Thom class in complex analytic geometry

諏訪 立雄 (北大)

Čech の方法で局所化された de Rham, Dolbeault, Bott-Chern コホモロジー各々に Thom 類を定め, Riemann-Roch 等の複素解析幾何の諸問題との関わりについて話したい. 以下に概観と Thom 類に関する予備的事項を記す.

	Ι	II	III
Cohomology	de Rham	Dolbeault	Bott-Chern
Manifold M	C^∞ oriented/complex	complex	complex
Subset S in M	subcomplex	subvariety	subvariety
Vector bundle E	real oriented/complex	holomorphic	holomorphic
Connection ∇	C^{∞}	of type $(1,0)$	Hermitian & $(1,0)$
Characteristic class	Euler/Chern	Atiyah	Bott-Chern
Core of Thom class	angular/BM form	Bochner-Martinelli	"BM potential"

1 Overview

2 Thom class

In the following the homology is that of locally finite chains (Borel-Moore homology) and the cohomology is that of cochains on finite chains, both with coefficients in \mathbb{Z} , \mathbb{Q} or \mathbb{C} .

We list [15] as a general reference for the Thom isomorphism and the Thom class of a real vector bundle. In general they are defined in cohomology with \mathbb{Z}_2 coefficients, while for an oriented vector bundle, they can be defined in cohomology with \mathbb{Z} coefficients. They can also be described in terms of differential forms, in which case the cohomology involved is with \mathbb{C} coefficients. This is done in [9] using cohomology with compact support in the vertical direction. Here we use Čech-de Rham cohomology instead as in [16]. This way we can express relevant local informations more explicitly.

The Poincaré, Alexander and Thom isomorphisms can be defined from combinatorial viewpoint in homology and cohomology with \mathbb{Z} coefficient (cf. [10], also [18, 20]). They can also be defined in terms of Čech-de Rham cohomology (cf. [16, 18, 20]).

In the sequel, we denote by M an oriented C^{∞} manifold of dimension m.

A. Thom class of a submanifold: Let S be a closed oriented submanifold of M of dimension d'. Set k' = m - d'. We have the following commutative diagram:

$$\begin{array}{cccc}
H^{p}(S) & \xrightarrow{\sim} & H^{p+k'}(M, M \smallsetminus S) \\
& \downarrow^{P} & \overbrace{A} \\
H_{d'-p}(S), \\
\end{array} \tag{2.1}$$

where P, A and T denotes the Poincaré, Alexander and Thom isomorphisms.

Definition 2.2 The *Thom class* Ψ_S of *S* is defined so that it corresponds to the other classes by:

$$[1] \in H^0(S) \xrightarrow{\sim}_T H^{k'}(M, M \smallsetminus S) \ni \Psi_S$$
$$\downarrow^P \xrightarrow{\sim}_A$$
$$[S] \in H_{d'}(S).$$

B. Thom class of an oriented real vector bundle: Let $\pi : E \to M$ be an oriented real vector bundle of rank k'. We denote by Z the image of the zero section, which is diffeomorphic with M. We replace M and S in the case A above by E and Z, respectively.

Definition 2.3 The *Thom class* Ψ_E of *E* is defined by $\Psi_E = \Psi_Z$ so that there are correspondences:

Let S be as in the case A above and N_S the normal bundle of S in M. By the tubular neighborhood theorem, we have an isomorphism

$$\Psi_S \in H^{k'}(M, M \smallsetminus S) \simeq H^{k'}(N_S, N_S \smallsetminus Z) \ni \Psi_{N_S}$$

and in the above isomorphism, Ψ_S corresponds to Ψ_{N_S} .

In the case of complex vector bundles, we have:

Theorem 2.4 ([16]) For a complex vector bundle $\pi : E \to M$ of rank k,

$$\Psi_E = c^k(\pi^* E, s_\Delta) \qquad in \ H^{2k}(E, E \smallsetminus Z),$$

where $c^k(\pi^*E, s_{\Delta})$ denotes the localization of the top Chern class $c^k(\pi^*E)$ of the pull-back bundle π^*E by the diagonal section s_{Δ} .

References

 M. Abate, F. Bracci, T. Suwa and F. Tovena, *Localization of Atiyah classes*, Rev. Mat. Iberoam. 29 (2013), 547-578.

- M. Atiyah and F. Hirzebruch, *The Riemann-Roch for analytic embeddings*, Topology 1 (1962), 151-166.
- [3] P. Baum, W. Fulton and R. MacPherson, *Riemann-Roch for singular varieties*, Publ. Math. IHES 45 (1975), 101-145.
- [4] C. Bisi, F. Bracci, T. Izawa and T. Suwa, *Localized intersection of currents and the Lefschetz coincidence point theorem*, to appear in Ann. Mat. Pura ed Applicata.
- [5] J.-M. Bismut, Local index theory and higher analytic torsion, Documenta Math., Extra Vol. ICM 1998, I, 143-162.
- [6] J.-M. Bismut, Hypoelliptic Laplacian and Bott-Chern Cohomology, Progress in Math. 305, Birkhäuser 2013.
- [7] A. Borel et J.-P. Serre, Le théorème de Riemann-Roch, Bull. Soc. Math. France 86 (1958), 97-136.
- [8] R. Bott and S.S. Chern, Hermitian vector bundles and the equidistribution of the zeroes of their holomorphic sections, Acta Math. **114** (1965), 71-112.
- [9] R. Bott and L. Tu, Differential Forms in Algebraic Topology, Graduate Texts in Math. 82, Springer 1982.
- [10] J.-P. Brasselet, Définition combinatoire des homomorphismes de Poincaré, Alexander et Thom pour une pseudo-variété, Astérisque 82-83, Soc. Math. France 1981, 71-91.
- [11] M. Corrêa Jr. and T. Suwa, *Localization of Bott-Chern classes and Hermitian* residues, in preparation.
- [12] W. Fulton, *Intersection Theory*, Springer 1984.
- [13] R. Harvey and H.B. Lawson, A theory of characteristic currents associated with a singular connection, Astérisque 213, Soc. Math. France 1993.
- [14] B. Iversen, Local Chern classes, Ann. scient. Éc. Norm. Sup. 9 (1976), 155-169.
- [15] J. Milnor and J. Stasheff, *Characteristic Classes*, Ann. of Math. Studies 76, Princeton Univ. Press 1974.
- [16] T. Suwa, Indices of Vector Fields and Residues of Singular Holomorphic Foliations, Hermann Paris 1998.
- [17] T. Suwa, Characteristic classes of coherent sheaves on singular varieties, Advanced Studies in Pure Math. 29, Math. Soc. Japan 2000, 279-297.
- [18] T. Suwa, Residue Theoretical Approach to Intersection Theory, Real and Complex Singularities, Contemporary Math. Amer. Math. Soc. 459 (2008), 207-261.
- [19] T. Suwa, Cech-Dolbeault cohomology and the ∂-Thom class, Advanced Studies in Pure Math. 56, Math. Soc. Japan 2009, 321-340.
- [20] T. Suwa, Complex Analytic Geometry, in preparation.