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Abstract

There exists a real two-parameter family of complex Hénon maps such
that the number of coexisting cycles of Siegel balls is unbounded in the
subfamily of any open set of parameters.

1.1 Complex Hénon map

For parameters (α, β) ∈ C2, define our Hénon map Hα,β : C2 → C2 by

Hα,β

 x
y

 =

 y
β(y2 + α)− β2x

 .

It is conjugate to the classical complex Hénon map

hb,c

 x
y

 =

 x2 + c+ by
x


by conjugacy map and correspondence of parameters given by

ϕ

 x
y

 =

 βy
βx

 , b = −β2, c = −αb,

ϕ ◦Hα,β ◦ ϕ−1 = hb,c

1.2 Fixed point

The fixed point P∗ =

 y∗
y∗

 of Hénon map is given by quadratic

equation

y∗ = β(y2∗ + α)− β2y∗,



or
y2∗ − (β + β−1)y∗ + α = 0.

The Jacobian matrix at the fixed point is as follows.

DHα,β P∗ =

 0 1
−β2 2βy∗

 = β

 0 β−1

−β 2y∗

 .

trace DHα,β = 2βy∗, det DHα,β = β2.

1.3 Our family

We specify the eigenvalues at the fixed point. For eigenvalues βµ, βµ−1,
we have

y∗ =
µ+ µ−1

2
and α = (β + β−1)y∗ − y2∗.

Our family is given by

β = cos θ + i sin θ, µ = cosφ+ i sinφ.

with
y∗ = cosφ, α = 2 cos θ cosφ− cos2 φ.

Co-existing cycles of Siegel balls

2.1 Abundance of Siegel balls

Theorem For any open set U ⊂ (R/2πZZ)2 and any integer N > 1,
there exists a point (θN , φN) ∈ U such that the Hénon map Hα,β for this
parameter has more than N cycles of Siegel balls.



The proof of this theorem is based on the following theorem of parabolic
bifurcations.

2.2 Elliptic-parabolic bifurcation

Let p > 1 be an integer, and let ν be a prime p-th root of unity,

νk ̸= 1 (k = 1, · · · , p− 1), νp = 1.

If ν is an eigenvalue of DHα,β P∗, then

trace DHα,β P∗ = ν + β2ν̄, y∗ =
βν̄ + β−1ν

2
,

α0 = (β + β−1)y∗ − y2∗.

Suppose {Pn} =


 xn
yn

 is p-periodic. From

xn+1 = yn, yn+1 = β(y2n + α)− β2xn,

we have
β−1yn+1 = y2n + α− βyn−1.

Theorem For prime p-th root ν of 1, and for all β ∈ C, except
for a finite number of values, there exists a constant α1 ̸= 0 and a family
yn(ε) of p-cycles for parameter α = α(εp), such that

α(εp) = α0 + α1ε
p +O(ε2p), yn(ε) = y∗ + νnε+O(ε2),

holds for ε ∈ C near ε = 0.

Proposition The constant α1 in the previous theorem depends
upon β and is a non trivial rational function of β.

2.3 Self-anti-conjugate cycles

Theorem In the previous theorem, if |β| = 1 then α0 ∈ R and
α1 ∈ R. Moreover, if α ∈ R, near α0, then

yn = y−n or yn = y1−n



for some ε.

Theorem If p-periodic orbit is self-anti-conjugate, i.e.

yn = y−n or yn = y1−n,

then the jacobian matrix along the orbit is of the form

D(H◦p
α,β) P0

= βpA,

with detA = 1 and trace A ∈ R.

2.4 Trace function

Let
τ(β, α) = β−p trace D(H◦p

α,β) P0
.

Proposition τ(β, α) is holomorphic near (β0, α0), and non-constant
with respect to α.

Proposition If |β| = 1 and α ∈ R, then τ(β, α) ∈ R near
(β, α0(β)), and −2 < τ(β, α0(β)) < 2. (Except for finitely many values of
β.)

3.1 Discrete Fourier expansion

Recall the equation of p-periodic point. (yn+p = yn)

β−1yn+1 = y2n + α− βyn−1, n = 0, · · · , p− 1.

Discrete Fourier expansion

yn = u0 + νnu1 + ν2nu2 + · · ·+ νknuk + · · ·+ ν(p−1)nup−1

=
p−1∑
k=0

νknuk

gives rise to the following equation.

(F0) (β + β−1)u0 = u20 +
p−1∑
ℓ=1

uℓup−ℓ + α,



(F1) (βν̄ + β−1ν)u1 = 2u0u1 +
p−1∑
ℓ=2

uℓup+1−ℓ,

(Fk) (βν̄k + β−1νk)uk = 2u0uk +
k−1∑
ℓ=1

uℓuk−ℓ +
p−1∑

ℓ=k+1

uℓup+k−ℓ.

k = 2, · · · , p− 1.

This equation has a solution, corresponding to the elliptic-parabolic
fixed point P∗.

u0 = y∗, u1 = u2 = · · · = up−1 = 0, α = α0.

Rewrite these equations as follows.

(F0) (β + β−1)u0 = u20 +
p−1∑
ℓ=1

uℓup−ℓ + α,

(F ′
1) (βν̄ + β−1ν − 2u0)u1 =

p−1∑
ℓ=2

uℓup+1−ℓ,

(F ′
k) (βν̄k + β−1νk − 2u0)uk =

k−1∑
ℓ=1

uℓuk−ℓ +
p−1∑

ℓ=k+1

uℓup+k−ℓ.

k = 2, · · · , p− 1.

3.2 Emanating branch of periodic points

Parameter α appears only in (F0). For each β, let ε ∈ C be a small
parameter and let δ ∈ C be a constant to be determined. Dependence upon

β will be considered later. Suppose u0 = y∗−
δ

2
εp, and u1 = εv1. From

equation (F ′), we may suppose, inductively, uk = εkvk, (k = 2, · · · , p−1).
Here, v1, v2, · · · , vp−1 are functions of ε. (Later, we see they are functions
of εp.)

(E0) u0 = y∗ −
δ

2
εp,

(Ek) uk = εkvk, k = 1, · · · , p− 1.

Rewrite equation (F ) using (E), with y∗ =
βν̄ + β−1ν

2
, to get the

following equation.



(G1) δv1 =
p−1∑
ℓ=2

vℓvp+1−ℓ,

(Gk) (β(ν̄k− ν̄)+β−1(νk−ν)+δεp)vk =
k−1∑
ℓ=1

vℓvk−ℓ + εp
p−1∑

ℓ=k+1

vℓvp+k−ℓ,

k = 2, · · · , p− 1.

Note that α will be computed by (F0), afterwards.

3.3 Principal part equation (L)

Let vk = ak + O(ε), k = 1, · · · , p − 1. And let γk = β(ν̄k −
ν̄) + β−1(νk − ν) for k = 2, · · · , p − 1. Equation (G), as ε → 0, yields the
following equation.

(L1) δa1 =
p−1∑
ℓ=2

aℓap+1−ℓ,

(Lk) γkak =
k−1∑
ℓ=1

aℓak−ℓ, k = 2, · · · , p− 1.

Inductively from (L2), · · · , (Lp−1), we have

ak =
1

γk

k−1∑
ℓ=1

aℓak−ℓ = ηka
k
1,

with ηk = ηk(β) rational function of β, for k = 2, · · · , p− 1.
Or

η1 = 1, ηk =
1

γk

k−1∑
ℓ=1

ηℓηk−ℓ.

From (L1),

δa1 = Φ(β)ap+1
1

with a rational function Φ(β).

Proposition. Φ(β) is a non-trivial rational function of β.



Proof. Obviously, Φ(β) is a rational function of β. We show that
Φ(−ν) > 0. If β = −ν, then

γk = 2− (ν̄k−1 + νk−1), k = 2, · · · , p− 1.

Therefore, 0 < γk(−ν) ≤ 4, for k = 2, · · · , p−1. These imply ηk(−ν) > 0,
for k = 2, · · · , p− 1. And we have Φ(−ν) > 0, since

Φ(β) =
p−1∑
ℓ=2

ηℓ(β)ηp+1−ℓ(β).

If |β| = 1, then γk ∈ R, (k = 2, · · · , p−1), ηk ∈ R, (k = 1, · · · , p−1),
and Φ(β) ∈ R. These are non-zero except for a finite number of values of
β.

Now, we determine the constant δ by δ = Φ(β). Equation (L) has a
solution

a1 = 1, ak = ηk(β), k = 2, · · · , p− 1.

If |β| = 1, then a1, · · · , ap−1 are all real. Other solutions give the same
periodic orbit ( for different choice of initial point).

Now, we go back to equation (G).

(G1) δv1 =
p−1∑
ℓ=2

vℓvp+1−ℓ,

(Gk) (γk + δεp)vk =
k−1∑
ℓ=1

vℓvk−ℓ + εp
p−1∑

ℓ=k+1

vℓvp+k−ℓ,

k = 2, · · · , p− 1.

Observe that ε appears only as εp in this equation. Let κ = εp and rewrite
the equation as follows.

(Γ1) w1 =
p−1∑
ℓ=2

vℓvp+1−ℓ − δv1,

(Γk) wk =
k−1∑
ℓ=1

vℓvk−ℓ − γkvk + κ

 p−1∑
ℓ=k+1

vℓvp+k−ℓ − δvk

 ,

k = 2, · · · , p− 1.



These define a map
Γ : C× C× Cp−1 → Cp−1

by
Γ(β, κ, v1, · · · , vp−1) = (w1, · · · , wp−1).

Γ is a quadratic polynomial in v1, · · · , vp−1, with coefficients rational in
β, and affine in κ.

3.4 Matrix Λβ

Except for a finite number of values of β,

Γ(β, 0, a1, · · · , ap−1) = (0, · · · , 0)

holds.The jacobian matrix Λβ =

∂wi

∂vj

 at (β, 0, a1, · · · , ap−1) is as follows.

Λβ =



−δ 2ap−1 2ap−2 · · · · · · 2a2
2a1 −γ2 0 · · · · · · 0
2a2 2a1 −γ3 0 · · · 0

2a3 2a2 2a1 −γ4
. . . ...

... . . . . . . . . . . . . 0
2ap−2 2ap−3 · · · 2a2 2a1 −γp−1


.

All components of Λβ are rational functions of β.

Proposition If p ≥ 3, the matrix Λβ is regular except for a finite
number of values of β.

Proof Obviously, the determinant of Λβ is a rational function of
β. We show that it is non-trivial. Let

Mβ =



−δ ap−1 ap−2 · · · · · · a2
a1 −γ2 0 · · · · · · 0
a2 a1 −γ3 0 · · · 0

a3 a2 a1 −γ4
. . . ...

... . . . . . . . . . . . . 0
ap−2 ap−3 · · · a2 a1 −γp−1


.



Equation (L) is equivalent to

Mβ


a1
...

ap−1

 = 0.

As we have non-trivial solutions for all values of β, except for a finite
number of values,

detMβ = 0

holds as a rational function of β.
Observe the sweeping-out process of Mβ. To sweep out the off-diagonal

components of the first line, other lines of Mβ are used with diagonal
components γ2, · · · , γp−1 as pivots. These pivots are non-trivial rational
functions of β. To suppress a term in (1, k)-component of Mβ, say tk, we
add the k-th line multiplied by tk/γk to the first line. Then the (1, j)-
component, say cj, becomes

cj +
ak−j

γk
tk, j = 1, · · · , k − 1.

In this process, all the components of the first line, except for −δ, are sums
of terms of the form

1

γm1
k1

· · · γmℓ
kℓ

.

When all the off-diagonal components of the first line are swept out, the
first line vanishes.

Next, let us compute det Λβ in a similar way. To compare the sweeping-
out process, let bk = ak and rewrite the off-diagonal components of Λβ as

2ak = ak + bk, k = 1, · · · , p− 1.

Sweep-out the off-diagonal components of the first line of Λβ to get a lower
triangle matrix. The terms without bk’s are exactly same as in the sweep-
out procedure of Mβ. The terms without ak’s contribute exactly same.
There are other terms consisting of ak’s and bk’s. Anyway, all the terms
are always sums of terms of the form

1

γm1
k1

· · · γmℓ
kℓ

.



After the sweeping-out, in the (1, 1)-component of the triangle matrix, −δ
cancels the ak-only terms. And bk-only terms gives δ. The remaining terms
are a sum of terms of the form

1

γm1
k1

· · · γmℓ
kℓ

,

with positive coefficients.
The (1, 1)-component of the triangle matrix is obviously a rational

function of β. To prove the non-triviality of the rational function, we show
that it does not vanish for β = −ν. As

γk(β) = β(ν̄k − ν̄) + β−1(νk − ν),

γk(−ν) = 2− (νk−1 + ν̄k−1) > 0, k = 2, · · · , p− 1.

These imply the positivity of a1, · · · , ap−1 and δ. Furthermore, terms of the
form

1

γm1
k1

· · · γmℓ
kℓ

are all positive. Hence the (1, 1)-component of the triangle matrix is strictly
positive and greater than δ. We conclude that

det Λ−ν ̸= 0.

3.5 Solution of Equation (Γ)

Now, we go back to equation (Γ).

(Γ1) w1 =
p−1∑
ℓ=2

vℓvp+1−ℓ − δv1,

(Γk) wk =
k−1∑
ℓ=1

vℓvk−ℓ − γkvk + κ

 p−1∑
ℓ=k+1

vℓvp+k−ℓ − δvk

 ,

k = 2, · · · , p− 1.

Γ(β, κ, v1, · · · , vp−1) = (w1, · · · , wp−1).

Proposition For any β0 ∈ C, except for a finite number of values,
there exists a neighborhood, U , of (β0, 0) ∈ C2, such that implicit functions

v1(β, κ), v2(β, κ), · · · , vp−1(β, κ)



defined by
Γ(β, κ, v1, · · · , vp−1) = (0, · · · , 0)

with
vk(β0, 0) = ak(β0), k = 1, · · · , p− 1,

exist and holomorphic in U .

Proof Except for a finite number of values of β,

Γ(β, 0, a1, · · · , ap−1) = (0, · · · , 0)

holds. As we verified, the jacobian matrix Λβ =

∂wi

∂vj

 at (β, 0, a1, · · · , ap−1)

is regular. Apply the implicit function theorem to get the implicit function.

3.6 Parameter α

Functions v1, · · · , vp−1, with κ = εp give solutions of equation (G). Next,
let us go back to equation (F ). We introduced redundant parameters ε and
δ. Parameter δ was determined as a rational function of β. The redundant
parameter κ = εp is related to the remaining parameter α by equation
(F0). From equation (F0), we have

(K) α = (β + β−1)(y∗ −
δ

2
κ)− (y∗ −

δ

2
κ)2 − κ

p−1∑
ℓ=1

vℓvp−ℓ,

which is a function of β and κ.
As

y∗ =
βν̄ + β−1ν

2
, α0 = (β + β−1)y∗ − y2∗,

α− α0 = − κ

p−1∑
ℓ=1

vℓvp−ℓ − y∗δ +
δ

2
(β + β−1)

 − δ2

4
κ2

= − κ

p−1∑
ℓ=1

aℓap−ℓ +
δ

2
(β(1− ν̄) + β−1(1− ν))

 + o(κ).

By setting

α1 = −
p−1∑
ℓ=1

aℓap−ℓ +
δ

2
(β(1− ν̄) + β−1(1− ν))

 ,



we have
α = α0 + α1κ+ o(κ).

Proposition α1 is a non-trivial rational function of β, and takes
real value if |β| = 1.

Proof If β = −ν, then, as in the preceding proposition, a1, · · · , ap−1

and δ are real and positive. Moreover, β(1−ν̄)+β−1(1−ν) = 2−(ν+ν̄) >
0. Hence, α1(−ν) < 0, which shows α1 is non-trivial. If |β| = 1, then
β−1 = β̄. The reality of γ1, · · · , γp−1, a1, · · · , ap−1, and δ is obvious.

Proposition For all β0 ∈ C, except for a finite number of values,
there exists a neighborhood, U , of (β0, α0(β0)) ∈ C2, such that the implicit
function κ = κ(β, α) satisfying κ(β0, α0(β0)) = 0 defined by equation (K)
exists and holomorphic in U .

4.1 Choice of initial point

Now, fix β0 with |β0| = 1, and set α0 = α0(β0) ∈ R. If α ∈ R,
and |α− α0| is sufficiently small, then κ(β0, α) is real, since the preceding
procedure keeps the realities.

Solutions v1, · · · , vp−1 of equation (G) are real, since κ(β0, α) ∈ R. We
choose a p-th root, ε, of κ(β0, α) and a self-anti-conjugate periodic orbit
as follows. Choice of ε determines the choice of the initial point of the
periodic orbit.

case I If p is odd or κ(β0, α) > 0, then the equation εp = κ(β0, α) has
a real root. Real ε gives real solutions u0, · · · , up−1 of equations (F ) and
(E). These give rise to a periodic orbit yn = u0+νnu1+ · · ·+ν(p−1)nup−1,
with real y0. We see that y−n = yn.

case II If p is even and κ(β0.α) < 0, then take a solution of εp = κ(β0, α)
satisfying ε = ν̄ε̄. The solutions of equation (F ) are as follows.

u0 = y∗ −
δ

2
εp, uk = εkvk, (k = 1, · · · , p− 1).



As u0 and v1, · · · , vp−1 are real, we have

yn =
p−1∑
k=0

νknuk = u0 +
p−1∑
k=1

νknεkvk = u0 +
p−1∑
k=1

νk(n−1)ε̄kvk

= u0 +
p−1∑
k=1

ν−k(n−1)εkvk =
p−1∑
k=0

νk(1−n)uk = y1−n.

In both cases, the obtained periodic orbit is self-anti-conjugate. The
jacobian matrix along the orbit is of the form

D(H◦p
α,β) P0

= βpA,

with detA = 1 and trace A ∈ R.

4.2 Trace function

Let
τ = τ(β, α) = β−p trace D(H◦p

α,β) P0
.

τ is an algebraic function of complex parameters (β, α). Note that τ does
not depend on the choice of ε among the p-th root of κ, since the choice
of ε corresponds to the choice of the initial point in the periodic orbit. τ

is locally univalent and continuous near (β0, α0). Hence τ is holomorphic
in (β, α) near (β0, α0). As we saw, if |β| = 1 and α ∈ R, then τ(β, α) ∈ R
near (β0, α0), and −2 < τ(β0, α0) < 2.

Proposition τ(β, α) is holomorphic in (β, α) and non-constant
with respect to α near (β0, α0).

Proof Consider the analytic continuation of τ . As τ is algebraic,
continuation along the real axis of α exists by avoiding branch points choos-
ing some branch. If |α| is sufficiently large, then all the periodic points of
the Hénon map are hyperbolic, and |τ(β0, α)| > 2 there.

Trace function can be computed as follows.

Let B =

 0 β−1

−β 0

 and Yk =

 0 0
0 2yk

 .

τ = β−p trace D(H◦p
α,β) P0



= trace

 0 β−1

−β 2yp−1

 · · ·
 0 β−1

−β 2y0


= trace ((B + Yp−1) · · · (B + Y0)) .

τ =
[ p

2 ]∑
k=0

(−1)k2p−2k

 ∑
0≤i1<i2<···<ip−2k<p(with some extra condition)

yi1yi2 · · · yip−2k

 .

Here, the extra condition can be described as follows. The complement of
the indices {0, 1, · · · , p−1}\{i1, · · · , ip−2k} consists of k pairs of consecutive
indices {j1, j1+1, j2, j2+1, · · · , jk, jk+1}. Coefficients of τ(κ) are rational
functions of β.

5.1 Abundance of Siegel balls

For (θ, φ) ∈ (R/2πZZ)2, let

β = cos θ + i sin θ, α = 2 cos θ cosφ− cos2 φ,

which defines a family of self-anti-conjugate Hénon maps

Hα,β

 x
y

 =

 y
β(y2 + α)− β2x

 ,

with |β| = 1 and α ∈ R.

Theorem For any open set U ⊂ (R/2πZZ)2 and any integer N > 1,
there exists a point (θN , φN) ∈ U such that the Hénon map Hα,β for this
parameter has more than N cycles of Siegel balls.

Proof Fixed points of Hα.β are given by

y∗ = cos θ ± (cos θ − cosφ).

We choose
y∗ = cosφ

and set
µ = cosφ+ i sinφ.



Eigenvalues of jacobian matrix at the fixed point

DHα,β = β

 0 β−1

−β 2 cosφ


are βµ and βµ̄. The arguements of these eigenvalues are

θ + φ and θ − φ (mod 2π).

By Siegel’s theorem (or Brjuno’s theorem), there is a subsetW1 ⊂ (R/2πZZ)2

of full measure, such that the fixed point of the corresponding Hénon map
has a Siegel ball.

We set

U1 = U, p1 = 1, and V1 = U1 ∩Wp1.

Inductively, we assume Um is an open subset of U and Vm is a full measure
subset of Um, such that Hα,β for any (θ, φ) ∈ Vm has m cycles of Siegel
balls of periods p1, · · · , pm.

In open set Um, there is a point (θ, φ) ∈ Um, such that 1
2π(θ + φ) = q

p

is rational with p > pm and, p and q are mutually prime. Then perturb
(θ, φ) keeping θ + φ = 2πq

p , so that β = cos θ + i sin θ avoids the values of
β forbidden in the preceding propositions.

There is an open set of parameters containing such a parameter, such
that the Hénon map Hα,β has a neutral cycle of period p, which is self-anti-
conjugate with eigenvalues of the form βpλ and βpλ̄, with−2 < τ(β, α) < 2.
The trace function τ(β, α) is a non-trivial analytic function with respect
to α. Determinant of Hp

α,β is β2p. Hence, the eigenvalues of the neutral p
cycle varies effectively.

Note that τ(β, α) ∈ R, if α ∈ R, and −2 < τ(β, α0(β)) < 2. This
implies that there is an open subset Um+1 ⊂ Um and a full measure set
Wp ⊂ Um+1 of parameters, such that the Hénon map has a Siegel ball of
period p.

Set Vm+1 = Vm ∩ Wp ⊂ Um+1, and pm+1 = p. Vm+1 is a full measure
subset of Um+1. Continue this procedure until m = N .

VN is a set of positive measure. Hence, we can find a parameter
(θN , φN) ∈ VN ⊂ U .


