Thom class in complex analytic geometry
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1 Overview

I IT I11
Cohomology de Rham Dolbeault Bott-Chern
Manifold M C oriented/complex complex complex
Subset S in M subcomplex subvariety subvariety
Vector bundle £ real oriented/complex holomorphic holomorphic
Connection V > of type (1,0) Hermitian & (1,0)
Characteristic class Euler/Chern Atiyah Bott-Chern
Core of Thom class angular/BM form Bochner-Martinelli “BM potential”

2 Thom class

In the following the homology is that of locally finite chains (Borel-Moore homology) and
the cohomology is that of cochains on finite chains, both with coefficients in Z, Q or C.

We list [15] as a general reference for the Thom isomorphism and the Thom class of a
real vector bundle. In general they are defined in cohomology with Z, coefficients, while
for an oriented vector bundle, they can be defined in cohomology with Z coefficients.
They can also be described in terms of differential forms, in which case the cohomology
involved is with C coefficients. This is done in [9] using cohomology with compact support
in the vertical direction. Here we use Cech-de Rham cohomology instead as in [16]. This
way we can express relevant local informations more explicitly.

The Poincaré, Alexander and Thom isomorphisms can be defined from combinatorial
viewpoint in homology and cohomology with Z coefficient (cf. [10], also [18, 20]). They
can also be defined in terms of Cech-de Rham cohomology (cf. [16, 18, 20]).

In the sequel, we denote by M an oriented C'** manifold of dimension m.



A. Thom class of a submanifold: Let S be a closed oriented submanifold of M of
dimension d’. Set k' = m — d’. We have the following commutative diagram :

HP(S) —— H"** (M, M \. S) (2.1)
{P /
Hd’*p(s)a

where P, A and T denotes the Poincaré, Alexander and Thom isomorphisms.

Definition 2.2 The Thom class Ws of S is defined so that it corresponds to the other
classes by :

1] € H(S) —— H¥ (M, M \.5) 3 s

l /

[S] € Hy(S

B. Thom class of an oriented real vector bundle: Let 7: EF — M be an oriented
real vector bundle of rank k’. We denote by Z the image of the zero section, which is
diffeomorphic with M. We replace M and S in the case A above by E and Z, respectively.

Definition 2.3 The Thom class ¥g of E is defined by ¥g = W5 so that there are corre-
spondences :

1l e H(Z *>H’f (E,EXZ) > Vg
[Z]

Let S be as in the case A above and Ng the normal bundle of S in M. By the tubular
neighborhood theorem, we have an isomorphism

Wg € H¥ (M, M~ S) ~ H* (Ng, Ng~\ Z) > Wy,

and in the above isomorphism, ¥g corresponds to ¥y.
In the case of complex vector bundles, we have:

Theorem 2.4 ([16]) For a complex vector bundle m : E — M of rank k,
Vg =c"(n"E,sp)  in H*(E,EXZ),
where *(1*E, sp) denotes the localization of the top Chern class c*(n*E) of the pull-back
bundle 7 E by the diagonal section sa.
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