流体力学的微分の変分公式とその応用について

Variational formulas for L_s -canonical differentials and applications

濱野 佐知子 (福島大学)*

1. Modulus of the closing of (R, χ)

Let R be an open Riemann surface of genus one and $\chi = \{A, B\}$ be a fixed canonical homology basis of R modulo dividing cycles. Consider a triplet $(\hat{R}, \hat{\chi}, \hat{i})$ consisting of a (closed) torus \hat{R} , a canonical homology basis $\hat{\chi} = \{\hat{A}, \hat{B}\}$ of \hat{R} , and a conformal embedding \hat{i} of R into \hat{R} such that $\hat{i}(A)$ (resp. $\hat{i}(B)$) is homologous to \hat{A} (resp. \hat{B}) in \hat{R} . We say that two such triplets $(\hat{R}, \hat{\chi}, \hat{i})$ and $(\hat{R}', \hat{\chi}', \hat{i}')$ are equivalent if there is a conformal mapping f of \hat{R} onto \hat{R}' with $f \circ \hat{i} = \hat{i}'$ on R. Each equivalence class is called a *closing* of (R, χ) and is denoted by $[\hat{R}, \hat{\chi}, \hat{i}]$. The closing $[\hat{R}, \hat{\chi}, \hat{i}]$ carries a unique holomorphic differential $\phi^{\hat{R}}$ with $\int_{\hat{A}} \phi^{\hat{R}} = 1$, which is called the *normal differential* for $(\hat{R}, \hat{\chi})$. We call

$$\tau[\hat{R},\hat{\chi},\hat{i}] := \int_{\hat{B}} \phi^{\hat{R}}$$

the modulus of $[\hat{R}, \hat{\chi}, \hat{i}]$, and remark that two different closings may have the same modulus. We denote by $\mathcal{C}(R, \chi)$ the set of closings of (R, χ) and put

$$\mathfrak{M}(R,\chi) = \{\tau = \tau[\hat{R}, \hat{\chi}, \hat{i}] \in \mathbb{C} \mid [\hat{R}, \hat{\chi}, \hat{i}] \in \mathcal{C}(R,\chi)\}.$$

The moduli set $\mathfrak{M}(R,\chi)$ obviously lies in the upper half plane \mathbb{H} .

2. Canonical differentials and Moduli disk $\mathfrak{M}(R,\chi)$

Let R be an open Riemann surface of genus one in a Riemann surface R such that $R \in \widetilde{R}$ and ∂R consists of C^{ω} smooth contours; $\partial R = C_1 + \cdots + C_{\nu}$. Let ϕ be a holomorphic differential on $\overline{R} = R \cup \partial R$, precisely, on a neighborhood of \overline{R} in \widetilde{R} . We say that ϕ is a *canonical differential* on R in the sense of Kusunoki if ϕ satisfies $\int_{C_j} \phi = 0$ and $\operatorname{Im} \phi = 0$ on C_j $(j = 1, \ldots, \nu)$. In other words, for a thin tubular neighborhood V_j of C_j , the branch on V_j of the abelian integral $\Phi(z) = \int^z \phi$ is a single-valued holomorphic function on V_j such that $\operatorname{Im} \Phi(z) = \operatorname{const.}$ on C_j .

Theorem 1 (Kusunoki [1]). Let R be as above, and let $\chi = \{A, B\}$ be a canonical homology basis of R modulo dividing cycles. For every $-1 < s \leq 1$ there uniquely exists a holomorphic differential ϕ_s on R such that

(i) $e^{-\frac{\pi i}{2}s}\phi_s$ is a canonical differential on R, (ii) $\int_A \phi_s = 1$.

We call ϕ_s the L_s -canonical differential for (R, χ) . Shiba showed that there uniquely exists a closing $[\hat{R}_s, \hat{\chi}_s, \hat{i}_s]$ of (R, χ) such that the transplant of ϕ_s extends to the normal differential $\phi^{\hat{R}_s}$ on \hat{R}_s , where $\hat{\chi}_s = \{\hat{A}_s, \hat{B}_s\}$. Thus, $\tau_s = \int_B \phi_s$ is equal to $\tau[\hat{R}_s, \hat{\chi}_s, \hat{i}_s] = \int_{\hat{B}_s} \phi^{\hat{R}_s}$. Therefore, for $-1 < s \leq 1$, the L_s -canonical differential ϕ_s for (R, χ) satisfies the following properties on precisely C_j :

$$\int_{C_j} \phi_s = 0 \text{ and } \operatorname{Im} \left[e^{-\frac{\pi i}{2}s} \phi_s \right] = 0 \text{ on } C_j \quad (j = 1, \dots, \nu).$$

This work was supported by JSPS Grant-in-Aid for Scientific Research(C)15K04914.

^{*}e-mail: hamano@educ.fukushima-u.ac.jp

- **Theorem 2** (Shiba [6]). (1) The moduli set $\mathfrak{M}(R,\chi)$ is a closed disk; there exists $\tau^* \in \mathbb{H}$ and $\rho \in \mathbb{R}$ such that $0 < \rho < \operatorname{Im} \tau^*$ and $\mathfrak{M}(R,\chi) = \{\tau \in \mathbb{H} \mid |\tau \tau^*| \leq \rho\}.$
 - (2) Each boundary point of the moduli disk $\mathfrak{M}(R,\chi)$ corresponds to the single element of $\mathcal{C}(R,\chi)$ as follows: $\tau_s = \tau^* + \rho e^{(s-\frac{1}{2})\pi i}, -1 < s \leq 1.$

We call $\mathfrak{M}(R,\chi)$ the moduli disk for (R,χ) and 2ρ the Euclidean diameter for R.

3. Results

Let $(\widetilde{\mathcal{R}}, \pi, \Delta)$ be a holomorphic family such that $\widetilde{\mathcal{R}}$ is a two-dimensional complex manifold; $\Delta = \{t \in \mathbb{C} \mid |t| < r\}$; and π is a holomorphic projection from $\widetilde{\mathcal{R}}$ onto Δ . We assume that each fiber $\widetilde{R}(t) = \pi^{-1}(t), t \in \Delta$ is non-compact, irreducible and non-singular in $\widetilde{\mathcal{R}}$, so that $\widetilde{R}(t)$ is an open Riemann surface. Let $(\mathcal{R}, \pi|_{\mathcal{R}}, \Delta)$ be a sub-holomorphic family of $(\widetilde{\mathcal{R}}, \pi, \Delta)$ such that $\mathcal{R} \subset \widetilde{\mathcal{R}}$; $\partial \mathcal{R}$ is C^{ω} smooth in $\widetilde{\mathcal{R}}$ of real 3-dimensional surface; $R(t) = (\pi|_{\mathcal{R}})^{-1}(t) \Subset \widetilde{R}(t), t \in \Delta$; and R(t) is a bordered Riemann surface of genus one with C^{ω} smooth boundary $\partial R(t)$ in $\widetilde{R}(t)$: $\partial R(t) = C_1(t) + \cdots + C_{\nu}(t)$ (ν does not depend on $t \in \Delta$).

For $t \in \Delta$, we fix a canonical homology basis $\chi(t) = \{A(t), B(t)\}$ of R(t) modulo dividing cycles $C_j(t)$ $(j = 1, ..., \nu)$ such that A(t) and B(t) move continuously in \mathcal{R} with t. Each $R(t), t \in \Delta$ carries the L_s -canonical differential $\phi_s(t, z)$ for $(R(t), \chi(t))$, so that $\int_{A(t)} \phi_s(t, z) = 1$. We set $\tau_s(t) = \int_{B(t)} \phi_s(t, z)$. As usual we write $\phi_s(t, z) = f_s(t, z)dz$ by use of the local parameter of $\overline{R(t)}$.

Theorem 3 ([3]). For $-1 < s \le 1$, we have

$$\frac{\partial^2 \mathrm{Im}\left[e^{-\pi i s}\tau_s(t)\right]}{\partial t \partial \overline{t}} = -\frac{1}{2} \int_{\partial R(t)} k_2(t,z) |f_s(t,z)|^2 |dz| - \left\|\frac{\partial \phi_s(t,z)}{\partial \overline{t}}\right\|_{R(t)}^2$$

Here

$$k_2(t,z) = \left(\frac{\partial^2 \varphi}{\partial t \partial \bar{t}} \left|\frac{\partial \varphi}{\partial z}\right|^2 - 2\operatorname{Re}\left\{\frac{\partial^2 \varphi}{\partial \bar{t} \partial z} \frac{\partial \varphi}{\partial t} \frac{\partial \varphi}{\partial \bar{z}}\right\} + \left|\frac{\partial \varphi}{\partial t}\right|^2 \frac{\partial^2 \varphi}{\partial z \partial \bar{z}}\right) \left|\frac{\partial \varphi}{\partial z}\right|^{-3}$$
(1)

on $\partial \mathcal{R}$ where $\varphi(t, z)$ is a C^2 smooth defining function of $\partial \mathcal{R}$ in $\widetilde{\mathcal{R}}$ (see [5, (1.2)]). Corollary 4 ([3]). Assume that \mathcal{R} is a Stein manifold. Then

- (1) the Euclidean diameter $2\rho(t)$ of $\mathfrak{M}(R(t), \chi(t))$ is subharmonic on Δ ;
- (2) if $\rho(t)$ is harmonic on Δ , then the center $\tau^*(t)$ of $\mathfrak{M}(R(t), \chi(t))$ holomorphically moves on Δ and $\rho(t) = \rho(0)$ for every $t \in \Delta$.

If time allows, we shall discuss the relation between Theorem 3 and the following variational formulas for L_1 - and L_0 -principal functions:

Let R(t) be a bordered Riemann surface of genus $g \geq 0$ with C^{ω} smooth boundary $\partial R(t)$ in $\widetilde{R}(t)$. Let $\{A_l(t), B_l(t)\}_{l=1}^g$ be a canonical homology basis of R(t) modulo dividing cycles $C_j(t)$ $(j = 1, ..., \nu)$ such that $A_l(t)$ and $B_l(t)$ vary continuously with $t \in \Delta$ in \mathcal{R} . Assume that there exists a section $\mathbf{a} := \{a(t) \in R(t) \mid t \in \Delta\}$ of \mathcal{R} over Δ . Let $\mathcal{V} := \Delta \times \{|z - \zeta| < r\}$ be a π -local coordinate of a neighborhood \mathcal{U} of \mathbf{a} in \mathcal{R} such that \mathbf{a} corresponds to $\Delta \times \{\zeta\}$. Let $t \in \Delta$ be fixed. Then among all harmonic functions u(t, z) on $R(t) \setminus \{a(t)\}$ with singularity $\operatorname{Re} \frac{1}{z-\zeta}$ at a(t) normalized

so that $\lim_{z\to\zeta} (u(t,z) - \operatorname{Re} \frac{1}{z-\zeta}) = 0$, we have two uniquely determined functions $p_i(t,z)$ (i=1,0) with the following boundary conditions (L_i) : for $j=1,\ldots,\nu$,

$$(L_1) \quad p_1(t,z) = c_j(t) \text{ (constant) on } C_j(t) \quad \text{and} \quad \int_{C_j(t)} \frac{\partial p_1(t,z)}{\partial n_z} ds_z = 0;$$
$$(L_0) \quad \frac{\partial p_0(t,z)}{\partial n_z} = 0 \quad \text{on } C_j(t).$$

Then $p_i(t,z) = \operatorname{Re}\left\{\frac{1}{z-\zeta} + \sum_{n=1}^{\infty} A_n^i(t)(z-\zeta)^n\right\}$ at ζ (i = 1,0). Each $R(t), t \in \Delta$ carries the L_i -principal function $p_i(t,z)$ and the L_i -constant $\alpha_i(t) := \operatorname{Re}\left\{A_1^i(t)\right\}$ for (R(t), a(t)).

Lemma 5 ([2]).

$$\frac{\partial^2 \alpha_1(t)}{\partial t \partial \bar{t}} = -\left(\frac{1}{\pi} \int_{\partial R(t)} k_2(t,z) \left| \frac{\partial p_1(t,z)}{\partial z} \right|^2 ds_z + \frac{4}{\pi} \iint_{R(t)} \left| \frac{\partial^2 p_1(t,z)}{\partial \bar{t} \partial z} \right|^2 dx dy \right). \quad (2)$$

$$\frac{\partial^2 \alpha_0(t)}{\partial t \partial \bar{t}} = \frac{1}{\pi} \int_{\partial R(t)} k_2(t,z) \left| \frac{\partial p_0(t,z)}{\partial z} \right|^2 ds_z + \frac{4}{\pi} \iint_{R(t)} \left| \frac{\partial^2 p_0(t,z)}{\partial \bar{t} \partial z} \right|^2 dx dy$$

$$- \frac{2}{\pi} \operatorname{Im} \left\{ \sum_{l=1}^g \frac{\partial}{\partial t} \left(\int_{A_l(t)} *dp_0(t,z) \right) \frac{\partial}{\partial \bar{t}} \left(\int_{B_l(t)} *dp_0(t,z) \right) \right\}. \quad (3)$$

Here $k_2(t, z)$ is the same as (1).

If \mathcal{R} is pseudoconvex and each R(t) is **planar**, the contrast between the superharmonicity of $\alpha_1(t)$ and the subharmonicity of $\alpha_0(t)$ is unified with the Schiffer span $s(t) := \alpha_0(t) - \alpha_1(t)$. In [2] we applied the *logarithmically* subharmonicity of s(t) to show the simultaneous uniformization of moving *planar* Riemann surfaces of class O_{AD} .

References

- Y. Kusunoki, Theory of Abelian integrals and its applications to conformal mappings, Mem. Coll. Sci. Univ. Kyoto, Ser. A. 32 Math. no.2 (1959), 235-258.
- [2] S. Hamano, Uniformity of holomorphic families of non-homeomorphic planar Riemann surfaces, Annales Polonici Mathematici 111 no.2 (2014), 165-182.
- [3] S. Hamano, Variational formulas for L_s -canonical differentials and applications (preprint).
- [4] S. Hamano, M. Shiba, and H. Yamaguchi, *Hyperbolic span and pseudoconvexity* (submitted).
- [5] N. Levenberg and H. Yamaguchi, The metric induced by the Robin function, Mem. AMS. 92, no. 448 (1991), 1-156.
- [6] M. Shiba, The moduli of compact continuations of an open Riemann surface of genus one, Transactions of the AMS. 301 no.1 (1987), 299-311.