.

If w : Ln → Ln, w ∈Wn is a Coxeter element, the characteristic
polynomial is as follows.

Pn(t) = det(tI − w) =
tn−2(t3 − t − 1) + (t3 + t2 − 1)

t − 1
.



Standard Coxeter element

The element
w = s1s2 · · · sn−1s0 ∈Wn

is called the standard Coxeter element. We have

w(e0) = 2e0 − e2 − e3 − e4
w(e1) = e0 − e3 − e4
w(e2) = e0 − e2 − e4
w(e3) = e0 − e2 − e3
w(ei ) = ei+1 (4 ≤ i ≤ n − 1)
w(en) = e1





Linear fractional recurrences

Birational map studied in [BK1],[BK2],

fa,b(x , y) = (y ,
y + a

x + b
)

Birational map studied in [M2],

fa,b(x , y) = (a, b) + (y ,
y

x
)

Self-anti-conjugate map

fα,β(x , y) = (y ,
y + α

x + iβ
+ iβ),



To avoid confusions, we set

n = ν + 3,

a = α + iβ, b = 2iβ.

Here, n is the number of blowup points. And ν is the number of
iterations to have a surface automorphism.

Parameters a, b are for birational maps studied by Bedford and
Kim, which is convenient for maps related to real eigenvalues.

Parameters α, β are for self-anti-conjugate maps, which is
convenient for maps related to non-real eigenvalues.



Linear fractional recurrences

For parameter (α, β) ∈ C2, let

fα,β(x , y) = (y ,
y + α

x + iβ
+ iβ)

be a birational map.
The indeterminate point p∗ of fα,β and the indeterminate point

q∗ of f −1α,β are

p∗ = (−iβ,−α), q∗ = (−α, iβ).

Let Vν denote the set of parameters (α, β) ∈ C2 satisfying

f kα,β(q∗) 6= p∗, k = 0, 1, · · · , ν − 1, and f να,β(q∗) = p∗





Surface automorphism

For (α, β) ∈ Vν , let f = fα,β and let

π : S → CP2

be the blowup of CP2 at n = ν + 3 points

q∗, f (q∗), · · · , f ν(q∗) = p∗, p1 = [0 : 1 : 0], p2 = [0 : 0 : 1].

Theorem(Bedford and Kim, 2007)
If (α, β) ∈ Vν , then fα,β realizes the standard Coxeter element

w ∈Wν+3.



H P∗ P1 P2 Q fQ · · · f ν−1Q
↓ ↓ ↓ ↓ ↓ · · · ↓
p∗ p1 p2 q∗ f (q∗) · · · f ν−1(q∗)

f∗(H) = 2H − P1 − P2 − Q
f∗(P∗) = H − P2 − Q
f∗(P1) = H − P1 − Q
f∗(P2) = H − P1 − P2

f∗(f
iQ) = f i+1Q i = 0, · · · , ν − 2,

f∗(f
ν−1Q) = P∗

χν(t) = tν+1(t3 − t − 1) + (t3 + t2 − 1) = (t − 1)Pn(t).



e0 e1 e2 e3 e4 e5 · · · en
↓ ↓ ↓ ↓ ↓ ↓ · · · ↓
H P∗ P1 P2 Q fQ · · · f ν−1Q

w(e0) = 2e0 − e2 − e3 − e4
w(e1) = e0 − e3 − e4
w(e2) = e0 − e2 − e4
w(e3) = e0 − e2 − e3
w(ei ) = ei+1 (4 ≤ i ≤ n − 1)
w(en) = e1



A linear automorphism R(x , y) = (αx , βy) of C2 is an irrational
rotation if |α| = |β| = 1 and R has dense orbits on S1 × S1. Let
F : X → X be a holomorphic endomorphism of complex surface X .
A domain U ⊂ X is a Siegel ball for F if F (U) = U and F |U is
analytically conjugate to R|∆2 for some irrational rotation R. Here
S is a complex surface and ∆ is the unit disk in C.



Siegel balls

We look for fα,β, (α, β) ∈ Vn, such that fα,β has a Siegel ball or
a cycle of Siegel balls. (Siegel ball stands for rotation domain of
rank 2)

Theorem(McMullen, 2005). For all n sufficiently large with
n 6= 2, 4 mod 6, the standard Coxeter element w ∈Wn can be
realized by a surface automorphism with a Siegel disk.

Theorem(Bedford and Kim, 2009). Suppose ν ≥ 8, j = 2 or
3, and j divides ν. Then there exists (α, β) ∈ Γj ∩ Vν such that
fα,β has a rank 2 rotation domain centered at FPr , as well as a
rank 1 rotation domain centered at FPs .



Theorem(U.). For all n sufficiently large, the standard
Coxeter element w ∈Wn can be realized by a surface
automorphism with a cycle of Siegel balls.

We look for a cycle of Siegel balls when f does not have a Siegel
ball(of rank 2) around fixed points.

First, observe the priodic points of period 2.
Linear fractional recurrence map has a unique cycle of period 2.

In order to compute the determinant δ2 and the trace τ2 of the
Jacobian matrix along the cycle, our family of self-anti-conjugate
maps is convenient.



δ2 and τ2

Proposition. For self-anti-conjugate map

fα,β(x , y) = (y ,
y + α

x + iβ
+ iβ),

we have

δ2 =
1− α + iβ

1− α− iβ
and τ2 =

2α− 4β2 − 1

1− α− iβ
.



Proof.

If (x , y) and (y , x) is a cycle of period 2, (x 6= y), then

x − iβ =
y + α

x + iβ
, y − iβ =

x + α

y + iβ
,

and x + y = −1, xy = 1 + β2 − α.
Along the 2-cycle, as

Df 2 =

(
0 1

− x+α
(y+iβ)2

1
y+iβ

)(
0 1

− y+α
(x+iβ)2

1
x+iβ

)

=

(
0 1

− y−iβ
y+iβ

1
y+iβ

)(
0 1

− x−iβ
x+iβ

1
x+iβ

)

=
1

(y + iβ)(x + iβ)

(
−(x − iβ)(y + iβ) y + iβ
−(x − iβ) −(x + iβ)(y − iβ) + 1

)



Hence we have

δ2 = det(Df 2) =
y − iβ

y + iβ

x − iβ

x + iβ
=

1− α + iβ

1− α− iβ
,

and

τ2 = trace(Df 2) =
1− (x − iβ)(y + iβ)− (x + iβ)(y − iβ)

(y + iβ)(x + iβ)

=
2α− 4β2 − 1

1− α− iβ
.



Parameter space of linear fractional recurrences



Γ1-family of linear fractional recurrences

As proved in [BK2]( and adapted to our family), if fα,β has an
invariant cubic curve with a cuspidal singularity, fα,β is
parametrized by t ∈ C as follows.

τ = t2 + t3, δ = t5,

α =
2δ − τ − τδ

2τ2
, iβ =

1− δ
2τ

.

These give

δ2 =
1

t2
,

τ2 =
(1 + t2)(1− 2t2 − t3 + t4 − t5 − 2t6 + t8)

t4(1 + t + t2 + t3 + t4)
.



Γj curves



Γ1 ∩ Vn

Moreover, if t satisfies χν(t) = 0 for some ν, then the birational
automorphism fα,β prescribed above defines an automorphism of a
surface which is the blowup of CP2 in ν + 3 points. So, fα,β
realizes the standard Coxeter element w ∈Wν+3.



Let λ
t and µ

t be the eigenvalues of Df 2 along the 2-cycle.

Then we have

λµ = 1, λ+ µ = tτ2.

Let T = tτ2. T is a rational function of t.

Proposition. |λ| = |µ| = 1, λ = µ̄ if and only if T ∈ [−2, 2].



Proposition. When |t| = 1, T is real. The range of T , for
|t| = 1, includes an open interval in [−2, 2] and another open
interval in R \ [−2, 2].

Proof. Let c = t + 1
t . Then

T (t) = T̂ (c) =
c(c4 − 6c2 − c + 7)

c2 + c − 1

is a real valued rational function of c ∈ [−2, 2], with poles at

c = −1±
√
5

2 , and vanishes at c = 0. Hence the range of T 2 on
[−2, 2] is [0,∞).

Note that T̂ (−1) = 3, T̂ (2) = − 6
5 .



Graph of T



Salem polynomial

A complex number is an algebraic integer if it is the zero of a
polynomial with integer coefficients and leading coefficient 1.

Its minimal polynomial is the lowest degree polynomial of that
type it satisfies.

Its (Galois) conjugates are the zeros of its minimal polynomial.

A Salem number is an algebraic integer τ > 1 conjugate to
τ−1, all of whose conjugates, excluding τ and τ−1 lie on |z | = 1.

A Salem polynomial is the minimal polynomial of a Salem
number.



Multiplicative independence and Diophantine condition

Definition. Nonzero complex numbers λ1, · · · , λn are
multiplicatively independent if

λk11 · · ·λ
kn
n = 1 =⇒ k1 = · · · = kn = 0.

Definition. λ1, · · · , λn are jointly Diophantine if there exist
positive constants C and M, such that

|λk11 · · ·λ
kn
n −1| > C (max |ki |)−M > 0 for ∀(k1, · · · , kn) ∈ ZZn\{o}.



Theorem If the derivative DFp : TpX → TpX has jointly
Diophantine eigenvalues (λ1, · · · , λn) ∈ (S1)n, then F has a Siegel
ball at p.

The proof is due to Siegel for n = 1 and to Sternberg for n > 1.



Theorem(McMullen) If λ1, · · · , λn are multiplicatively
independent algebraic numbers on S1 ⊂ C, then they are jointly
Diophantine.

Proof By Fel’dman, using Gel’fond-Baker method, for
algebraic numbers k0, · · · , kn, not all zero,

|k02πi + k1 log λ1 + · · ·+ kn log λn| > exp(−M(d + logH)),

where d is the degree of the field Q[k0, · · · , kn, λ1, · · · , λn],
M = M(λ1, · · · , λn, d) is a constant depending only on λ1, · · · , λn
and d , H = maxH(ki ). Here, height H(k) = Σ|aj |, if p(k) = 0,
p(x) =

∑s
j=0 ajx

j is an irreducible polynomial with relatively prime
integer coefficients aj .

For ki ∈ ZZ, H = max |ki |, and M depends only on (λj). Hence,

exp(−M(d + logH)) = (edH)−M = e−dM(max |ki |)−M .



Proposition. Let U(t) be a rational function which satisfies
U(t) ∈ R if |t| = 1. Let t be a root of a Salem polynomial with
|t| = 1, and let t ′ be a conjugate of t with |t ′| = 1.

Suppose we have 0 ≤ |U(t)| < 2 < |U(t ′)|. Let λ, µ be the
roots of simultaneous equations

λµ = 1, λ+ µ = U(t).

Then for k ∈ ZZ, k 6= 0, values λtk and µtk are multiplicatively
independent and |λtk | = |µtk | = 1.



Proof. Let λ′, µ′ be the conjugates of λ, µ corresponding to
t ′. As |U(t)| < 2 and |U(t ′)| > 2, we have |λ| = |µ| = 1, and
|λ′| = |µ′|−1 6= 1. Now, suppose (λtk)i (µtk)j = 1. Then
(λ′(t ′)k)i (µ′(t ′)k)j = 1 as well. And thus i = j . Therefore
((λtk)(µtk))i = t2ki = 1. Since t satisfies a Salem polynomial, it
is not a root of unity, and thus i = 0.



Cycle of Siegel balls

Proposition. Let t be a root of characteristic equation
χν(t) = 0. Assume t is not a root of unity, |t| = 1, and
|T (t)| < 2, where T (t) = tτ2, defined for Γ1-family of linear
fractional recurrences. If there exists a conjugate t ′ of t with
|T (t ′)| > 2, then the linear fractional recurrence fα,β given by

α =
−1− t + 2t3 − t5 − t6

2t2(1 + t)2
, β =

1− t5

2it2(1 + t)

defines an automorphism of a blowup of CP2 at ν + 3 points
which has a cycle of Siegel balls of period 2.



Proof. The determinant of the unique 2-cycle of the linear
fractional recurrence fα,β is δ2 = 1

t2
, and the trace of the 2-cycle

is given by

τ2 =
(1 + t2)(1− 2t2 − t3 + t4 − t5 − 2t6 + t8)

t4(1 + t + t2 + t3 + t4 + t5)
.

The eigenvalues λ
t and µ

t are given by

λµ = 1, λ+ µ = tτ2 = T (t).

Apply the preceding proposition to prove the existence of a cycle of
Siegel balls. The algebraic and multiplicatively independent
eigenvalues satisfy the Diophantian condition.



Proposition. For ν ∈ N and k ∈ ZZ, the characteristic
equation

χν(x) = xν+1(x3 − x − 1) + (x3 + x2 − 1) = 0

has at lest one solution t such that |t| = 1 and t = e iθ with
2k−1
ν+1 π ≤ θ ≤

2k+1
ν+1 π.



χ17(t)



Proof. Equation χν(x) = 0 is equivalent to (if 1 + x − x3 6= 0)

xν+1 =
x3 + x2 − 1

1 + x − x3
.

We look for a solution t with |t| = 1. Let t = s2 and s = e iϑ

with − π
2 ≤ ϑ <

π
2 . Let

ψ =
t3 + t2 − 1

1 + t − t3
=

s3 + s − s−3

s−3 + s−1 − s3
.

As s + s3 − s−3 = cosϑ+ i(7 sinϑ− 8 sin3 ϑ), we have

tan(
argψ

2
) = tanϑ(7− 8 sin2 ϑ)

which is continuous for − π
2 < ϑ < π

2 .
So, we see that −π <arg ψ < π.



As

lim
ϑ→± π

2

arg ψ

2
= ∓ π

2
,

function θ 7→ ϑ 7→ arg ψ defines a continuous function.
We see that ψ = −1 if and only if t = −1 (under the condition
|t| = 1).

The graph of arg ψ and the graph of (ν + 1)θ are shown in the
following figure.

For each integer k , they intersect at lest once in interval
2k−1
ν+1 π ≤ θ ≤

2k+1
ν+1 π.



Graph of arg ψ



Proof of the main theorem

Theorem(U.). For all n sufficiently large, the standard
Coxeter element w ∈Wn can be realized by a surface
automorphism with a cycle of Siegel balls.

Proof. Let us consider the solutions of the characteristic
equation χν(x) = 0. The maximum of the distance, measured in
argument, between two nearest solutions in S1 ⊂ C is smaller than
4

ν+1π, since each interval of size 2
ν+1π in the previous proposition

contains at least one solution.
The number of possible root of unity for solutions of the

characteristic equation is finite and uniformly bounded.



There are open intervals I1, I2 of arguments of t, such that

T (t) ∈ [−2.2], if arg t ∈ I1,

T (t) ∈ R \ [−2, 2], if arg t ∈ I2.

So, for sufficiently large ν, we can find Galois conjugates t and
t ′ of solutions of χν(x) = 0, which are not a root of unity, with
T (t) ∈ [−2, 2] and T (t ′) ∈ R \ [−2, 2].

The linear fractional recurrence fα,β specified by t in the Γ1

family gives an automorphism of blowup of the projective plane
with a period-two cycle of Siegel balls.



parameter space for V17



Anti-conjugate-axis slice for V17 map
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