Abundance of Siegel balls in a family of complex Hénon maps

Shigehiro Ushiki Graduate School of Human and Environmental Studies Kyoto University

Karuizawa, January, 2016

Abstract

There exists a real two-parameter family of complex Hénon maps such that the number of coexisting cycles of Siegel balls is unbounded in the subfamily of any open set of parameters.

1.1 Complex Hénon map

For parameters $(\alpha, \beta) \in \mathbb{C}^2$, define our Hénon map $H_{\alpha,\beta} : \mathbb{C}^2 \to \mathbb{C}^2$ by

$$H_{\alpha,\beta}\left(\begin{array}{c}x\\y\end{array}
ight) = \left(\begin{array}{c}y\\\beta(y^2+\alpha)-\beta^2x\end{array}
ight).$$

It is conjugate to the classical complex Hénon map

$$h_{b,c}\left(\begin{array}{c}x\\y\end{array}\right) = \left(\begin{array}{c}x^2+c+by\\x\end{array}\right)$$

by conjugacy map and correspondence of parameters given by

$$\phi\begin{pmatrix} x\\ y \end{pmatrix} = \begin{pmatrix} \beta y\\ \beta x \end{pmatrix}, \quad b = -\beta^2, \quad c = -\alpha b,$$
$$\phi \circ H_{\alpha,\beta} \circ \phi^{-1} = h_{b,c}$$

1.2 Fixed point

The fixed point $P_* = \begin{pmatrix} y_* \\ y_* \end{pmatrix}$ of Hénon map is given by quadratic equation

$$y_* = \beta(y_*^2 + \alpha) - \beta^2 y_*,$$

$$y_*^2 - (\beta + \beta^{-1})y_* + \alpha = 0.$$

The Jacobian matrix at the fixed point is as follows.

$$DH_{\alpha,\beta}|_{P_*} = \begin{pmatrix} 0 & 1 \\ -\beta^2 & 2\beta y_* \end{pmatrix} = \beta \begin{pmatrix} 0 & \beta^{-1} \\ -\beta & 2y_* \end{pmatrix}.$$

trace $DH_{\alpha,\beta} = 2\beta y_*, \quad \det DH_{\alpha,\beta} = \beta^2.$

1.3 Our family

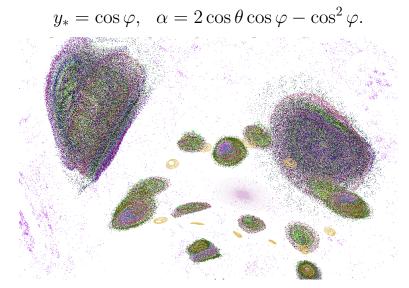
We specify the eigenvalues at the fixed point. For eigenvalues $\beta \mu$, $\beta \mu^{-1}$, we have

$$y_* = \frac{\mu + \mu^{-1}}{2}$$
 and $\alpha = (\beta + \beta^{-1})y_* - y_*^2$.

Our family is given by

$$\beta = \cos \theta + i \sin \theta, \quad \mu = \cos \varphi + i \sin \varphi.$$

with



Co-existing cycles of Siegel balls

2.1 Abundance of Siegel balls

THEOREM For any open set $U \subset (\mathbb{R}/2\pi\mathbb{Z})^2$ and any integer N > 1, there exists a point $(\theta_N, \varphi_N) \in U$ such that the Hénon map $H_{\alpha,\beta}$ for this parameter has more than N cycles of Siegel balls.

or

The proof of this theorem is based on the following theorem of parabolic bifurcations.

2.2 Elliptic-parabolic bifurcation

Let p > 1 be an integer, and let ν be a prime p-th root of unity,

 $\nu^k \neq 1$ $(k = 1, \cdots, p - 1), \quad \nu^p = 1.$

If ν is an eigenvalue of $DH_{\alpha,\beta}|_{P_*}$, then

trace
$$DH_{\alpha,\beta}|_{P_*} = \nu + \beta^2 \bar{\nu}, \quad y_* = \frac{\beta \bar{\nu} + \beta^{-1} \nu}{2},$$

 $\alpha_0 = (\beta + \beta^{-1}) y_* - y_*^2.$

Suppose $\{P_n\} = \left\{ \begin{pmatrix} x_n \\ y_n \end{pmatrix} \right\}$ is *p*-periodic. From $x_{n+1} = y_n, \quad y_{n+1} = \beta(y_n^2 + \alpha) - \beta^2 x_n,$

we have

$$\beta^{-1}y_{n+1} = y_n^2 + \alpha - \beta y_{n-1}.$$

THEOREM For prime *p*-th root ν of 1, and for all $\beta \in \mathbb{C}$, except for a finite number of values, there exists a constant $\alpha_1 \neq 0$ and a family $y_n(\varepsilon)$ of *p*-cycles for parameter $\alpha = \alpha(\varepsilon^p)$, such that

$$\alpha(\varepsilon^p) = \alpha_0 + \alpha_1 \varepsilon^p + O(\varepsilon^{2p}), \qquad y_n(\varepsilon) = y_* + \nu^n \varepsilon + O(\varepsilon^2),$$

holds for $\varepsilon \in \mathbb{C}$ near $\varepsilon = 0$.

PROPOSITION The constant α_1 in the previous theorem depends upon β and is a non trivial rational function of β .

2.3 Self-anti-conjugate cycles

THEOREM In the previous theorem, if $|\beta| = 1$ then $\alpha_0 \in \mathbb{R}$ and $\alpha_1 \in \mathbb{R}$. Moreover, if $\alpha \in \mathbb{R}$, near α_0 , then

$$y_n = \overline{y_{-n}}$$
 or $y_n = \overline{y_{1-n}}$

for some ε .

THEOREM If *p*-periodic orbit is self-anti-conjugate, *i.e.*

 $y_n = \overline{y_{-n}}$ or $y_n = \overline{y_{1-n}}$,

then the jacobian matrix along the orbit is of the form

$$D(H^{\circ p}_{\alpha,\beta})|_{P_0} = \beta^p A,$$

with det A = 1 and trace $A \in \mathbb{R}$.

2.4 Trace function

Let

$$\tau(\beta, \alpha) = \beta^{-p} \operatorname{trace} D(H^{\circ p}_{\alpha, \beta})|_{P_0}.$$

PROPOSITION $\tau(\beta, \alpha)$ is holomorphic near (β_0, α_0) , and non-constant with respect to α .

PROPOSITION If $|\beta| = 1$ and $\alpha \in \mathbb{R}$, then $\tau(\beta, \alpha) \in \mathbb{R}$ near $(\beta, \alpha_0(\beta))$, and $-2 < \tau(\beta, \alpha_0(\beta)) < 2$. (Except for finitely many values of β .)

3.1 Discrete Fourier expansion

Recall the equation of *p*-periodic point. $(y_{n+p} = y_n)$

$$\beta^{-1}y_{n+1} = y_n^2 + \alpha - \beta y_{n-1}, \quad n = 0, \cdots, p - 1.$$

Discrete Fourier expansion

$$y_n = u_0 + \nu^n u_1 + \nu^{2n} u_2 + \dots + \nu^{kn} u_k + \dots + \nu^{(p-1)n} u_{p-1}$$
$$= \sum_{k=0}^{p-1} \nu^{kn} u_k$$

gives rise to the following equation.

$$(F_0) \quad (\beta + \beta^{-1})u_0 = u_0^2 + \sum_{\ell=1}^{p-1} u_\ell u_{p-\ell} + \alpha,$$

$$(F_1) \quad (\beta \bar{\nu} + \beta^{-1} \nu) u_1 = 2u_0 u_1 + \sum_{\ell=2}^{p-1} u_\ell u_{p+1-\ell},$$

$$(F_k) \quad (\beta \bar{\nu}^k + \beta^{-1} \nu^k) u_k = 2u_0 u_k + \sum_{\ell=1}^{k-1} u_\ell u_{k-\ell} + \sum_{\ell=k+1}^{p-1} u_\ell u_{p+k-\ell}.$$

$$k = 2, \cdots, p-1.$$

This equation has a solution, corresponding to the elliptic-parabolic fixed point P_* .

$$u_0 = y_*, \quad u_1 = u_2 = \dots = u_{p-1} = 0, \quad \alpha = \alpha_0$$

Rewrite these equations as follows.

$$(F_{0}) \quad (\beta + \beta^{-1})u_{0} = u_{0}^{2} + \sum_{\ell=1}^{p-1} u_{\ell}u_{p-\ell} + \alpha,$$

$$(F_{1}') \quad (\beta\bar{\nu} + \beta^{-1}\nu - 2u_{0})u_{1} = \sum_{\ell=2}^{p-1} u_{\ell}u_{p+1-\ell},$$

$$(F_{k}') \quad (\beta\bar{\nu}^{k} + \beta^{-1}\nu^{k} - 2u_{0})u_{k} = \sum_{\ell=1}^{k-1} u_{\ell}u_{k-\ell} + \sum_{\ell=k+1}^{p-1} u_{\ell}u_{p+k-\ell}.$$

$$k = 2, \cdots, p-1.$$

3.2 Emanating branch of periodic points

Parameter α appears only in (F_0) . For each β , let $\varepsilon \in \mathbb{C}$ be a small parameter and let $\delta \in \mathbb{C}$ be a constant to be determined. Dependence upon β will be considered later. Suppose $u_0 = y_* - \frac{\delta}{2}\varepsilon^p$, and $u_1 = \varepsilon v_1$. From equation (F'), we may suppose, inductively, $u_k = \varepsilon^k v_k$, $(k = 2, \dots, p-1)$. Here, v_1, v_2, \dots, v_{p-1} are functions of ε . (Later, we see they are functions of ε^p .)

$$(E_0) u_0 = y_* - \frac{\delta}{2} \varepsilon^p,$$

$$(E_k) u_k = \varepsilon^k v_k, k = 1, \cdots, p-1.$$

Rewrite equation (F) using (E), with $y_* = \frac{\beta \bar{\nu} + \beta^{-1} \nu}{2}$, to get the following equation.

$$(G_{1}) \qquad \delta v_{1} = \sum_{\ell=2}^{p-1} v_{\ell} v_{p+1-\ell},$$

$$(G_{k}) \qquad (\beta(\bar{\nu}^{k} - \bar{\nu}) + \beta^{-1}(\nu^{k} - \nu) + \delta \varepsilon^{p}) v_{k} = \sum_{\ell=1}^{k-1} v_{\ell} v_{k-\ell} + \varepsilon^{p} \sum_{\ell=k+1}^{p-1} v_{\ell} v_{p+k-\ell},$$

$$k = 2, \cdots, p-1.$$

Note that α will be computed by (F_0) , afterwards.

3.3 Principal part equation (L)

Let $v_k = a_k + O(\varepsilon)$, $k = 1, \dots, p-1$. And let $\gamma_k = \beta(\bar{\nu}^k - \bar{\nu}) + \beta^{-1}(\nu^k - \nu)$ for $k = 2, \dots, p-1$. Equation (G), as $\varepsilon \to 0$, yields the following equation.

(L₁)
$$\delta a_1 = \sum_{\ell=2}^{p-1} a_\ell a_{p+1-\ell},$$

(L_k) $\gamma_k a_k = \sum_{\ell=1}^{k-1} a_\ell a_{k-\ell}, \quad k = 2, \cdots, p-1.$

Inductively from $(L_2), \dots, (L_{p-1})$, we have

$$a_k = \frac{1}{\gamma_k} \sum_{\ell=1}^{k-1} a_\ell a_{k-\ell} = \eta_k a_1^k,$$

with $\eta_k = \eta_k(\beta)$ rational function of β , for $k = 2, \dots, p-1$. Or

$$\eta_1 = 1, \quad \eta_k = \frac{1}{\gamma_k} \sum_{\ell=1}^{k-1} \eta_\ell \eta_{k-\ell}.$$

From (L_1) ,

$$\delta a_1 = \Phi(\beta) a_1^{p+1}$$

with a rational function $\Phi(\beta)$.

PROPOSITION. $\Phi(\beta)$ is a non-trivial rational function of β .

PROOF. Obviously, $\Phi(\beta)$ is a rational function of β . We show that $\Phi(-\nu) > 0$. If $\beta = -\nu$, then

$$\gamma_k = 2 - (\bar{\nu}^{k-1} + \nu^{k-1}), \quad k = 2, \cdots, p - 1.$$

Therefore, $0 < \gamma_k(-\nu) \le 4$, for $k = 2, \dots, p-1$. These imply $\eta_k(-\nu) > 0$, for $k = 2, \dots, p-1$. And we have $\Phi(-\nu) > 0$, since

$$\Phi(\beta) = \sum_{\ell=2}^{p-1} \eta_{\ell}(\beta) \eta_{p+1-\ell}(\beta).$$

If $|\beta| = 1$, then $\gamma_k \in \mathbb{R}$, $(k = 2, \dots, p-1)$, $\eta_k \in \mathbb{R}$, $(k = 1, \dots, p-1)$, and $\Phi(\beta) \in \mathbb{R}$. These are non-zero except for a finite number of values of β .

Now, we determine the constant δ by $\delta = \Phi(\beta)$. Equation (L) has a solution

$$a_1 = 1, \quad a_k = \eta_k(\beta), \quad k = 2, \cdots, p - 1.$$

If $|\beta| = 1$, then a_1, \dots, a_{p-1} are all real. Other solutions give the same periodic orbit (for different choice of initial point).

Now, we go back to equation (G).

$$(G_1) \qquad \delta v_1 = \sum_{\ell=2}^{p-1} v_\ell v_{p+1-\ell},$$

$$(G_k) \qquad (\gamma_k + \delta \varepsilon^p) v_k = \sum_{\ell=1}^{k-1} v_\ell v_{k-\ell} + \varepsilon^p \sum_{\ell=k+1}^{p-1} v_\ell v_{p+k-\ell},$$

$$k = 2, \cdots, p-1.$$

Observe that ε appears only as ε^p in this equation. Let $\kappa = \varepsilon^p$ and rewrite the equation as follows.

$$(\Gamma_{1}) \qquad w_{1} = \sum_{\ell=2}^{p-1} v_{\ell} v_{p+1-\ell} - \delta v_{1},$$

$$(\Gamma_{k}) \qquad w_{k} = \sum_{\ell=1}^{k-1} v_{\ell} v_{k-\ell} - \gamma_{k} v_{k} + \kappa \left(\sum_{\ell=k+1}^{p-1} v_{\ell} v_{p+k-\ell} - \delta v_{k} \right),$$

$$k = 2, \cdots, p-1.$$

These define a map

$$\Gamma: \mathbb{C} \times \mathbb{C} \times \mathbb{C}^{p-1} \to \mathbb{C}^{p-1}$$

by

$$\Gamma(\beta, \kappa, v_1, \cdots, v_{p-1}) = (w_1, \cdots, w_{p-1}).$$

 Γ is a quadratic polynomial in v_1, \dots, v_{p-1} , with coefficients rational in β , and affine in κ .

3.4 Matrix Λ_{β}

Except for a finite number of values of β ,

$$\Gamma(\beta, 0, a_1, \cdots, a_{p-1}) = (0, \cdots, 0)$$

holds. The jacobian matrix $\Lambda_{\beta} = \left(\frac{\partial w_i}{\partial v_j}\right)$ at $(\beta, 0, a_1, \cdots, a_{p-1})$ is as follows.

$$\Lambda_{\beta} = \begin{pmatrix} -\delta & 2a_{p-1} & 2a_{p-2} & \cdots & 2a_{2} \\ 2a_{1} & -\gamma_{2} & 0 & \cdots & 0 \\ 2a_{2} & 2a_{1} & -\gamma_{3} & 0 & \cdots & 0 \\ 2a_{3} & 2a_{2} & 2a_{1} & -\gamma_{4} & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & 0 \\ 2a_{p-2} & 2a_{p-3} & \cdots & 2a_{2} & 2a_{1} & -\gamma_{p-1} \end{pmatrix}$$

All components of Λ_{β} are rational functions of β .

PROPOSITION If $p \ge 3$, the matrix Λ_{β} is regular except for a finite number of values of β .

PROOF Obviously, the determinant of Λ_{β} is a rational function of β . We show that it is non-trivial. Let

$$M_{\beta} = \begin{pmatrix} -\delta & a_{p-1} & a_{p-2} & \cdots & \cdots & a_{2} \\ a_{1} & -\gamma_{2} & 0 & \cdots & \cdots & 0 \\ a_{2} & a_{1} & -\gamma_{3} & 0 & \cdots & 0 \\ a_{3} & a_{2} & a_{1} & -\gamma_{4} & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & 0 \\ a_{p-2} & a_{p-3} & \cdots & a_{2} & a_{1} & -\gamma_{p-1} \end{pmatrix}$$

•

Equation (L) is equivalent to

$$M_{\beta} \left(\begin{array}{c} a_1 \\ \vdots \\ a_{p-1} \end{array} \right) = \mathbf{0}.$$

As we have non-trivial solutions for all values of β , except for a finite number of values,

$$\det M_{\beta} = 0$$

holds as a rational function of β .

Observe the sweeping-out process of M_{β} . To sweep out the off-diagonal components of the first line, other lines of M_{β} are used with diagonal components $\gamma_2, \dots, \gamma_{p-1}$ as pivots. These pivots are non-trivial rational functions of β . To suppress a term in (1, k)-component of M_{β} , say t_k , we add the k-th line multiplied by t_k/γ_k to the first line. Then the (1, j)component, say c_j , becomes

$$c_j + \frac{a_{k-j}}{\gamma_k} t_k, \qquad j = 1, \cdots, k-1.$$

In this process, all the components of the first line, except for $-\delta$, are sums of terms of the form

$$\frac{1}{\gamma_{k_1}^{m_1}\cdots\gamma_{k_\ell}^{m_\ell}}.$$

When all the off-diagonal components of the first line are swept out, the first line vanishes.

Next, let us compute det Λ_{β} in a similar way. To compare the sweepingout process, let $b_k = a_k$ and rewrite the off-diagonal components of Λ_{β} as

$$2a_k = a_k + b_k, \quad k = 1, \cdots, p - 1.$$

Sweep-out the off-diagonal components of the first line of Λ_{β} to get a lower triangle matrix. The terms without b_k 's are exactly same as in the sweepout procedure of M_{β} . The terms without a_k 's contribute exactly same. There are other terms consisting of a_k 's and b_k 's. Anyway, all the terms are always sums of terms of the form

$$\frac{1}{\gamma_{k_1}^{m_1}\cdots\gamma_{k_\ell}^{m_\ell}}.$$

After the sweeping-out, in the (1, 1)-component of the triangle matrix, $-\delta$ cancels the a_k -only terms. And b_k -only terms gives δ . The remaining terms are a sum of terms of the form

$$\frac{1}{\gamma_{k_1}^{m_1}\cdots\gamma_{k_\ell}^{m_\ell}},$$

with positive coefficients.

The (1, 1)-component of the triangle matrix is obviously a rational function of β . To prove the non-triviality of the rational function, we show that it does not vanish for $\beta = -\nu$. As

$$\gamma_k(\beta) = \beta(\bar{\nu}^k - \bar{\nu}) + \beta^{-1}(\nu^k - \nu),$$

$$\gamma_k(-\nu) = 2 - (\nu^{k-1} + \bar{\nu}^{k-1}) > 0, \quad k = 2, \cdots, p - 1.$$

These imply the positivity of a_1, \dots, a_{p-1} and δ . Furthermore, terms of the form

$$\frac{1}{\gamma_{k_1}^{m_1}\cdots\gamma_{k_\ell}^{m_\ell}}$$

are all positive. Hence the (1, 1)-component of the triangle matrix is strictly positive and greater than δ . We conclude that

$$\det \Lambda_{-\nu} \neq 0.$$

3.5 Solution of Equation (Γ)

Now, we go back to equation (Γ) .

$$(\Gamma_{1}) \qquad w_{1} = \sum_{\ell=2}^{p-1} v_{\ell} v_{p+1-\ell} - \delta v_{1},$$

$$(\Gamma_{k}) \qquad w_{k} = \sum_{\ell=1}^{k-1} v_{\ell} v_{k-\ell} - \gamma_{k} v_{k} + \kappa \left(\sum_{\ell=k+1}^{p-1} v_{\ell} v_{p+k-\ell} - \delta v_{k} \right),$$

$$k = 2, \cdots, p - 1.$$

$$\Gamma(\beta, \kappa, v_{1}, \cdots, v_{p-1}) = (w_{1}, \cdots, w_{p-1}).$$

PROPOSITION For any $\beta_0 \in \mathbb{C}$, except for a finite number of values, there exists a neighborhood, U, of $(\beta_0, 0) \in \mathbb{C}^2$, such that implicit functions

$$v_1(\beta,\kappa), v_2(\beta,\kappa), \cdots, v_{p-1}(\beta,\kappa)$$

defined by

$$\Gamma(\beta,\kappa,v_1,\cdots,v_{p-1}) = (0,\cdots,0)$$

with

 $v_k(\beta_0, 0) = a_k(\beta_0), \quad k = 1, \cdots, p - 1,$

exist and holomorphic in U.

PROOF Except for a finite number of values of β ,

$$\Gamma(\beta, 0, a_1, \cdots, a_{p-1}) = (0, \cdots, 0)$$

holds. As we verified, the jacobian matrix $\Lambda_{\beta} = \left(\frac{\partial w_i}{\partial v_j}\right)$ at $(\beta, 0, a_1, \dots, a_{p-1})$ is regular. Apply the implicit function theorem to get the implicit function.

3.6 Parameter α

Functions v_1, \dots, v_{p-1} , with $\kappa = \varepsilon^p$ give solutions of equation (G). Next, let us go back to equation (F). We introduced redundant parameters ε and δ . Parameter δ was determined as a rational function of β . The redundant parameter $\kappa = \varepsilon^p$ is related to the remaining parameter α by equation (F₀). From equation (F₀), we have

(K)
$$\alpha = (\beta + \beta^{-1})(y_* - \frac{\delta}{2}\kappa) - (y_* - \frac{\delta}{2}\kappa)^2 - \kappa \sum_{\ell=1}^{p-1} v_\ell v_{p-\ell},$$

which is a function of β and κ .

 As

$$y_* = \frac{\beta \bar{\nu} + \beta^{-1} \nu}{2}, \qquad \alpha_0 = (\beta + \beta^{-1}) y_* - y_*^2,$$

$$\alpha - \alpha_0 = -\kappa \left(\sum_{\ell=1}^{p-1} \nu_\ell v_{p-\ell} - y_* \delta + \frac{\delta}{2} (\beta + \beta^{-1}) \right) - \frac{\delta^2}{4} \kappa^2$$

$$= -\kappa \left(\sum_{\ell=1}^{p-1} a_\ell a_{p-\ell} + \frac{\delta}{2} (\beta (1 - \bar{\nu}) + \beta^{-1} (1 - \nu)) \right) + o(\kappa).$$

By setting

$$\alpha_1 = -\left(\sum_{\ell=1}^{p-1} a_\ell a_{p-\ell} + \frac{\delta}{2} (\beta(1-\bar{\nu}) + \beta^{-1}(1-\nu))\right),$$

we have

$$\alpha = \alpha_0 + \alpha_1 \kappa + o(\kappa).$$

PROPOSITION α_1 is a non-trivial rational function of β , and takes real value if $|\beta| = 1$.

PROOF If $\beta = -\nu$, then, as in the preceding proposition, a_1, \dots, a_{p-1} and δ are real and positive. Moreover, $\beta(1-\bar{\nu})+\beta^{-1}(1-\nu) = 2-(\nu+\bar{\nu}) > 0$. Hence, $\alpha_1(-\nu) < 0$, which shows α_1 is non-trivial. If $|\beta| = 1$, then $\beta^{-1} = \bar{\beta}$. The reality of $\gamma_1, \dots, \gamma_{p-1}, a_1, \dots, a_{p-1}$, and δ is obvious.

PROPOSITION For all $\beta_0 \in \mathbb{C}$, except for a finite number of values, there exists a neighborhood, U, of $(\beta_0, \alpha_0(\beta_0)) \in \mathbb{C}^2$, such that the implicit function $\kappa = \kappa(\beta, \alpha)$ satisfying $\kappa(\beta_0, \alpha_0(\beta_0)) = 0$ defined by equation (K)exists and holomorphic in U.

4.1 Choice of initial point

Now, fix β_0 with $|\beta_0| = 1$, and set $\alpha_0 = \alpha_0(\beta_0) \in \mathbb{R}$. If $\alpha \in \mathbb{R}$, and $|\alpha - \alpha_0|$ is sufficiently small, then $\kappa(\beta_0, \alpha)$ is real, since the preceding procedure keeps the realities.

Solutions v_1, \dots, v_{p-1} of equation (G) are real, since $\kappa(\beta_0, \alpha) \in \mathbb{R}$. We choose a *p*-th root, ε , of $\kappa(\beta_0, \alpha)$ and a self-anti-conjugate periodic orbit as follows. Choice of ε determines the choice of the initial point of the periodic orbit.

CASE I If p is odd or $\kappa(\beta_0, \alpha) > 0$, then the equation $\varepsilon^p = \kappa(\beta_0, \alpha)$ has a real root. Real ε gives real solutions u_0, \dots, u_{p-1} of equations (F) and (E). These give rise to a periodic orbit $y_n = u_0 + \nu^n u_1 + \dots + \nu^{(p-1)n} u_{p-1}$, with real y_0 . We see that $y_{-n} = \overline{y_n}$.

CASE II If p is even and $\kappa(\beta_0, \alpha) < 0$, then take a solution of $\varepsilon^p = \kappa(\beta_0, \alpha)$ satisfying $\varepsilon = \bar{\nu}\bar{\varepsilon}$. The solutions of equation (F) are as follows.

$$u_0 = y_* - \frac{\delta}{2}\varepsilon^p, \quad u_k = \varepsilon^k v_k, \quad (k = 1, \cdots, p - 1).$$

As u_0 and v_1, \dots, v_{p-1} are real, we have

$$y_n = \sum_{k=0}^{p-1} \nu^{kn} u_k = u_0 + \sum_{k=1}^{p-1} \nu^{kn} \varepsilon^k v_k = u_0 + \sum_{k=1}^{p-1} \nu^{k(n-1)} \overline{\varepsilon}^k v_k$$
$$= u_0 + \overline{\sum_{k=1}^{p-1} \nu^{-k(n-1)} \varepsilon^k v_k} = \overline{\sum_{k=0}^{p-1} \nu^{k(1-n)} u_k} = \overline{y_{1-n}}.$$

In both cases, the obtained periodic orbit is self-anti-conjugate. The jacobian matrix along the orbit is of the form

$$D(H^{\circ p}_{\alpha,\beta})|_{P_0} = \beta^p A,$$

with det A = 1 and trace $A \in \mathbb{R}$.

4.2 Trace function

Let

$$\tau = \tau(\beta, \alpha) = \beta^{-p} \operatorname{trace} D(H^{\circ p}_{\alpha, \beta})|_{P_0}.$$

 τ is an algebraic function of complex parameters (β, α) . Note that τ does not depend on the choice of ε among the *p*-th root of κ , since the choice of ε corresponds to the choice of the initial point in the periodic orbit. τ is locally univalent and continuous near (β_0, α_0) . Hence τ is holomorphic in (β, α) near (β_0, α_0) . As we saw, if $|\beta| = 1$ and $\alpha \in \mathbb{R}$, then $\tau(\beta, \alpha) \in \mathbb{R}$ near (β_0, α_0) , and $-2 < \tau(\beta_0, \alpha_0) < 2$.

PROPOSITION $\tau(\beta, \alpha)$ is holomorphic in (β, α) and non-constant with respect to α near (β_0, α_0) .

PROOF Consider the analytic continuation of τ . As τ is algebraic, continuation along the real axis of α exists by avoiding branch points choosing some branch. If $|\alpha|$ is sufficiently large, then all the periodic points of the Hénon map are hyperbolic, and $|\tau(\beta_0, \alpha)| > 2$ there.

Trace function can be computed as follows.

Let
$$B = \begin{pmatrix} 0 & \beta^{-1} \\ -\beta & 0 \end{pmatrix}$$
 and $Y_k = \begin{pmatrix} 0 & 0 \\ 0 & 2y_k \end{pmatrix}$.
 $\tau = \beta^{-p} \operatorname{trace} D(H_{\alpha,\beta}^{\circ p})|_{P_0}$

$$= \operatorname{trace} \left(\begin{pmatrix} 0 & \beta^{-1} \\ -\beta & 2y_{p-1} \end{pmatrix} \cdots \begin{pmatrix} 0 & \beta^{-1} \\ -\beta & 2y_0 \end{pmatrix} \right)$$
$$= \operatorname{trace} \left((B + Y_{p-1}) \cdots (B + Y_0) \right).$$
$$\tau = \sum_{k=0}^{\left\lfloor \frac{p}{2} \right\rfloor} (-1)^k 2^{p-2k} \left(\sum_{0 \le i_1 < i_2 < \cdots < i_{p-2k} < p \text{(with some extra condition)}} y_{i_1} y_{i_2} \cdots y_{i_{p-2k}} \right).$$

Here, the extra condition can be described as follows. The complement of the indices $\{0, 1, \dots, p-1\} \setminus \{i_1, \dots, i_{p-2k}\}$ consists of k pairs of consecutive indices $\{j_1, j_1+1, j_2, j_2+1, \dots, j_k, j_k+1\}$. Coefficients of $\tau(\kappa)$ are rational functions of β .

5.1 Abundance of Siegel balls

For
$$(\theta, \varphi) \in (\mathbb{R}/2\pi\mathbb{Z})^2$$
, let
 $\beta = \cos \theta + i \sin \theta$, $\alpha = 2\cos \theta \cos \varphi - \cos^2 \varphi$,

which defines a family of self-anti-conjugate Hénon maps

$$H_{\alpha,\beta}\left(egin{array}{c} x \ y\end{array}
ight) \;=\; \left(egin{array}{c} y \ eta(y^2+lpha)-eta^2x\end{array}
ight),$$

with $|\beta| = 1$ and $\alpha \in \mathbb{R}$.

THEOREM For any open set $U \subset (\mathbb{R}/2\pi\mathbb{Z})^2$ and any integer N > 1, there exists a point $(\theta_N, \varphi_N) \in U$ such that the Hénon map $H_{\alpha,\beta}$ for this parameter has more than N cycles of Siegel balls.

PROOF Fixed points of $H_{\alpha,\beta}$ are given by

$$y_* = \cos\theta \pm (\cos\theta - \cos\varphi).$$

We choose

 $y_* = \cos \varphi$

and set

$$\mu = \cos \varphi + i \sin \varphi.$$

Eigenvalues of jacobian matrix at the fixed point

$$DH_{\alpha,\beta} = \beta \left(\begin{array}{cc} 0 & \beta^{-1} \\ -\beta & 2\cos\varphi \end{array} \right)$$

are $\beta \mu$ and $\beta \bar{\mu}$. The arguments of these eigenvalues are

 $\theta + \varphi$ and $\theta - \varphi \pmod{2\pi}$.

By Siegel's theorem (or Brjuno's theorem), there is a subset $W_1 \subset (\mathbb{R}/2\pi\mathbb{Z})^2$ of full measure, such that the fixed point of the corresponding Hénon map has a Siegel ball.

We set

$$U_1 = U, \quad p_1 = 1, \quad \text{and} \quad V_1 = U_1 \cap W_{p_1}.$$

Inductively, we assume U_m is an open subset of U and V_m is a full measure subset of U_m , such that $H_{\alpha,\beta}$ for any $(\theta, \varphi) \in V_m$ has m cycles of Siegel balls of periods p_1, \dots, p_m .

In open set U_m , there is a point $(\theta, \varphi) \in U_m$, such that $\frac{1}{2\pi}(\theta + \varphi) = \frac{q}{p}$ is rational with $p > p_m$ and, p and q are mutually prime. Then perturb (θ, φ) keeping $\theta + \varphi = \frac{2\pi q}{p}$, so that $\beta = \cos \theta + i \sin \theta$ avoids the values of β forbidden in the preceding propositions.

There is an open set of parameters containing such a parameter, such that the Hénon map $H_{\alpha,\beta}$ has a neutral cycle of period p, which is self-anticonjugate with eigenvalues of the form $\beta^p \lambda$ and $\beta^p \overline{\lambda}$, with $-2 < \tau(\beta, \alpha) < 2$. The trace function $\tau(\beta, \alpha)$ is a non-trivial analytic function with respect to α . Determinant of $H^p_{\alpha,\beta}$ is β^{2p} . Hence, the eigenvalues of the neutral pcycle varies effectively.

Note that $\tau(\beta, \alpha) \in \mathbb{R}$, if $\alpha \in \mathbb{R}$, and $-2 < \tau(\beta, \alpha_0(\beta)) < 2$. This implies that there is an open subset $U_{m+1} \subset U_m$ and a full measure set $W_p \subset U_{m+1}$ of parameters, such that the Hénon map has a Siegel ball of period p.

Set $V_{m+1} = V_m \cap W_p \subset U_{m+1}$, and $p_{m+1} = p$. V_{m+1} is a full measure subset of U_{m+1} . Continue this procedure until m = N.

 V_N is a set of positive measure. Hence, we can find a parameter $(\theta_N, \varphi_N) \in V_N \subset U$.