ON THE EQUIVARIANT TAMAGAWA NUMBER CONJECTURE
FOR HECKE CHARACTERS OVER IMAGINARY QUADRATIC
FIELDS

MASATAKA CHIDA

ABSTRACT. In this article we consider the equivariant Tamagawa number conjec-
ture for Hecke characters over imaginary quadratic fields. Assuming weak Leopoldt
conjecture and the equivariant main conjecture for imaginary quadratic fields, we
give a proof of a weak version of the equivariant Tamagawa number conjecture for
Hecke characters.

1. INTRODUCTION

In this paper we prove a weak version of the equivariant Tamagawa number conjec-
ture for Hecke characters over imaginary quadratic fields under certain assumptions.
The Tamagawa number conjecture by Bloch and Kato [3] describes the special val-
ues of L-functions of pure Chow motives over number fields in terms of regulator
(or Chern class) maps of motivic cohomologies into Deligne’s and étale cohomolo-
gies. Fontaine and Perrin-Riou [10] reformulated the Tamagawa number conjecture
using the determinant functor. This conjecture is a generalization of Dirichlet’s class
number formulas and Birch and Swinnerton-Dyer conjecture. Moreover Burns and
Flach [4] formulated the equivariant version of Tamagawa number conjecture for a
Chow motives over number fields with the action of a semisimple finite dimensional
Q-algebra. For the (equivariant) Tamagawa number conjecture there are some results.
Burns and Greither [5] proved the ¢-part of ETNC for all abelian extension of Q for
the L-values at any integer points and all odd primes ¢. A survey paper by Flach [8]
gives a proof of ETNC for all abelian fields including the case of £ = 2. Huber and
Kings gave independently a proof of a weaker version of the same case. Recently Bley
[2] and Johnson [11] considered the case of abelian extension of imaginary quadratic
fields. For another case, Kings proves a weak varsion of TNC for CM elliptic curves
in non-critical cases, and Bars [1] extended this result to Hecke characters with higher
weights. In this paper we consider the equivariant version of their results.

2. DETERMINANT FUNCTOR

In this section we review some facts on the determinant functor of Knudsen and
Mumford [15]. For any commutative ring R, let P(R) denote the category of finitely
generated projective R-modules and (P(R),is) its subcategory of isomorphisms. A
graded invertible R-module is a pair (L, «) consisting of an invertible (that is, pro-
jective rank 1) R-module L and a local constant function « : Spec (R) — Z.

A homomorphism h : (L,a) — (M, 3) of graded invertible modules is a homomor-
phism of R-modules h : L — M such that the localization h, = 0 for all p € Spec (R)
for which a(p) # B(p). Let Inv(R) denote the category of graded invertible modules
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and isomorphisms. Then the category Inv(R) is a symmetric monoidal category with
tensor product

(L, @) ® (M, B) = (LorM, a + 3),

the associativity constraint, the unit object (R,0), and the commutativity constraint
(L,a)® (M, 3) = (M, ) ® (L, o).

We define
<L7 a)_l = (HOH’I(L, R)? —Oé).

For a finitely generated projective R-module P we define

rankp P
DetRP:< A P,rankRP>.
R

This is a graded invertible R-module, so Detg gives a functor (P(R),is) — Inv(R).
For a bounded complex of finitely generated R-modules P* we define

Detr(P*) = Q) Dety, V" (PY).
i€z
Furthermore we set Det ' (P*) = Detg(P*)~".

We write D(R) for the derived category of the homotopy category of bounded
complexes of R-modules, and DP(R) for the full triangulated subcategory of perfect
complexes of R-modules. Let DF*¥(R) be the subcategory of DP(R) in which the
objects are the same but the morphisms are restricted to quasi-isomorphisms. We
assume that R is reduced. Then the functor Detrp can be extended to a functor
DPs(R) — Inv(R) in such way that for every distinguished triangle C; — Cy — Cj
in DP**(R) there is an isomorphism in Inv(R)

(DetRC’l)_l & DetRC’g i DetRCg

which is functorial in the triangle.

For R-module X, if X[—1] belong to DP(R), then we say that X is perfect. And
we define Detr(X) := Detg(X[—1]) for any such X. If a complex C' is bounded and
each cohomology module is perfect, then C' belongs to DP(R) and there is a canonical
isomorphism

DetrC' = (X) Detly, V™ (H(C)).
i€l
If C is acyclic, then there is a canonical isomorphism

DetzC = (R, 0).

Let G be any finite abelian group. For any commutative ring Z we write  — 2 for
the Z-linear involution of the group ring Z[G| which satisfies g# = g~! for each g € G.
If X is any complex of Z[G]-modules, then we write X# for the scalar extension with
respect to the morphism z — 7.

For any finitely generated projective Z[G]-module X (resp. object X of DP(Z[G])),
we set X* := Homy (X, Z) (resp. X* := RHomy (X, 7)), which we regard as endowed
with the contragradient G-action. We see that if X is a finite generated projective
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Z|G]-module (resp. object of DP(Z[X])), then also X* is. We recall that for any Z[G]-
module X one has a canonical isomorphism X* = Homy)(X, Z[G])#, and that this
induces that for each object X of DP(Z[G]) a canonical isomorphism in Inv(Z[G))

Det 7/ X* = Det 1 (X7).

3. EQUIVARIANT TAMAGAWA NUMBER CONJECTURE FOR HECKE CHARACTERS

Let K be an imaginary quadratic fields. Denote by Ok the integer ring of K. Let
E be an elliptic curve over K with complex multiplication by Ok (i.e. Endg(FE) =
Ok). We fix an abelian extension F'/K. Then there is an ideal m of Ok such that
F C K(m), where K(m) is the ray class field mod m. We denote

A: = Ok[Gal(F/K)]
A: = K[Gal(F/K)].

Also we write
E' := Ex g Spec I’
for the base change of E and
A = Resp/x E

for the Weil restriction of E’ to K. Then the abelian variety A has complex multiplica-
tion by A. Set T'=End(A)®@Q = A. Let o4 : Ajr — A* be the Serre-Tate character
associated to the abelian variety A. Moreover we denote by M; = Resp/x h'(E') the
Grothendieck restriction of the motive h!'(E’). This motive has multiplication by A.
We set M, = M1 ® ---® M;(w-times) and T\, = T ® - - - ® T'(w-times). Then we have

a decomposition
Tw = H T®7
e

where © runs over the Aut (C)-orbits of Hom(T,,C). Te is a field. For 6 =
(A1, ..., A\y) € Hom(T,,C), denote Ty := 0(T,,). Writing eg for the projector in
Hom(T, C) corresponding to Te. Because eg is an element in T,, C End(M,,), we
can define the motive Mg := egM,, as a Chow motive over K. Also we define the
CM character pg : Ay — T by peo = eo(pa ® -+ ® pa) and the Hecke character
g AR /K> — T, by wg = Ai(pa) - Aw(pa). We denote by f = fg the conductor
of Yo -

Proposition 3.1 (cf. Deninger [6][Proposition 1.3.1]). For a Dirichlet character x :
Gal(F/K) — C* and the grissencharacter g associated with the elliptic curve E,

the Hecke character ¢ = x - 9% - @?E (a,b > 0,a+b=w > 1) has the form py for
suitable 6 € T,.

Let F be an elliptic curve over K with complex multiplication by Of. Note that this
situation implies that the class number of K is one. We choose a positive integer w and
an Aut (C)-orbit © in Hom(®{ ;End(E), C). Denote the infinite type of pe by (a,b).
We may assume that an ideal m of K satisfies F' C K (m) and fo|m. Then we consider
the motive Mg = eo(h(E) ® -+ @ h*(F)) and M{ := Mg ® h°(Spec F') the base
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change of Mg to F'. The A-equivariant L-function of the motive M = M{(r) (r € Z)
is defined by
L(aM, s) := [ [ Deta(1 — Frob, " - Np~*|M;") ™,
p

where M is the f-adic realization of M and I, is the inertia group at p. We are
concerning the leading term of the Taylor expansion at s = 0, denoted by L*(4M).
Let r be an integer satisfying that —r < min(a, b) if a # b and —r < a = b = w/2 if
a = b. Then the motive M is non-critical. We denote the motivic cohomology by

Hi(M) := Hy ™ (Mg, Q(r + w+ 1))
Deninger [6] proved that there is a constructible subspace of the motivic cohomology
H (M) such that the Beilinson’s regulator map gives an A-equivariant isomor-
phism
P+ HXOM)™™ g R 2 (Hy(M) ® R)*,
where Hp(M)" = eo HS(®@¥_ M (E") @k C,Q(w + r)) is the Betti realization of M.
Thus, defining

E(aM) = Dets(Hj(M)*™")*®@4Det ;' (Hg(M)*)*,
we obtain an isomorphism
4000 1 A®gR — Z(aM)®¢R.
Fix a prime £ and put 4, := A®¢Q,. Choose a Gal(Q/Q)-stable projective Ox-lattice
T = eo HY (Y W (B)RK K, Zs) C My = eo HY (@ W (B)@k K, Qy)
and a Gal(Q/Q)-stable projective A-lattice
T! = eoHY (@Y W (E®K K, Zi) C M} = eoHY (@Y W' (B @K K, Q).

For the formulation of equivariant Tamagawa number conjecture, we need to assume
the weak Leopoldt conjecture

H*(O[1/md), T)(w+7+1)) ® Q= 0.
Under this assumption, the f-adic regulator map
peve : HEM)™™ @ Q, — H'(Ox[L/mf], My(w + 1 + 1))
induces an isomorphism
a9¢ 1 2(aM)®¢Q; = Deta, RT(Ok[1/me], My}).

Conjecture 3.2 (A weak version of equivariant Tamagawa number conjecture). For
every prime £,

Q[g . A"l?g o AﬁOO(L*(AM)_l) = Detg[ZRFC(OK[l/mﬁ], Té)
inside of Det g, RI'.(Ok[1/ml], M)).
For this conjecture, we have the following result.

Theorem 3.3. Let r be an integer satisfying that —r < min(a,b) if a # b and —r <
a=0b=w/2ifa="0and { an odd prime. Assume the weak Leopoldt conjecture.

Then the (-part of the weak version of equivariant Tamagawa number conjecture holds
for the motive M = M (r) and the order A = Ok|[Gal(F/K)].
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Remark 3.4. 1. By a functoriality of equivariant Tamagawa number conjecture,

it suffices to give a proof for the cases that F' = K(m). So we will consider only
the case of F'= K(m).

2. Since ¢}, (p)YE (p) = Np”, it is enough to prove this conjecture for r = 0 by
using (a + 7, b+ r) instead of (a,b).

3. Using computations analogous to [8][Theorem 5.2] one can show that the equi-
variant main conjecture for imaginary quadratic fields for split primes ¢ which
is implied by Rubin’s work [17][Theorem 4.1].

4. One can show that the weak Leopoldt conjecture for almost all r using Rubin’s
result.

4. COMPUTATIONS ON THE REGULATOR MAP

Let K be an imaginary quadratic field of class number one and E an elliptic curve
over K with complex multiplication by Ok. We denote Gy, = Gal(K(m)/K) for an
ideal m of Ok and E’ = Ex gSpec K (m) for the base change of E. For y a rational
character of GGy, we consider a Hecke character

a—b
vy, = XVEVE

with conductor §, weight w = a 4 b, where a, b are non negative integers and g is
the grossencharacter associated with £. We will denote the Aut (C)-orbit of 8, by
©,. We fix an isomorphism

9]5/ : OK i EndK(m)(E')

such that 6%, (a)w = aw for any w € H°(E, QL) and an embedding 7 of K (m) in
C such that j(E') = j(Ok). Then E' = C/I" where I' = QO for some © € C. We
let p; € Aj be an idele with ideal § and choose f; € K* with v,(f;) < 0if p 1 f and
Up( ff_1 —(pp)y ") 2 0if p | . By the theory of complex multiplication, there exists an
unique f € K* satisfying that the following two properties:

L. fOk = (py)-
2. For any fractional ideal a C K and any analytic isomorphism A : C/a — E(C),
the following diagram commutes:

—1

f.
K/a S AN K/a
[» [
ab
(%5
_
where K2 is the maximal abelian extension of K.

Then f satisfies the condition of f;, so we put f; = f.
Then we define a divisor

E(K™) E(K™),

18" = (2] € E[f](K (m))
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and

T8I N (o) - Y ()

PeE'[N{]

i := 8" — (deg;8")(O) +

in Q[E'[f\O] for N > 2.Deninger constructed the motivic elements in motivic coho-
mology using the Eisenstein symbol

Em : QIE'INTNOI" — Hy (Sym”h! (E), Q(w + 1))
and the Kronecker map
K : HiH(Sym Y (E), Q(w + 1)) — HiyH (Mo, Q(w + 1)).

Let
Pt Hiy (Mo, Q(w + 1)) @ R — Hj (Mo, ,R(w))

be the Beilinson’s regulator map.

Theorem 4.1 (Deninger, [6][(2.11)]). Setting = 5" and P = E[f] ifa # b mod |Oj
B =if and P = E[Nf] ifa=b mod |Og|. Then

Poo(Km 0 Em(B)) = te, L'(Pay, 0)eo, n,

B

where
27'P(C)]*®(m)

o = VTN e
P(m) =| (Og/m)* | and n is a A-basis of Hg(M)*.

(106)( (pf)7

For f | m we define the element

& = Kamo Em(B)
in the motivic cohomology Hy{'(Me,,Q(w + 1)). From the assumption that K
has class number one, x(p;) = 1. Also one can show that ¢¥g(p;) = f, so we have
ve, (p5) = f“fb. Therefore by the Deninger’s theorem, we have the following formula.
—b
27 | P(O)]"0(m) f*f
(E) = (=1 L'(Bo-, 0)eo. 1.

5. ELLIPTIC UNITS

We will use elliptic units to describe the image of L-values under the /-adic regulator
map. Here we give a short review of elliptic units. For details, see de Shalit’s book
[7][Chapter 2]. Let L = Z-w; +Z-w> be a lattice in C with a basis (w;, ws) satisfying
Im(wq/ws) > 0. The Dedekind eta function is defined by

i) = F [0 =g =
n=1
and we put
NP (w1, ws) = wy 2min(wr fws)?.
This function depends on the choice of basis but the discriminant function

A(L) = A(r) = (2mi) *n (7)™
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does not. Define a theta function

o0
z—

p(z,7) = e =g 2 (g2 — 7V TT (1 — g2 (1 — ¢ 'g2)

n=1

2miz

where ¢, = e and

p(z;wi,w2) = (z/wi, wi/ws).
For any pair of lattices L C L’ of index prime to 6 with bases w = (w;,ws) and
W = (W), w)) satisfying Im(w; /we) > 0 and Im(w/ /wh) > 0, it is shown by Robert in
[16][Theorems 1,2] that there exists a unique choice of 12-th root of unity C(w,w’) so
that the functions
O(L, ') = Clw, o () /()
and
(e L 1) = oL, 1) T (9l L) — plus L))

ueT
only depends on the lattices L, L', where the set T is any set of representatives of
(L'\{O})/(£1 x L) and g is the Weierstrass p-function associated to L, moreover ¢
satisfies the distribution relation

[L:K]

U(z K K =[] ¢(z+t: L, L)

=1
for any lattice L C K so that K N L' = L and where K’ = K + L' and t; € K are a
set of representatives of K/L. Then v (z, L, L’) is an elliptic function on the elliptic
curve B = C/L with divisor [L' : L](O) = > pc s/, (P). Kato reproved Robert’s result
in a scheme theoretic context as following.

Lemma 5.1 (Kato [13] [Proposition 1.3]). Let E/S be an elliptic curve over a base
scheme S and ¢ : E — E an S-isogeny of degree prime to 6. Then there is a unique
function
Og/s € T(E\ ker(c), 0*)
satisfying that
L. div(cOp/s) = deg(c)(0) = 3 perere) (F)-
2. For any morphism g : S" — S we have g3(.Op/s) = «Oprs, where gp : B :=
ExgS" — E and ¢ is the base change of c.
3. For any S-isogeny b : E — E' of degree prime to deg(c) have b,(:Op/s) = «Op//s
where by is the norm map associated to the finite flat morphism E\ ker(c) —
E'\ ker(c’). Here ¢ is the isogeny E' — E'\b(ker(c)).

4. For S = SpecC,E =C/L and ¢ : C/L — C/L for lattices L C L we have

Op/s(z) = (2, L, L).

Let K be an imaginary quadratic field. For any integral ideal f # 1 and any
(auxiliary) a which is prime to 6f we define the elliptic unit by

alf = 1/}<27 fv a_lf)
and for f = 1 we define a family of elements indexed by all ideals a of K by
_ A(Ok)
u(a) = Aa)
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Lemma 5.2 (For the proof see [7][Chapter 11.2]). The complex numbers 4z; and u(a)
satisfy the following properties:

1. (Rationality) o2 € K(f), u(a) € K(1).
2. (Integrality)

O f divisible by primes p # q
O;(((f),{vﬁ} f = p™ for some prime p.
and
U(Cl) . OK(l) = Cl_12OK(1).
3. (Galois action) For (¢, fa) = 1 with Artin symbol o, € Gal(K (f)/K) we have

= vl e ), u() = u(ae)/uc),

4. (Norm compatibility) For a prime ideal p one has

af p | ](7£ 1
ws Jw 1—o,!
Ny (azen) ™™ = € az 7 pri#1
u(p)ap—Na/H f - 1.

Remark 5.3. 1. The relations in 2. show the auxiliary nature of a. In the group
ring Q[Gj] the element Na — o, becomes invertible and

Zf = (NC( — O'a)_laZf € O;(((f),{’vﬁ}@Z@

is independent of choice of a.
2. The Galois action in 3. together with the relation

WAz AL AL) = (2, L, L')

for any A € C* show that the Galois conjugates of 42 are the numbers 0 g/ (c)
where (F,«) runs through all isomorphism classes of pairs with £ = C/L an
elliptic curve with CM by Ok, a: C/L — C/a 'L and o € E(C) a primitive
f-torsion point. In fact 425 is the value of ;O¢/ k(1) at a single closed point with
residue field K (f) on an elliptic curve £/K(1).

6. COMPUTATIONS ON THE /-ADIC REGULATOR MAP

In this section, we compute the image of the element & by /-adic regulator map.
From now on, we fix a prime [ of Og dividing ¢. Write K, = K ® Q, = Hllf K;. In
the last section, we choose an ideal m of Og. Now we set

m=mgyl™

with [ mg. Since M = Mg®xh®(Spec F) is a direct summand of M’ = M®rh°(Spec F”)
for any extension F’/F', and we have M'® 4 A = M if F'/K is also abelian, we may al-
ways replace F' by such a larger extension F’/F and prove the equivariant Tamagawa
number conjecture for M with the functriality of this conjecture. By the following
lemma according to Flach, we can assume E/K(m) has good reduction at all primes
dividing [.

Lemma 6.1 (Flach [9][Lemma 4.2]). After possibly replacing m by a multiple we may
assume that F' = K(m) and that in addition E is defined over K(my) and has good
reduction at primes dividing .
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Now we give a brief review of result of Kings [14]. Let E be an elliptic curve over
a base scheme T'. Denote by 7 : E — T the structural morphism. Put U = FE\e ,
where e is the zero section. Let Polg, be the elliptic polylogarithm sheaf on U (lisse
pro-sheaf on U). For any divisor

b= Y nteQENTN
teE[N](T)\e
we define the /-adic Eisenstein class associated to 3 by
(B Polg,)™ = Z n¢(a*prst* Polg,) € H*(T, Sym™Hqg,(1)),
teE[N]\e

where Hg, := Hom,(R'7.Q,, Q,) and ¢™, pr, are suitable projections. For an ideal
a with (Na,¢N) = 1, consider [a] : E — E any isogeny of degree Na. Kings gave a
explicit description of the f-adic Eisenstein class associated § using the elliptic units.

Theorem 6.2 (Kings [14][Theorem 4.2.9]). Let the notation as above. For any m >
0, the (-adic Fisenstein class

Na([a)®"Na — 1)(8*Polg,)™)
15 given by
1 ~ @m
:l:%(é Z Nt Z a@E(_tn>tn )n
teE[N|(T)\e ["]|tn=t

in the cohomology group H(T, Sym™Hg,(1)), where & is the boundary map, t,, is the
projection of t, to E[("].

The following result gives the relations between the image of Er(3) by f(-adic
regulator map pe; ¢ and ¢-adic Eisenstein class associated to f3.

Theorem 6.3 (Kings [14|[Theorem 1.2.5]). For a divisor
B= > mteQIEN|T)\e],
teE[N](T)\e
we have that
pese(Em(B)) = =N>"(5" Polg,)"™.
Corollary 6.4. For a diwvisor as in Theorem 6.3, we have that

1

coupiedlCnn o En(0) = EN* e

X5 Z Nt Z a@E(_tn>®€®X<t;L®w>

teE[N\e  [("]tn=t .

We will apply these results for the case 8 = ;5 or 8", N = |[P(C)|, m = w,
T = SpecOg [ﬁ} and Hg, = Vi = T)F' ® Q;. Now there is a commutative
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diagram
HY N (Sym™ R (E), Q(w + 1)) =25 HY Y (Mo, Q(w + 1))
lpét,e lpét,z
HY (O [1/m], Sym"V,E'(1))  —= HY(Ox[1/m], My(w + 1))
satisfying

Ke(x(a)dr @ Yp(a)*'Sym" V. E'(1)) = pe, (a) My(w + 1).
Also we have that
Ke((6"")) = 8(eo, (t"")n
in the cohomology group H' (O [1/m], My(w + 1)).

Lemma 6.5 (Johnson, [11][Lemma2.3]). Fork > 0, there is a variation of the Eisen-
stein symbol

En: QIE[NO] — HH(EX, Q(k + 1))

which is defined for divisors of any degree. Moreover,

Em(iB") = Em(sB).

Therefore we conclude that

eo, peti(Kat 0 Em(B)) £ P(C)|"

B w!Na(pe, (a)Na — 1)

<6 D On(—t) @ o (i)
("]tn=p

in the cohomology
HY (O(my1/ml), My) = H (Ogc(my[1/ml), M) @, K,
where
Pett = Pet s, Ky : H}(M)@KK[ — Hl((’)K(m)[l/mﬁ], My)®k, K.
is the [-part of the (-adic regulator map.
Lemma 6.6. Lett € E[f]. Setting wj = #{u € O | v =1 mod f}, we have that

(1 — Frob; ") Z Or(—t,) ® eo, ({n®w)

[(]tn=t n

= wi(Tricep/ K (a@p(—sn) © co, (5.7")),
where s, is a primitive {"-th root of t = fo_l.
Proof. The proof is the same with [11] [Lemma 3.2.4] or [14] [Theorem 5.1.2]. Let [
be a prime of K and set v = ord(f), f = [“fo. For ¢, satisfying ["t, =t € E[""], we

write
tn = (tn, tno) € E[I"™] & Elfo).
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We define the filtration F! for H}w = {t, € E[I"f] | "t,, =t} by
Fl={t, = (tp, tno) | "¢, = 0}.
The action of Frob; are given by

(Frob ) (6™ = ($e(06) ) = (tnr™ -
Hence we have

(FrOb[_i)TI'K([nf)/K([n—if)a@E(—Sn>n & (S~n®w)n
= T g /i (-1 a@B(— (52, $0,0) 0 @ (S0 )
= a@E(_(Sr:—h Sn—i,O))n & (Sr:—i®w>n

by the distribution relation of elliptic units. Since Gal(K (["%)/K(f)) acts transi-
tively on F!/Fi+1,

(FI'Ob[_i)TI'K([nf)/K(f)a@E(_5n>n ® (S~n®w>n

1 ~ ~ w
= E Z ' a@E(_(tn—i7tn—i,O>>n & (Sn—i® )n
tn_i€FL JFit1

These elements are annilated by [, so taking the sum over ¢ and limit as i — oo we
get

> On(—tn) ® (£,
[mt,=t

= wi(Y " (Frob ) Trx(onpy /i (a5 (—5a) © (5.5))n

=1
= (1 — Frob[_1>_1(TI'K([nf)/K(f)a@E(_Sn) ® (S~n®w>>n-

Finally applying the projection eg,, we have the lemma. O

Combining this lemma with Theorem 6.4, we can give the computation of the image
of & by the f-adic regulator map.

Theorem 6.7. With the notation as above, we have that

wi| P(C)|*
eo, pe (&) = i%(l — Po, (D)3 (Tr (g 1 () 21 )

in the cohomology H* (O m[1/ml], My(w + 1)), where
1
Na(pe, (a)Na —1)

7. COMPUTATION OF THE IMAGE OF L-VALUE IN THE COHOMOLOGY

In this section we compute the image of L-values in the cohomology with compact
support. By Deninger’s formula,
27 [ PO)["®(m)ff
W (fNF”

b

P (&) = (—1) L'(@e,,0)ee,n
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in eg, Hg(M)" = Hp (Mo, x gSpec C, Q(w)). Since
=(4M)¥ = Det3! (H}(M)™")@ Dt 4 (Hp(M)),

we have

(L (a0, = LT

where (&)~ is the x-part of the dual basis of H;(M)®“"". Now we define the complex
Ae (K (m)), by

Ae(K (m)), := RHomy, (RT(Ox[1/mf], T/(r)"), Ze)[~3]

(&) '® €o, 1

for any integer r, then
Deta,Ae(K(m)), ® Q; = Det, (RL(Ok[1/me], My(r)*))*
by a property of determinant functor, where Ay = A ® QQ;. By Shapiro’s lemma,
RT(O[1/mf], Ty(r)) = RT(Oxm[1/ml], Te(r)),
and by Artin-Verdier duality,
RT (O my|1/ml), Ty(r)) = RT (O [1/ml], To(r + 1)*)* @ (T;(r + 1)*)*.
Therefore we have
H'(Ao(K (m))) = H (O [1/ml], Ty(w + 1))

and

HA (K (m).) = HOsnl1/m, T + D) & (D T0))

Assuming the weak Leopoldt conjecture, the f-adic regulator map induces the iso-
morphism

E(aM)* ® Q¢ = Dety, (H (M) ® Qp) ® Deta, (Hp(M)" ® Q)

+
= Det 3! (H' (Okmy[1/ml], My(w + 1)) ® Dety, (@TEHM(K(M@ Mg(w))

() 4
= Det ! (H' (O m[1/ml], My(w +1))) ® Det, (@TEHM(K(M 5 MAw))

5 Det 4, (Ao (K (m))w ® Qp),

where the map () is multiplication with the Euler factors [, (1— Frobp)_l#.

ordl

Hence by Theorem 6.7 and the relation pg, = EB” p pg[ , we have the following.

Theorem 7.1. Assume the weak Leopoldt conjecture for M,. The x-part of 4t o
AV (L*(4M)™1) is given by

d(m)2-1 fo
+ (-8, (p>>_1%(5(TTK<e"f>/K<f>Zznf));l ® (tn @ (" ® €0, 70)n-

plmo
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8. THE BASIS OF INTEGRAL LATTICES

We recall the statement of the equivariant main conjecture for imaginary quadratic
fields which is formulated by Johnson [11]. Put

A = imZg[Guem] = Zg[Grgj][[S1, S2]]

n

where Gi9. is the torsion subgroup of Gue = liLl’legn. Define a rank one free
A-module '

T = LiLnHO(Spec (K(ml")®KQ, Zy).
and a perfect complex of A—mgdules
A® := RHomy (RT(Ok[1/mf], T), A)#[-3].
Then H'(A®) =0 for i # 1,2 and there is a canonical isomorphism

Hl(AOO) = U{01(1>|m£} = liLn(’)K(mOgn)[l/mﬁ]X

and a short exact sequence
0 = Py — H*(A%) = XFjnpee) — 0
where
Piimey 7= lm Pic(Ok e [1/me]) @220

X{Simtooy = lim Ker D z5z|w.
" vlmloo in K (mem)

These limits are taken with respect to Norm maps.
Let mg be the prime to f-part of m. Put

aZmot = (aZmoen )n € H' (A @ Q(v)),
T = (Tmot )n € Y imotooy = UMY {umgroc} (K (mol™)) @ Zy,
where 425 is the elliptic unit defined by '
w2f = (15§, 07 )

and
Yioimotoo} (K(m)) = @ Z.

vlmboo in K(m)

We fix an embedding @, — C and identify G with the set of Q-valued characters.
The total ring of fractions

Q= [ QW)
V(G ) U

of A is a product of fields indexed by the Q-rational characters of Gi%.. Then one
can show

dimey)Ulpmey @aQ(¥) = dimqy) Y Jjmgese; @4 Q(¢¥) = 1
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for all characters ¢. Note that the inclusion X?° olmotoc} S
morphism after tensoring with Q(¢’) and that ey (y32moe ® 7) is a basis of

Det gy (Ulsimeg @A Q1)) © Detgus) (X Hmgoc} @aQ(1)) = Detg) (AX@1Q(1)).
Hence we obtain a (Q(1))-basis
L:=(Na—04)(aZme=) @ T

Y{ffi moloo) becomes an iso-

of Detoy) (A*@rQ(Y)).

Conjecture 8.1 (Equivariant main conjecture, [11][Conjecture 3]). There is an iden-
tity of invertible A-submodules

AL = DetyA™
of Detga) (A*@4Q(A)).

Remark 8.2. Johnson and Kings [12] announced that this conjecture is proved for
all primes ¢ # 2.

Now Tj(w)* is a Gk-stable -lattice in Mj(w)*. The action of Gk on Tj(w)*
factors through a character
K Gmogoo — Q[;
and we also denote by x : A — 2, the corresponding ring homomorphism. Let
(&n)n>0 be a Ap-basis of T)(w) with the uniformization F = C/fQOk.
Lemma 8.3. (a) There is a natural isomorphism
A*®@y A = RT(Ok[1/ml], Ty(w)")*[=3] = Ao (K (m))w.
(b) The image of an element
0= (ue)z0 € BmH (O o [1/ml]. /D)) = Ufngy = H(A¥)

under the induced isomorphism
HY(A®)@) A = H (Ok[1/ml], Tj(w + 1)) =2 H (Og(m[1/ml), Ty(w + 1))
15 given by
T (mem) 1< (m) (U U En)nzo-
(¢) The image of an element

5= (Sn)nz0 € B2/ Z{Gnggr] - 7 = Vo)

under the isomorphism Y5 @ «2¢ = H°(Spec (K@gR), Mj(w)) = M)(w) is given
by

(80 U&n)n>0-
Proof. The proof is just similar to [9][Lemma 4.3]. We set ,, = Ok /("Ok, T, =
Ti(w)* /0 T)(w)* , Agpn = Ap[Gmeen] and denote by ky,, @ Gpgem — A the action
on Tém. We also denote by k,, the automorphism of Ay, induced by the character

g — £n(9)g of Gugem. Then ko, = lims, is an automorphism of

Ag := A [[Gingee=]]-
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For the natural map f, : Spec (O (mee)[1/mf]) and the constant sheaf 2,,, the sheaf
Fr = faufi, is free of rank one over Ay, with Gg-action given by the inverse
of the natural projection G — Guym C Ay . There is a Mgy — 5, L_semilinear
isomorphism tw : F,, — F,®q,1}, sending 1 to 1 ® §,. Shapiro’s lemma gives a
commutative diagram of isomorphfsms

RU(Ox[1/ml], F,) —2 RI.(Ok[l /ml], Fo®u, T},

(8.1) | |
RT (O [1/m], Fr) — R (O ey [1/m8), T4,
where the horizontal arrows are Ay, — k., '-semilinear. Taking the Ok /¢"-dual (with
conragradient Gy, ¢m-action) we obtain a # o k' o # = k,-semilinear isomorphism
RT(Ok[1/ml], F,®a,T;,,)"[-3] — RT(Ok[1/ml], F,)"[-3].

where F, = liLnfn >~ T®aAg. Hence a A-linear isomorphism

(A ®AA‘2[>®A21 fiooA‘Zl = RF ((’)K[l/moﬁ] oo®9[ng) [—3}
Part (a) follows by noting that x coinsides with the composite map
A — Ay ™3 Ay — 2,

where the last map is the augmentation map, and that Fo,®js, = 2, with trivial
Gr-action. The Ok /f"-dual of the H? of the inverse map in the lower row in 8.1
coinsides with

H (O [1/m], T7,," (1)) & H (O [1/m], (1))

by Poitou-Tate duality. This gives part (b). Similarly to the lower row in 8.1 we have
a k~!-semilinear isomorphism

the Ok /¢"-dual of the inverse of which is the x-semilinear isomorphism given by the
cup product with &,. Passing to the limit and tensoring over Ay with A, we deduce
part (c). O

Now the main theorem follows from Theorem 7.1 and the following theorem.

Theorem 8.4. Let R be a direct factor of Ay which is a field, q the kernel of the map
kAN — Ay — R and Aq the localization of A at q. Then L is a basis of Dety Ag®.
Denote by L ® 1 the image of L under the determinant

DetAqA;’O@)A Ag DetA[RF ((’)K[l/mﬁ] Tg( ) ) [—3}

of the isomorphism Lemma 8.3 (a) . Moreover assume the weak Leopoldt congjecture
for M;. Then the x-part of the image of L ® 1 under

Det 4, RT.(Ok[1/mf], T)(w)*)*[—3] = Deta, RT(Ok[1/ml], T)(w)*)# = Z(4aM)#@4 A,

15 given by

o) oL 6(Trprperls’ © (0 © ) @ o,
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Proof. By [11][Lemma 5.5], we have
H' (AX®5k) = H (AX)® gk

Moreover Lemma 8.3 gives an isomorphism of complexes of R-modules A?@%k =~
Ao(K(m)),®q,k. Therefore the isomorphism of determinants

¢ : Dety(A®@ k) = Dety,(Ao(K(m)),®,k)

can be computed as a map on the cohomology groups

2 2
¢: QH(A®) @k = ® HY(AX&Lk)
< ‘

= ® H (Ao(K(m))y,)Ra,k-

To compute p(L®1), we consider the elements 2y, and 7. By the norm compatible
properties of elliptic units and the similar argument of Johnson [11][(5.7)], we can
compute these element as

Naéﬁccfx;:l 1) K (m) - KO T (=26 0D (0(Tricqenppzen))n

plmo,ptf
and .
ff w
o(r) = Nfw (tn)n ® (CS? In ® €0, Tm
using Lemma 8.3, where the factor
—b
JUf a1

comes from the difference of lattices C/Q20k and C/fQO0x = C/Qf relating to the
choice of elliptic units. Note that our choice of 7, is 79. So the image of L is given by

a_b
(K (m) : K(f)] {v{u [T (=6 () (6(Trcienp/mpzen))n @ (b @ Co)n @ €0, 7
plmo,ptf
=0~ wf<<I>(3‘3f —(0(Trr(enp/rpze))n @ (tn ® G )n @ o, To.

plmo

The last equality follows from the formula

O(m)/(f) = wyl K (m) : K(f)]
and @eo(p) =0 for p | f. O]
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