
Thom class in complex analytic geometry

諏訪 立雄 (北大)

Čech の方法で局所化された de Rham, Dolbeault, Bott-Chern コホモロジー各々に
Thom 類を定め, Riemann-Roch 等の複素解析幾何の諸問題との関わりについて話したい.

以下に概観と Thom 類に関する予備的事項を記す.

1 Overview

I II III

Cohomology de Rham Dolbeault Bott-Chern

Manifold M C∞ oriented/complex complex complex

Subset S in M subcomplex subvariety subvariety

Vector bundle E real oriented/complex holomorphic holomorphic

Connection ∇ C∞ of type (1, 0) Hermitian & (1, 0)

Characteristic class Euler/Chern Atiyah Bott-Chern

Core of Thom class angular/BM form Bochner-Martinelli “BM potential”

2 Thom class

In the following the homology is that of locally finite chains (Borel-Moore homology) and
the cohomology is that of cochains on finite chains, both with coefficients in Z, Q or C.

We list [15] as a general reference for the Thom isomorphism and the Thom class of a
real vector bundle. In general they are defined in cohomology with Z2 coefficients, while
for an oriented vector bundle, they can be defined in cohomology with Z coefficients.
They can also be described in terms of differential forms, in which case the cohomology
involved is with C coefficients. This is done in [9] using cohomology with compact support
in the vertical direction. Here we use Čech-de Rham cohomology instead as in [16]. This
way we can express relevant local informations more explicitly.

The Poincaré, Alexander and Thom isomorphisms can be defined from combinatorial
viewpoint in homology and cohomology with Z coefficient (cf. [10], also [18, 20]). They
can also be defined in terms of Čech-de Rham cohomology (cf. [16, 18, 20]).

In the sequel, we denote by M an oriented C∞ manifold of dimension m.
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A. Thom class of a submanifold : Let S be a closed oriented submanifold of M of
dimension d′. Set k′ = m− d′. We have the following commutative diagram :

Hp(S)
T

∼ //

P≀
��

Hp+k′(M,M∖S)

A
∼

vvmmm
mmm

mmm
mmm

m

Hd′−p(S),

(2.1)

where P , A and T denotes the Poincaré, Alexander and Thom isomorphisms.

Definition 2.2 The Thom class ΨS of S is defined so that it corresponds to the other
classes by :

[1] ∈ H0(S)
T

∼ //

P≀
��

Hk′(M,M∖S) ∋ ΨS

A
∼

uukkkk
kkkk

kkkk
kkk

[S] ∈ Hd′(S).

B. Thom class of an oriented real vector bundle : Let π : E → M be an oriented
real vector bundle of rank k′. We denote by Z the image of the zero section, which is
diffeomorphic with M . We replace M and S in the case A above by E and Z, respectively.

Definition 2.3 The Thom class ΨE of E is defined by ΨE = ΨZ so that there are corre-
spondences :

[1] ∈ H0(Z)
T

∼ //

P≀
��

Hk′(E,E∖Z) ∋ ΨE

A
∼

uukkkk
kkkk

kkkk
kkk

[Z] ∈ Hm(Z).

Let S be as in the case A above and NS the normal bundle of S in M . By the tubular
neighborhood theorem, we have an isomorphism

ΨS ∈ Hk′(M,M∖S) ≃ Hk′(NS, NS∖Z) ∋ ΨNS

and in the above isomorphism, ΨS corresponds to ΨNS
.

In the case of complex vector bundles, we have :

Theorem 2.4 ([16]) For a complex vector bundle π : E → M of rank k,

ΨE = ck(π∗E, s∆) in H2k(E,E∖Z),

where ck(π∗E, s∆) denotes the localization of the top Chern class ck(π∗E) of the pull-back
bundle π∗E by the diagonal section s∆.
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